METHODS: By comparing the patterns of floral visitation and levels of genetic diversity in adherent pollen loads among floral visitors, we evaluated the contribution of each flower visitor to pollination.
KEY RESULTS: The big-eyed bug, Geocoris sp., a major thrips predator, was an inadvertent pollinator, and importantly contributed to cross-pollination. The total outcross pollen adhering to thrips was approximately 30% that on the big-eyed bugs. Similarly, 63% of alleles examined in S. acuminata seeds and seedlings occurred in pollen adhering to big-eyed bugs; about 30% was shared with pollen from thrips.
CONCLUSIONS: During mass flowering, big-eyed bugs likely travel among flowering S. acuminata trees, attracted by the abundant thrips. Floral visitation patterns of big-eyed bugs vs. other insects suggest that these bugs can maintain their population size between flowering by preying upon another thrips (Haplothrips sp.) that inhabits stipules of S. acuminata throughout the year and quickly respond to mass flowering. Thus, thrips and big-eyed bugs are essential components in the pollination of S. acuminata.
PURPOSE OF THE STUDY: This study aimed to engineer and characterize polymer hybrid enteric microspheres using an integrated (experimental and molecular modelling) approach with further development to solid dosage form with modified drug release kinetics and improved bioavailability.
MATERIALS AND METHODS: NP loaded polymer hybrid enteric microspheres (PHE-Ms) were fabricated by using a modified solvent evaporation technique coupled with molecular modelling (MM) approach. The PHE-Ms were characterized by particle size, distribution, morphology, crystallinity, EE, drug-polymer compatibility, and DSC. The optimized NP loaded PHE-Ms were further subjected to downstream procedures including tablet dosage form development, stability studies and comparative in vitro-in vivo evaluation.
RESULTS: The hydrophobic polymer EUD-L100 and hydrophilic polymer HPMC-E5 delayed and modified drug release at intestinal pH while imparting retardation of NP release at gastric pH to diminish the gastric side effects. The crystallinity of the NP loaded PHE-Ms was established through DSC and P (XRD). The particle size for the developed formulations of PEH-Ms (M1-M5) was in the range from 29.06 ±7.3-74.31 ± 17.7 μm with Span index values of 0.491-0.69, respectively. The produced NP hybrid microspheres demonstrated retarded drug release at pH 1.2 and improved dissolution at pH 6.8. The in vitro drug release patterns were fitted to various release kinetic models and the best-followed model was the Higuchi model with a release exponent "n" value > 0.5. Stability studies at different storage conditions confirmed stability of the NP loaded PHE-Ms based tablets (P<0.05). The molecular modelling (MM) study resulted in adequate binding energy of co-polymer complex SLS-Eudragit-HPMC-Naproxen (-3.9 kcal/mol). In contrast to the NP (unprocessed) and marketed formulations, a significant increase in the Cmax of PHE-MT1 (44.41±4.43) was observed.
CONCLUSION: The current study concludes that developing NP loaded PHE-Ms based tablets could effectively reduce GIT consequences with restored therapeutic effects. The modified release pattern could improve the dissolution rate and enhancement of oral bioavailability. The MM study strengthens the polymer-drug relationship in microspheres.
METHODS: The bone health status of Malaysians aged ≥40 years was assessed using CM-200 and DXA. Sensitivity, specificity, area under the curve (AUC) and the optimal cut-off values for risk stratification of CM-200 were determined using receiver operating characteristic (ROC) curves and Youden's index (J). Results: From the data of 786 subjects, CM-200 (QUS T-score 0.05). Modified cut-off values for the QUS T-score improved the performance of CM-200 in identifying subjects with osteopenia (sensitivity 67.7% (95% CI: 62.8-72.3%); specificity 72.8% (95% CI: 68.1-77.2%); J = 0.405; AUC 0.702 (95% CI: 0.666-0.739); p < 0.001) and osteoporosis (sensitivity 79.4% (95% CI: 70.0-86.9%); specificity 61.8% (95% CI: 58.1-65.5%); J = 0.412; AUC 0.706 (95% CI: 0.654-0.758); p < 0.001). Conclusion: The modified cut-off values significantly improved the performance of CM-200 in identifying individuals with osteoporosis. Since these values are device-specific, optimization is necessary for accurate detection of individuals at risk for osteoporosis using QUS.