Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.
Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.
OBJECTIVE: In this study, we endeavored to develop a rapid method for multiresidue analysis of glyphosate (+aminomethylphosphonic acid) and glufosinate (+3-methylphosphinicopropionic acid and N-acetyl-glufosinate) in refined and crude palm oil matrices using liquid chromatography (LC) tandem mass spectrometry (MS/MS).
METHOD: The optimized sample preparation workflow included extraction of refined or crude palm oil (10 g) with acidified water (0.1 M HCl), cleanup by phase separation with dichloromethane, and analysis by LC-MS/MS with multiple reaction monitoring.
RESULTS: The use of a Torus-DEA LC column ensured simultaneous analysis of these compounds within a runtime of 10 min. The LOQ of these analytes was 0.01 mg/kg, except that of aminomethylphosphonic acid which was 0.02 mg/kg. The method sensitivity complied with the national maximum residue limits of Malaysia and the European Union. Also, the method selectivity, sensitivity, accuracy, and precision were aligned with the SANTE/12682/2019 guidelines of analytical quality control.
CONCLUSIONS: The potentiality of the optimized method lies in a high throughput direct analysis of glyphosate and glufosinate with their metabolites in a single chromatographic run. The method is fit for purpose for regulatory testing of these residues in a broad range of palm oil matrices.
HIGHLIGHTS: The study reports for the first time a validated method for simultaneous analysis of glyphosate, glufosinate, and their metabolites in a range of palm oil products. The method did not require a derivatization step and provided a high throughput analysis of these compounds with satisfactory selectivity, sensitivity, accuracy, and precision.