A new species of small, insular, forest floor skink, Sphenomorphus perhentianensis sp. nov., is described from Pulau Perhentian Besar of the Perhentian Archipelago, Peninsular Malaysia. This species is differentiated from all other 36 Sundaland species of Sphenomorphus based on a unique collection of morphological and colour pattern characteristics. These unique characteristics include a snout-vent length of 30.0 mm, 29 midbody scale rows, smooth as opposed to striated dorsal scales, 65 paravertebrals, 61 ventrals, 4 supraoculars, parietals contacting the posterior-most supraocular, 1 medially projecting superciliary scale, 2 loreals, 6 supralabials and infralabials, 10 lamellae beneath the fourth toe, smooth subdigital lamellae, enlarged preanal scales, no body bands, a dark brown, diffuse, dorsolateral stripe extending to just past the axilla, a cream coloured dorsolateral stripe on the nape and anterior-most portion of the body, and no cream coloured postorbital stripe. The discovery of a second endemic reptile in the Perhentian Archipelago underscores the unrealized biodiversity of its herpetofauna. Additional works will describe two additional species from the Perhentian Archipelago.
A lipase producer psychrophilic microorganism isolated from Arctic sample was
studied. The genomic DNA of the isolate was extracted using modified CTAB method.
Identification of the isolate by morphological and 16S rRNA sequence analysis revealed
that the isolate is closely related to Arthrobacter gangotriensis (97% similarity).
A. gangotriensis was determined as positive lipase producer based on the plate screening
using specific and sensitive plate assay of Rhodamine B. The PCR result using
Arthrobacter sp.’s full lipase gene sequence as the template primers emphasised a
possible lipase gene at 900 bp band size. The gene is further cloned in a suitable vector
system for expression of lipase.
Indonesia is home to several tree taxa that are harvested for agarwood. This highly valuable oleoresin ironically was the cause for some species to become vulnerable due to gluttonous human activity. However, information on the genetic diversity of these endangered trees is limited. In this study, 28 specimens representing eight species from two genera, Aquilaria and Gyrinops, were collected from ex-situ and in-situ populations in Indonesia. Phylogenetic analysis conducted on DNA sequences of the nuclear ribosomal internal transcribed spacer (ITS) and the trnL-trnF intergenic spacer regions, revealed that Aquilaria and Gyrinops are paraphyletic when Aquilaria cumingiana is excluded. The phylogenetic analysis for ITS and trnL-trnF showed capability to categorise agarwood-producing species based on their regions: East Indonesia and West Indonesia, using Wallace's Line as the divider. In addition, we discuss challenges in species identification and taxonomy of agarwood-producing genera, and their conservation efforts in Indonesia.
Materials that can enhance the sensitivity and selectivity of a biosensor are greatly in demand. The nanocomposition of thionine (Th) and graphene can increase the electroconductivity of the working electrode used. Graphene is a very good electrical conductor but is also hydrophobic in nature. Composition with thionine gives it the capability to disperse well in water. Plus, thionine provides the opportunity for DNA probes to be immobilized due to the presence of the amino group in its structure. In this research, the thionine-graphene (Th-G) nanocomposite was synthesized through filtration and characterised using scanning electron microscopy (SEM) to distinguish different elements coexist in the nanocomposite and to investigate the microstructure changes of the nanocomposite to confirm the composition. Different elements were analyzed to test the presence of both thionine and graphene in the composition. Physical characterisation through SEM proved the nanocomposition was a success.
Mushroom can be used as a biological indicator in assessing radiological impact on the
environment. Radiological effect would be reflected through morphological changes as well as
those changes at molecular level. For this purpose, a preliminary work was conducted, which
included DNA isolation, optimization of PCR parameters for Inter-Simple Sequence Repeat (ISSR)
and primers screening on Pleurotus sajor caju mushroom strains from Nuclear Malaysia’s
Sterifeed Mushrooms Collection Centre. In this work, DNA isolation technique from cap and stalk
of fruit body were optimized and quantified. It was found that stalk produced highest amount of
genomic DNA at 304.01ng/µl and cap at 149.00ng/µl. A total of 100 ISSR primers were tested and
51 primers were successfully amplified. These primers will be used further for dose response
evaluation and molecular profiling in mushroom species.
In this study, RAPD-PCR and ERIC-PCR were used to study the epidemiology of V. parahaemolyticus isolated from cockles in Padang, Indonesia. The Gold Oligo OPAR3 primer produced bands ranged from 1-8 with sizes from 0.2 – 5.0 kb and the Gold Oligo OPAR8 primer produced 1-7 bands with sizes 0.7 – 1.5 kb. Both primers produced twenty five RAPD patterns with a few isolates failed to produce any products. Based on phylogenetic dendrogram, all the isolates can be divided into 6 major clusters with similarity between 0 to 52%. For the ERIC primer, it produced bands ranged from 3-15 with sizes from 0.1 – 5.0 kb and twenty seven different ERIC patterns. Construction of the phylogenetic dendogram showed the isolates can be divided into 4 major clusters with similarity between 56 to 86%. The high diversity of both processes may be due to the multiple contamination sources of V. parahaemolyticus.
Matched MeSH terms: DNA Primers; Random Amplified Polymorphic DNA Technique
A total of 78 samples comprising different types of street foods, sold in different locations in Malaysia, were examined for the presence of Enterobacter cloacae. E. cloacae contamination was recorded in 9% of the samples examined. Tests for susceptibility to 12 different antibiotics showed that all were resistant to six or more antibiotics, but susceptible to chloramphenicol and gentamicin. Plasmids of four different sizes were detected from the three plasmid positive isolates. RAPD analysis using four primers yielded completely different banding patterns for all E. cloacae studied. In Malaysia, no published information on street foods in the epidemiological investigation of E.cloacae related disease is available. However, their occurrences have provided compelling evidence that the risk of disease transmission caused by E. cloacae through street foods is moderate.
Matched MeSH terms: DNA Primers; Random Amplified Polymorphic DNA Technique
DNA damaging effect of the salted and fermented food products (salted fishes, dried shrimps and shrimp pastes) collected from three different locations in Malacca namely Pantai Puteri, Batang Tiga and Kelemak on the DNA of the Chang liver cells were evaluated via Alkaline Comet Assay. Treatment at 62.5 mg/ml following 24 hours of incubation was used based on the preliminary cytotoxicity data. Percentage of damage to the DNA was calculated using software for scoring based on the tail moment and tail intensity (severity of the DNA damage). Hydrogen peroxide was used as positive control at 0.1 mM following 30 minutes of incubation in 4 C. The results showed that the methanol extracts of shrimp pastes and salted fish from Pantai Puteri, exhibited a higher DNA damage (shrimp pastes - TM - 8.33 ± 2.19; TI - 31.67 ± 5.84, salted fishes - TM - 2.25 ± 0.86; TI - 9.25 ± 1.55) and were expressed as (shrimp pastes) 56.66 ± 8.74% of DNA damage and methanol salted fish extracts from the same location showed 13.00 ± 2.84% of the DNA damage on Chang liver cells compared to the other extracts. Values for methanol extract of shrimp pastes from Pantai Puteri were comparable to the positive control - Hydrogen peroxide (TM- 9.50 ± 1.50; TI - 30.50 ± 2.50). On the other hand, aqueous salted fishes extract from Pantai Puteri (TM - 1.33 ± 0.42; TI - 8.67 ± 2.42) and shrimp pastes extracts from Kelemak (methanol extract - TM -1.75 ± 0.15; TI -7.50 ± 0.50, aqueous extract - TM - 1.00 ± 0.00; TI - 5.00 ± 0.00) showed slightly high value for tail moment and tail intensity as compared to negative control (TM - 0.29 ± 0.05; TI - 2.50 ± 0.29). Values for methanol extracts of shrimp pastes from Pantai Puteri were comparable to the positive control (TM- 9.50 ± 1.50; TI - 30.50 ± 2.50). In conclusion, our results demonstrate genotoxic damage induced by few salted and fermented food extracts in Chang liver cell.
In Malaysia, harmful algal blooms often occur along the coastal waters of west Sabah, where one of the causative organisms is the toxin-producing dinoflagellate, Pyrodinium bahamense var. compressum. A total of five P. bahamense var. compressum isolates were obtained from four locations and were cultured in f/2 medium. A Polymerase Chain Reaction (PCR) based technique was developed and used to screen for the presence of the dinoflagellate, P. bahamense var. compressum. A dinoflagellate-specific primer pair was designed based on sequences of P. bahamense var. compressum to amplify the 18S small subunit ribosomal DNA (rDNA) sequences. The rDNA of the P. bahamense var. compressum isolates were obtained. A species-specific primer pair was designed to target a 600 bp rDNA sequence of the target dinoflagellate. The primer pair targeting P. bahamense var. compressum did not yield any product with the fifteen algae cultures used as negative controls, but only amplified the rDNA of P. bahamense var. compressum cultures. The PCR method for identification of P. bahamense var. compressum was also applied on twenty field samples collected with plankton net. P. bahamense var. compressum cells were detected by PCR in five field samples and were confirmed by direct sequencing. From this study, a species-specific primer pair was obtained to identify the target species, P. bahamense var. compressum, among the natural complex communities of seawater.
The combtooth blenny (Blenniidae) genus Omobranchus contains small, cryptobenthic fishes common to nearshore habitats throughout the Indo-West Pacific. Recent molecular systematic studies have resolved Omobranchus as monophyletic but little research has been done to resolve species-level relationships. Herein, phylogenetic analyses of one mitochondrial (CO1) and four nuclear (ENC1, myh6, sreb2, and tbr1) genes provide evidence for the monophyly of Omobranchus and support for the elongatus and banditus species group. Sampling of multiple individuals from widespread species (O. ferox, O. punctatus, and O. elongatus) suggested that the Thai-Malay Peninsula is a phylogeographic break that may be a historic barrier to gene flow. Additionally, common meristics and other morphological characters are used to describe an early life history stage of O. ferox and O. punctatus.
Matched MeSH terms: DNA, Mitochondrial; Sequence Analysis, DNA
Copy number variation (CNV) caused by changes in DNA sequences of 1000
or more bases is implicated with susceptibility to common diseases. A study on CNV
esv27061 among hypertensive Australian adults reported association with high blood
pressure (BP). In Malaysia, no study on CNV among hypertensive young adults is
available. Thus, this investigation aimed to assess the CNV esv27061 of young Malaysian
adults with high blood pressure using optimized ddPCR. (Copied from article).
Matched MeSH terms: DNA; DNA Copy Number Variations
We have performed computational molecular modelling to study the polarization switching and hysteresis loop behaviours of DNA and RNA nucleobases using the PM3 semi-empirical quantum mechanical approaches. All the nucleobases: adenine (A), thymine (T), guanine (G), cytosine (C), and uracil (U) were modelled. Our study indicates that all the nucleobases exhibit a zero-field polarization due to the presence of polar atoms or molecules such as amidogen and carbonyl. The shape of polarization P versus an applied electric field E hysteresis loop is square, implying typical ferroelectrics behaviour. The total energy U as a function of an applied electric field E exhibits a butterfly-like loop. The presence of zero-field polarization and ferroelectrics hysteresis loop behaviours in nucleobases may support the hypothesis of the existence of bioferroelectricity in DNA and RNA. We also found an interesting relationship between the minimum electric field required for switching [Formula: see text] and the ratio of the topological polar surface area (TPSA) to the total surface area (TSA) of a nucleobase. In particular, the [Formula: see text] of a nucleobase is inversely proportional to the TPSA/TSA ratio. This work may provide useful information for understanding the possible existence of ferroelectricity in biomaterials.
Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.
Krogiaborneensis Kistenich & Timdal, K.isidiata Kistenich & Timdal and K.macrophylla Kistenich & Timdal are described as new species, the first from Borneo and the two latter from New Caledonia. The new species are supported by morphology, secondary chemistry and DNA sequence data. Krogiaborneensis and K.isidiata contain sekikaic and homosekikaic acid, both compounds reported here for the first time from the genus. Krogiamacrophylla contains an unknown compound apparently related to boninic acid as the major compound. DNA sequences (mtSSU and nrITS) are provided for the first time for Krogia and a phylogeny of the genus based on 15 accessions of five of the six accepted species is presented. Krogiaantillarum is reported as new to Brazil, Guatemala and Mexico.
Metaldehyde is used widely in Malaysia for the control of molluscs. This communication reports the cytotoxic effects of this chemical on cultured cells as assessed by cell morphology and the DNA synthesising capability as well as its transport into cells. After 15 days of exposure with 20.0 ppm of the compound, the DNA synthesising capability was shown to be unaffected. The IC50 for Vero cells was 276.0 ppm. Transport of thymidine across cells was found to be not significantly affected even at high metaldehyde concentrations (up to 320.0 ppm) suggesting integrity of cells were not significantly affected. The present cellular studies have therefore shown that the cytotoxic effects of this chemical is rather low.
Metaldehida digunakan dengan meluas di Malaysia untuk mengawal perosak moluska. Kesan sitotoksik bahan kimia ini di peringkat sel dari segi ciri-ciri perubahan moifologi dan keupayaan mensintesis DNA serta kajian awal kesannya terhadap proses kemasukan ke dalam sel dilaporkan di sini. Keupayaan mensintesis DNA didapati tidak terjejas secara signifikan selepas diberikan 20.0 ppm metaldehida secara berterusan selama 15 hari. Nilai IC50 bagi sel Vero adalah 276.0 ppm. Kemasukan timidina ke dalam sel tidak terjejas secara signifikan apabila sel diperlakukan dengan metaldehida, walaupun pada kepekatan yang agak tinggi iaitu sehingga 320.0 ppm. Kajian telah menunjukkan bahawa kesan sitotoksik oleh metaldehida adalah rendah.
Phylogenetic inference refers to the reconstruction of evolutionary relationships among various species that is usually
presented in the form of a tree. This study constructs the phylogenetic tree by using a novel distance-based method known
as Modified one step M-estimator (MOM) method. The branches of the phylogenetic tree constructed were then evaluated
to see their reliability. The performance of the reliability was then compared between the p-value of multiscale bootstrap
(AU value) and bootstrap p-value (BP value). The aim of this study was to compare the performance between the AU value
and BP value for assessing phylogenetic tree of RNA polymerase. The results have shown that multiscale bootstrap analysis
can detect high sampling errors but not in bootstrap analysis. To overcome this problem, the multiscale bootstrap analysis
has reduced the sampling error by increasing the number of replications. The clusters were indicated as significant if AU
values or BP values were 95% or higher. From the analysis, the results showed that the BP and AU values differ at 11th
and 15th branch of the phylogenetic tree. The BP values at both branches were 72 and 85%, respectively, thereby making
the cluster not significant but by looking at the AU values, the two branches were more than 95% and the clusters were
significant. This was due to the biasness in calculation of the probability of bootstrap analysis, therefore, the multiscale
bootstrap analysis has improved the calculation of the probability value compared to the bootstrap analysis.
Matched MeSH terms: DNA Replication; DNA-Directed RNA Polymerases
Kitin merupakan polisakarida struktur yang dapat dicurai oleh enzim kitinolisis kepada pelbagai terbitan yang boleh digunakan dalam bidang perubatan, pertanian dan rawatan air. Pengenalpastian dan pencirian gen-gen Trichoderma virens UKM1 mengekod enzim terlibat dalam pencuraian kitin krustasea telah dilakukan melalui penjanaan penanda jujukan terekspres (ESTs) dan analisis pengekspresan gen menggunakan mikroatur DNA. Sebanyak tiga perpustakaan cDNA T. virens UKM1 yang masing-masing diaruh oleh kitin, glukosamina dan kitosan telah dibina. Sejumlah 1536 klon cDNA telah dijujuk dan sebanyak 1033 ESTs berkualiti telah dijana. Seterusnya, perbezaan pengekspresan gen apabila pertumbuhan kulat diaruh dengan kehadiran kitin krustasea dan tanpa kitin pada hari ketiga dan kelima telah ditentukan. Sebanyak 1824 klon cDNA telah dititik ke atas slaid kaca dan dihibrid bersama dengan cDNA terlabel Cy3 atau Cy5 yang disintesis daripada mRNA yang dipencil daripada kulat yang ditumbuhkan dalam medium mengandungi kitin krustasea atau glukosa (kawalan). Sebanyak 91 dan 61 gen, masing-masing bagi hari ketiga dan kelima didapati terekspres melebihi dua gandaan apabila kulat menggunakan kitin krustasea sebagai sumber karbon. Beberapa gen mengekod kitinase seperti ech1 dan cht3 (endokitinase), nag1 (eksokitinase) dan nagB (glukosamina 6-P-deaminase) didapati terekspres dengan tinggi pada kedua-dua hari. Selain daripada itu, gen mengekod protein hidrofobin, protease serina dan beberapa protein hipotetik juga terekspres dengan tinggi dengan kehadiran kitin krustasea. Protein-protein ini dijangka memainkan peranan penting dalam membantu pencuraian kitin krustasea.
Ancyronyx clisterisp. nov. (Coleoptera, Elmidae) a new spider riffle beetle discovered from northern Borneo (Brunei; Sabah and Sarawak, Malaysia) and the larva of Ancyronyx sarawacensis Jäch are described. Illustrations of the habitus and diagnostic characters of the new species and the similar and highly variable A. sarawacensis are presented. Differences to closely related species, based on DNA barcodes and morphological characters, are discussed. Association of the larva and the imago of A. sarawacensis, and the occurrence of Ancyronyx procerus Jäch in Peninsular Malaysia and Sabah are confirmed by using COI mtDNA sequences.
Matched MeSH terms: DNA, Mitochondrial; DNA Barcoding, Taxonomic
DNA-templated silver nanocluster (AgNC), a new promising fluorescence probe has gained importance in biosensing and bioimaging in recent years. We employed a label-free AgNC to detect an intracellular transcription factor known as forkhead box p3 (FOXP3), which is the master regulator of regulatory T cells (Tregs) suppressive function. We developed an optimized method for the detection of messenger ribonucleic acid (mRNA) of FOXP3 by hybridizing AgNC and G-rich to the target FOXP3 mRNA of a MCF-7 cells. MCF-7 cells are chosen as a model as it readily expresses FOXP3. The hybridized samples were examined with UV illuminator and further verified with fluorescence spectroscopy, fluorescence microscope and flow cytometry. The successful hybridization of a three-way junction with AgNC, G-rich and mRNA FOXP3 target generated an improved fluorescence intensity with a spectral shift. We have successfully delivered the green fluorescing AgNC and G-rich into MCF-7 cells, producing a shift to red fluorescing cells corroborated by flow cytometry results. In summary, our approach enables the detection of intracellular FOXP3 nucleic acid and holds considerable potential in establishing a non-lethal intracellular detection system which would be crucial for the isolation of regulatory T-cells (Tregs) when combined with other cell surface markers.
Centromeres are prerequisite for accurate segregation and are landmarks of primary constrictions of metaphase chromosomes in eukaryotes. In melon, high-copy-number satellite DNAs (SatDNAs) were found at various chromosomal locations such as centromeric, pericentromeric, and subtelomeric regions. In the present study, utilizing the published draft genome sequence of melon, two new SatDNAs (CmSat162 and CmSat189) of melon were identified and their chromosomal distributions were confirmed using fluorescence in situ hybridization. DNA probes prepared from these SatDNAs were successfully hybridized to melon somatic and meiotic chromosomes. CmSat162 was located on 12 pairs of melon chromosomes and co-localized with the centromeric repeat, Cmcent, at the centromeric regions. In contrast, CmSat189 was found to be located not only on centromeric regions but also on specific regions of the chromosomes, allowing the characterization of individual chromosomes of melon. It was also shown that these SatDNAs were transcribed in melon. These results suggest that CmSat162 and CmSat189 might have some functions at the centromeric regions.