HYPOTHESIS/ PURPOSE: To compare the anti-inflammatory activities and the anti-nociceptive properties of RG and BG.
METHODS: Nitric Oxide (NO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay, quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR), western blot, xylene-induced ear edema, carrageenan-induced paw edema RESULTS: The ginsenoside contents were confirmed using high-performance liquid chromatography (HPLC) and has been altered through increased processing. The highest concentration of these extracts inhibited NO production to near-basal levels in lipopolysaccharide (LPS)-stimulated RAW 264.7 without exhibiting cytotoxicity. Pro-inflammatory cytokine expression at the mRNA level was investigated using qRT-PCR. Comparatively, BG exhibited better inhibition of pro-inflammatory mediators, iNOS and COX-2 and pro-inflammatory cytokines, IL-1β, IL-6 and TNF-α. Protein expression was determined using western blot analysis and BG exhibited stronger inhibition. Xylene-induced ear edema model in mice and carrageenan-induced paw edema in rats were carried out and tested with the effects of ginseng as well as dexamethasone and indomethacin - commonly used drugs. BG is a more potent anti-inflammatory agent, possesses anti-nociceptive properties, and has a strong potency comparable to the NSAIDs.
CONCLUSION: BG has more potent anti-inflammatory and anti-nociceptive effects due to the change in ginsenoside component with increased processing.
MATERIALS AND METHODS: The influx of immune cells, release of pro-inflammatory cytokines and subsequent accumulation of synovial fluid (swelling) and pain manifest into the disease. The present study used CFA induced Balb/c mice model and treated them intraperitoneally with andrographolide and dexamethasone (used as a positive control) on alternate days for six days. After 6 days, blood and peritoneal macrophages were collected to evaluate the expression of various arthritic markers and paw edema was measured on all days.
RESULTS: The in vitro and ex vivo experiments showed that andrographolide treated animal group had reduced paw edema, cell cytotoxicity and nitric oxide production than dexamethasone treated animal group. Further, the study revealed the mechanistic role of andrographolide in treatment of arthritis by suppressing battery of molecules like COX-2, NF-κB, p-p38, CD40, TNF-α, IL-1β and IL-6 involved in arthritis.
CONCLUSION: The study showed the potent anti-arthritic effects of andrographolide and warrants further investigations on andrographolide for the development of safe and effective anti-arthritic drug.
Methods: This study aims to develop a recombinant anti-mKRAS scFv-fused mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin that is capable of recognizing and eradicating codon-12 mutated k-ras antigen abnormal cells. One G13D peptide mimotope (164-D) and one G12V peptide mimotope (68-V) were designed to elicit antigen specific IgG titres against mutated K-ras antigens in immunised Balb/c mice. The RNA was extracted from splenocytes following ELISA confirmation on post-immunized mice sera and was reverse transcribed into cDNA. The scFv combinatorial library was constructed from cDNA repertoire of variable regions of heavy chain (VH) and light chain (VL) fusions connected by a flexible glycine-serine linker, using splicing by overlap extension PCR (SOE-PCR). Anti-mKRAS G12V and G13D scFvs were cloned in pCANTAB5E phagemid and superinfected with helper phage. After few rounds of bio-panning, a specific mKRAS G12V and G13D scFv antibody against G12V and G13D control mimotope was identified and confirmed using ELISA without any cross-reactivity with other mimotopes or controls. Subsequently, the anti-mKRAS scFv was fused to mHALT-1 using SOE-PCR and cloned in pET22b vector. Expressed recombinant immunotoxins were analyzed for their effects on cell proliferation by the MTT assay and targeted specificity by cell-based ELISA on KRAS-positive and KRAS-negative cancer cells.
Results: The VH and VL genes from spleen RNA of mice immunized with 164-D and 68-V were amplified and randomly linked together, using SOE-PCR producing band sizes about 750 bp. Anti-mKRAS G12V and G13D scFvs were constructed in phagemid pCANTAB5E vectors with a library containing 3.4 × 106 and 2.9 × 106 individual clones, respectively. After three rounds of bio-panning, the anti-mKRAS G12V-34 scFv antibody against G12V control mimotope was identified and confirmed without any cross-reactivity with other controls using ELISA. Anti-mKRAS G12V-34 scFv fragment was fused to mHALT-1 toxin and cloned in pET22b vector with expression as inclusion bodies in E. coli BL21(DE3) (molecular weight of ~46.8 kDa). After successful solubilization and refolding, the mHALT-1-scFv immunotoxin exhibited cytotoxic effects on SW-480 colorectal cancer cells with IC50 of 25.39 μg/mL, with minimal cytotoxicity effect on NHDF cells.
Discussion: These results suggested that the development of such immunotoxins is potentially useful as an immunotherapeutic application against KRAS-positive malignancies.
OBJECTIVE: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines.
METHODS: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability.
RESULTS: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05).
CONCLUSION: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
.