Displaying publications 301 - 320 of 340 in total

Abstract:
Sort:
  1. Cartland SP, Harith HH, Genner SW, Dang L, Cogger VC, Vellozzi M, et al.
    Sci Rep, 2017 05 15;7(1):1898.
    PMID: 28507343 DOI: 10.1038/s41598-017-01721-4
    Non-alcoholic fatty liver disease (NAFLD) incorporates steatosis, non-alcoholic steato-hepatitis (NASH) and liver cirrhosis, associating with diabetes and cardiovascular disease (CVD). TNF-related apoptosis-inducing ligand (TRAIL) is protective of CVD. We aimed to determine whether TRAIL protects against insulin resistance, NAFLD and vascular injury. Twelve-week high fat diet (HFD)-fed Trail -/- mice had increased plasma cholesterol, insulin and glucose compared to wildtype. Insulin tolerance was impaired with TRAIL-deletion, with reduced p-Akt, GLUT4 expression and glucose uptake in skeletal muscle. Hepatic triglyceride content, inflammation and fibrosis were increased with TRAIL-deletion, with elevated expression of genes regulating lipogenesis and gluconeogenesis. Moreover, Trail -/- mice exhibited reduced aortic vasorelaxation, impaired insulin signaling, and >20-fold increased mRNA expression for IL-1β, IL-6, and TNF-α. In vitro, palmitate treatment of hepatocytes increased lipid accumulation, inflammation and fibrosis, with TRAIL mRNA significantly reduced. TRAIL administration inhibited palmitate-induced hepatocyte lipid uptake. Finally, patients with NASH had significantly reduced plasma TRAIL compared to control, simple steatosis or obese individuals. These findings suggest that TRAIL protects against insulin resistance, NAFLD and vascular inflammation. Increasing TRAIL levels may be an attractive therapeutic strategy, to reduce features of diabetes, as well as liver and vascular injury, so commonly observed in individuals with NAFLD.
    Matched MeSH terms: Glucose/metabolism
  2. Al-Tahami BAM, Al-Safi Ismail AA, Sanip Z, Yusoff Z, Shihabudin TMT, Singh TSP, et al.
    J Nippon Med Sch, 2017;84(3):125-132.
    PMID: 28724846 DOI: 10.1272/jnms.84.125
    INTRODUCTION: Obesity is associated with numerous health problems, particularly metabolic and cardiovascular complications. This study aimed to assess the effects that, nine months of pharmacological intervention with orlistat or sibutramine, on obese Malaysians' body weight and compositions, metabolic profiles and inflammatory marker.

    METHODS: Seventy-six obese subjects were randomly placed into two groups. The first group received three daily 120 mg dosages of orlistat for nine months (n=39), and the second group received a once daily 10 or 15 mg dosage of sibutramine for nine months (n=37). Baseline measurements for weight, body mass index (BMI), waist circumference (WC), body fat percentage (BF), visceral fat (VF), adiponectin, fasting plasma glucose (FPG), fasting insulin, pancreatic B cell secretory capacity (HOMA%B), insulin sensitivity (HOMA%S), insulin resistance (HOMA-IR) and serum high sensitivity C-reactive protein (hs-CRP) were performed and repeated during the sixth and ninth months of treatment.

    RESULTS: Twenty-four subjects completed the trial in both groups. For both groups, weight, BMI, WC, BF, VF, HOMA-IR and hs-CRP were significantly lower at the end of the nine month intervention. However, there were no significant differences between the two groups for these parameters with nine months treatment. There was a significant decrease in FPG in orlistat group; while fasting insulin and HOMA%B reduced in sibutramine group. For both groups, there were also significant increases in adiponectin levels and HOMA%S at the end of the nine month intervention.

    CONCLUSION: Nine months of treatment with orlistat and sibutramine not only reduced weight but also significantly improved BMI, WC, BF, VF, FPG, adiponectin, fasting insulin, HOMA%B, HOMA%S, HOMA-IR and hs-CRP. These improvements could prove useful in the reduction of metabolic and cardiovascular risks in obese subjects.

    Matched MeSH terms: Blood Glucose/metabolism
  3. Nazratun Nafizah AH, Budin SB, Zaryantey AH, Mariati AR, Santhana RL, Osman M, et al.
    Arab J Gastroenterol, 2017 Mar;18(1):13-20.
    PMID: 28336227 DOI: 10.1016/j.ajg.2017.02.001
    BACKGROUND AND STUDY AIMS: The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats.

    MATERIAL AND METHODS: A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups.

    RESULTS: Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats.

    CONCLUSION: Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in diabetes.

    Matched MeSH terms: Blood Glucose/metabolism
  4. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Blood Glucose/metabolism
  5. Mosavat M, Omar SZ, Jamalpour S, Tan PC
    J Diabetes Res, 2020;2020:9072492.
    PMID: 32090124 DOI: 10.1155/2020/9072492
    Background: Defects in incretin have been shown to be related to the pathogenesis of type 2 diabetes. Whether such a deficiency happens in gestational diabetes mellitus (GDM) remains to be confirmed. We assessed the association of fasting glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) with GDM. We also studied the longitudinal circulation of these peptides during pregnancy and afterwards.

    Methods: 53 women with GDM (30 managed with diet only (GDM-diet) and 23 treated with insulin (GDM-insulin)) and 43 pregnant women with normal glucose tolerance (NGDM) were studied, with GIP and GLP-1 levels measured at 24-28 weeks (E1), prior (E2) and after (E3) delivery, and postpuerperium (E4).

    Results: Basal GIP was shown to be low in GDM groups compared to NGDM in E1, and in E4 for GDM-diet. GLP-1 was low in GDM groups during pregnancy and afterwards. At E1, serum GIP and GLP-1 were inversely associated with GDM and participants with lower levels of GIP (<0.23 ng/mL) and GLP-1 (<0.38 ng/mL) had a 6 (95% CI 2.5-14.5)- and 7.6 (95% CI 3.0-19.1)-fold higher risk of developing GDM compared with the higher level, respectively. In the postpuerperium, when there is a drop in β-cell function, participants with previous GDM (pGDM) presented lower GLP-1 (in both GDM subgroups) and lower GIP in GDM-diet subgroup compared to controls.

    Conclusion: There is an independent, inverse association between fasting incretins and higher risk of GDM. Furthermore, lowered levels of these peptides may play an important role in the abnormality of glucose regulation following pregnancy.

    Matched MeSH terms: Blood Glucose/metabolism*
  6. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
    Matched MeSH terms: Blood Glucose/metabolism*
  7. Candasamy M, Mohamed Elhassan SA, Kumar Bhattamisra S, Hua WY, Sern LM, Binti Busthamin NA, et al.
    Panminerva Med, 2020 Sep;62(3):155-163.
    PMID: 32208408 DOI: 10.23736/S0031-0808.20.03879-3
    Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D) are two of the most commonly occurring diseases worldwide, especially among the elderly population. In particular, the increased prevalence of AD has imposed tremendous psychological and financial burdens on society. Growing evidence suggests both AD and T2D share many similar pathological traits. AD is characterized as a metabolic disorder whereby the glucose metabolism in the brain is impaired. This closely resembles the state of insulin resistance in T2D. Insulin resistance of the brain has been heavily implicated two prominent pathological features of AD, Aβ plaques and neurofibrillary tangles. Brain insulin resistance is known to elicit a positive feed-forward loop towards the formation of AD pathology in which they affect each other in a synergistic manner. Other physiological traits shared between the two diseases include inflammation, oxidative stress and autophagic dysfunction, which are also closely associated with brain insulin resistance. In this review and depending on these underlying pathways that link these two diseases, we have discussed the potential therapeutic implications of AD. By expanding our knowledge of the overlapping pathophysiology involved, we hope to provide scientific basis to the discovery of novel therapeutic strategies to improve the clinical outcomes of AD in terms of diagnosis and treatment.
    Matched MeSH terms: Blood Glucose/metabolism*
  8. Subramanian R, Asmawi MZ, Sadikun A
    Acta Biochim. Pol., 2008;55(2):391-8.
    PMID: 18511986
    There has been an enormous interest in the development of alternative medicines for type 2 diabetes, specifically screening for phytochemicals with the ability to delay or prevent glucose absorption. The goal of the present study was to provide in vitro evidence for potential inhibition of alpha-glucosidase and alpha-amylase enzymes, followed by a confirmatory in vivo study on rats to generate a stronger biochemical rationale for further studies on the ethanolic extract of Andrographis paniculata and andrographolide. The extract showed appreciable alpha-glucosidase inhibitory effect in a concentration-dependent manner (IC(50)=17.2+/-0.15 mg/ml) and a weak alpha-amylase inhibitory activity (IC(50)=50.9+/-0.17 mg/ml). Andrographolide demonstrated a similar (IC(50)=11.0+/-0.28 mg/ml) alpha-glucosidase and alpha-amylase inhibitory activity (IC(50)=11.3+/-0.29 mg/ml). The positive in vitro enzyme inhibition tests paved way for confirmatory in vivo studies. The in vivo studies demonstrated that A. paniculata extract significantly (P<0.05) reduced peak blood glucose and area under curve in diabetic rats when challenged with oral administration of starch and sucrose. Further, andrographolide also caused a significant (P<0.05) reduction in peak blood glucose and area under the curve in diabetic rats. Hence alpha-glucosidase inhibition may possibly be one of the mechanisms for the A. paniculata extract to exert antidiabetic activity and indicates that AP extract can be considered as a potential candidate for the management of type 2 diabetes mellitus.
    Matched MeSH terms: Blood Glucose/metabolism
  9. Wan Mohamad WB, Tun Fizi A, Ismail RB, Mafauzy M
    Diabetes Res Clin Pract, 2000 Aug;49(2-3):93-9.
    PMID: 10963819 DOI: 10.1016/s0168-8227(00)00138-8
    Although long acting, glibenclamide is frequently given in split doses for type 2 diabetes mellitus. This may discourage compliance. It is thus appropriate to consider dosing it less frequently. We therefore studied glibenclamide effects when used once daily and when used in split doses. Our objective was to assess the feasibility of using once daily dosing as a regimen of choice. We measured plasma glucose, insulin, glibenclamide, lipids, HbAl and body mass index associated with the regimens. We also compared the number of hypoglycemic episodes occurring with them. Thirty type 2 diabetics on multiple daily glibenclamide were enrolled. Their regimens were changed over to once daily. Blood for glucose, insulin, lipids, HbAl and glibenclamide and body weight measurements were determined before and after the crossover period. We found no major difference in the sugar and insulin profiles with the two regimens. Fasting total cholesterol and triglyceride were also similar and so were plasma glibenclamide. The HbAl levels and body mass index and number of minor and major hypoglycemic episodes and hospital admissions for hypoglycemia also did not differ. We conclude that single daily dosing of glibenclamide was equivalent to multiple daily dose regimens. It can be used to an advantage to improve patient's compliance.
    Matched MeSH terms: Blood Glucose/metabolism
  10. Lee YF, Sim XY, Teh YH, Ismail MN, Greimel P, Murugaiyah V, et al.
    Biotechnol Appl Biochem, 2021 Oct;68(5):1014-1026.
    PMID: 32931602 DOI: 10.1002/bab.2021
    High-fat diet (HFD) interferes with the dietary plan of patients with type 2 diabetes mellitus (T2DM). However, many diabetes patients consume food with higher fat content for a better taste bud experience. In this study, we examined the effect of HFD on rats at the early onset of diabetes and prediabetes by supplementing their feed with palm olein oil to provide a fat content representing 39% of total calorie intake. Urinary profile generated from liquid chromatography-mass spectrometry analysis was used to construct the orthogonal partial least squares discriminant analysis (OPLS-DA) score plots. The data provide insights into the physiological state of an organism. Healthy rats fed with normal chow (NC) and HFD cannot be distinguished by their urinary metabolite profiles, whereas diabetic and prediabetic rats showed a clear separation in OPLS-DA profile between the two diets, indicating a change in their physiological state. Metformin treatment altered the metabolomics profiles of diabetic rats and lowered their blood sugar levels. For prediabetic rats, metformin treatment on both NC- and HFD-fed rats not only reduced their blood sugar levels to normal but also altered the urinary metabolite profile to be more like healthy rats. The use of metformin is therefore beneficial at the prediabetes stage.
    Matched MeSH terms: Blood Glucose/metabolism
  11. Chen SP, Lin SR, Chen TH, Ng HS, Yim HS, Leong MK, et al.
    Biomed Pharmacother, 2021 Dec;144:112333.
    PMID: 34678724 DOI: 10.1016/j.biopha.2021.112333
    Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.
    Matched MeSH terms: Blood Glucose/metabolism
  12. Tan WS, Low WY, Ng CJ, Tan WK, Tong SF, Ho C, et al.
    BJU Int, 2013 Jun;111(7):1130-40.
    PMID: 23651425 DOI: 10.1111/bju.12037
    OBJECTIVE: To evaluate the efficacy and safety of long-acting i.m. testosterone undecanoate (TU) in Malaysian men with testosterone deficiency (TD).

    PATIENTS AND METHODS: A total of 120 men, aged 40-70 years, with TD (serum total testosterone [TT] ≤ 12 nmol/L) were randomised to receive either i.m. TU (1000 mg) or placebo. In all, 58 and 56 men in the placebo and treatment arm, respectively, completed the study. Participants were seen six times in the 48-week period and the following data were collected: physical examination results, haemoglobin, haematocrit, TT, lipid profile, fasting blood glucose, sex hormone-binding globulin, liver function test, prostate- specific antigen (PSA) and adverse events.

    RESULTS: The mean (sd) age of the participants was 53.4 (7.6) years. A significant increase in serum TT (P < 0.001), PSA (P = 0.010), haematocrit (P < 0.001), haemoglobin (P < 0.001) and total bilirubin (P = 0.001) were seen in the treatment arm over the 48-week period. Two men in the placebo arm and one man in the treatment arm developed myocardial infarction. Common adverse events observed in the treatment arm included itching/swelling/pain at the site of injection, flushing and acne. Overall, TU injections were well tolerated.

    CONCLUSIONS: TU significantly increases serum testosterone in men with TD. PSA, haemoglobin and haematocrit were significantly elevated but were within clinically safe limits. There was no significant adverse reaction that led to the cessation of treatment.

    Matched MeSH terms: Blood Glucose/metabolism
  13. Yusoff NA, Lim V, Al-Hindi B, Abdul Razak KN, Widyawati T, Anggraini DR, et al.
    Nutrients, 2017 Aug 23;9(9).
    PMID: 28832548 DOI: 10.3390/nu9090925
    BACKGROUND: An aqueous extract (AE) of vinegar made from Nypa fruticans Wurmb. can improve postprandial glucose levels in normoglycaemic rats. The aim of this study was to evaluate its antihyperglycaemic activity further using in vivo and in vitro approaches.

    METHODS: AE was administered to streptozotocin (STZ)-induced diabetic rats twice daily at three doses (1000, 500, and 250 mg/kg b.w.) for 12 days p.o. Several biochemical analyses and a histological study of the pancreas and liver were performed, accompanied by a cell culture assay.

    RESULTS: As compared to diabetic control (DC), AE at the doses of 500 and 1000 mg/kg b.w. caused significant reduction (p < 0.05) of blood glucose, total cholesterol and triglycerides levels, with positive improvement of serum insulin levels. Interestingly, immunohistochemical staining of the pancreas suggested no β-cell regeneration, despite significant increase in insulin production. AE-treated groups, however, showed overall restoration of the hepatic histoarchitecture of STZ-induced liver damage, suggesting a possible hepatoprotective effect. The pancreatic effect of AE was further studied through RIN-5F cell culture, which revealed a positive stimulatory effect on insulin release at a basal glucose concentration (1.1 mM).

    CONCLUSION: Nypa fruticans Wurmb. vinegar's aqueous extract exerts its antihyperglycaemic activity, at least in part, through insulin stimulatory and hepatoprotective effects.

    Matched MeSH terms: Blood Glucose/metabolism
  14. Adam SH, Giribabu N, Bakar NMA, Salleh N
    Biomed Pharmacother, 2017 Dec;96:716-726.
    PMID: 29040959 DOI: 10.1016/j.biopha.2017.10.042
    Marontades pumilum is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), however the underlying mechanisms were not fully identified. In this study, we hypothesized that M. pumilum could help to enhance cellular glucose uptake and reduces pancreatic complications, which contributed towards its beneficial effects in DM.

    METHODS: Two parameters were measured (i) rate of glucose uptake by 3T3-L1 adipocyte cells in-vitro (ii) degree of pancreatic destruction in streptozotocin-nicotinamide induced male diabetic rats receiving M. pumilum aqueous extract (M.P) (250 and 500mg/kg/day) as reflected by levels of pancreatic oxidative stress, inflammation and apoptosis. In the meantime, phyto-chemical compounds in M.P were also identified by using LC-MS.

    RESULTS: M.P was found able to enhance glucose uptake by 3T3-L1 adipocyte cells in-vitro while its administration to the male diabetic rats causes decreased in the fasting blood glucose (FBG), glycated haemoglobin (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL) levels but causes increased in insulin and high-density lipoprotein (HDL) levels, to near normal. Levels of oxidative stress in the pancreas as reflected by levels of lipid peroxidation product (LPO) decreased while levels of anti-oxidantive enzymes (SOD, CAT and GPx) in pancreas increased. Additionally, levels of inflammation as reflected by NF-κB p65, Ikkβ and TNF-α levels decreased while apoptosis levels as reflected by caspase-9 and Bax levels decreased. Anti-apoptosis marker, Bcl-2 levels in pancreas increased.

    CONCLUSIONS: The ability of M.P to enhance glucose uptake and reduces pancreatic complications could account for its beneficial effects in treating DM.

    Matched MeSH terms: Glucose/metabolism*
  15. Tan VM, Ooi DS, Kapur J, Wu T, Chan YH, Henry CJ, et al.
    Eur J Nutr, 2016 Jun;55(4):1573-81.
    PMID: 26160548 DOI: 10.1007/s00394-015-0976-0
    PURPOSE: There are wide inter-individual differences in glycemic response (GR). We aimed to examine key digestive parameters that influence inter-individual and ethnic differences in GR in healthy Asian individuals.
    METHODS: Seventy-five healthy male subjects (25 Chinese, 25 Malays, and 25 Asian-Indians) were served equivalent available carbohydrate amounts (50 g) of jasmine rice (JR) and basmati rice (BR) on separate occasions. Postprandial blood glucose concentrations were measured at fasting (-5 and 0 min) and at 15- to 30-min interval over 180 min. Mastication parameters (number of chews per mouth and chewing time per mouthful), saliva α-amylase activity, AMY1 gene copy numbers and gastric emptying rate were measured to investigate their relationships with GR.
    RESULTS: The GR for jasmine rice was significantly higher than for basmati rice (P 0.05).
    CONCLUSION: Mastication parameters contribute significantly to GR. Eating slowly and having larger food boluses before swallowing (less chewing), both potentially modifiable, may be beneficial in glycemic control.
    Matched MeSH terms: Blood Glucose/metabolism*
  16. Teng KT, Chang LF, Vethakkan SR, Nesaretnam K, Sanders TAB
    Clin Nutr, 2017 10;36(5):1250-1258.
    PMID: 27642057 DOI: 10.1016/j.clnu.2016.08.026
    BACKGROUND & AIMS: Modification of the amount and type of dietary fat has diverse effects on cardiovascular risk.

    METHODS: We recruited 54 abdominally obese subjects to participate in a prospective cross-over design, single-blind trial comparing isocaloric 2000 kcal MUFA or carbohydrate-enriched diet with SFA-enriched diet (control). The control diet consisted of 15E% protein, 53E% carbohydrate and 32E% fat (12E% SFA, 13E% MUFA). A total of ∼7E% of MUFA or refined carbohydrate was exchanged with SFA in the MUFA-rich and carbohydrate-rich diets respectively for 6-weeks. Blood samples were collected at fasting upon trial commencement and at week-5 and 6 of each dietary-intervention phase to measure levels of cytokines (IL-6, IL-1β), C-reactive protein (CRP), thrombogenic markers (E-selectin, PAI-1, D-dimer) and lipid subfractions. Radial pulse wave analysis and a 6-h postprandial mixed meal challenge were carried out at week-6 of each dietary intervention. Blood samples were collected at fasting, 15 and 30 min and hourly intervals thereafter till 6 h after a mixed meal challenge (muffin and milkshake) with SFA or MUFA (872.5 kcal, 50 g fat, 88 g carbohydrates) or CARB (881.3 kcal, 20 g fat, 158 g carbohydrates)- enrichment corresponding to the background diets.

    RESULTS: No significant differences in fasting inflammatory and thrombogenic factors were noted between diets (P > 0.05). CARB meal was found to increase plasma IL-6 whereas MUFA meal elevated plasma D-dimer postprandially compared with SAFA meal (P 

    Matched MeSH terms: Blood Glucose/metabolism
  17. Ooi J, Azmi NH, Imam MU, Alitheen NB, Ismail M
    J Food Drug Anal, 2018 10;26(4):1253-1264.
    PMID: 30249324 DOI: 10.1016/j.jfda.2018.03.003
    Adipose tissue is one of the major organs responsible for rapid restoration of postprandial glucose fluxes. Being the major isoform of glucose transporter in adipose tissue, regulations of insulin-dependent GLUT4 trafficking have always been of research interest. The present study aimed to examine the molecular mechanisms underlying the efficacy of curculigoside and polyphenol-rich ethyl acetate fraction (EAF) of Molineria latifolia rhizome in triggering glucose uptake. We assessed the adipogenic potential and glucose uptake stimulatory activity of curculigoside and EAF by employing a murine 3T3-L1 adipocyte model. The transcriptional and translational expressions of selected intermediates in the insulin signalling pathway were evaluated. While curculigoside neither promoted adipogenesis nor activated peroxisome proliferator activated receptor gamma, treatment with polyphenol-rich EAF resulted otherwise. However, both treatments enhanced insulin-stimulated uptake of glucose. This was coupled with increased availability of GLUT4 at the plasma membrane of the differentiated adipocytes although the total GLUT4 protein level was unaffected. In addition, the treatment increased the phosphorylation of both AKT and mTOR, which have been reported to be associated with GLUT4 translocation. The present findings proposed that curculigoside and EAF increased glucose transport activity of 3T3-L1 adipocytes via GLUT4 translocation as a result of potential mTOR/AKT activation. The more potent efficacy observed with EAF suggested potential synergistic and multi-targeted action.
    Matched MeSH terms: Glucose/metabolism
  18. Chun S, Choi Y, Chang Y, Cho J, Zhang Y, Rampal S, et al.
    Am Heart J, 2016 07;177:17-24.
    PMID: 27297845 DOI: 10.1016/j.ahj.2016.03.018
    BACKGROUND: Sugar-sweetened carbonated beverage consumption has been linked to obesity, metabolic syndrome, type 2 diabetes, and clinically manifest coronary heart disease, but its association with subclinical coronary heart disease remains unclear. We investigated the relationship between sugar-sweetened carbonated beverage consumption and coronary artery calcium (CAC) in a large study of asymptomatic men and women.

    METHODS: This was a cross-sectional study of 22,210 adult men and women who underwent a comprehensive health screening examination between 2011 and 2013 (median age 40 years). Sugar-sweetened carbonated beverage consumption was assessed using a validated food frequency questionnaire, and CAC was measured by cardiac computed tomography. Multivariable-adjusted CAC score ratios and 95% CIs were estimated from robust Tobit regression models for the natural logarithm (CAC score +1).

    RESULTS: The prevalence of detectable CAC (CAC score >0) was 11.7% (n = 2,604). After adjustment for age; sex; center; year of screening examination; education level; physical activity; smoking; alcohol intake; family history of cardiovascular disease; history of hypertension; history of hypercholesterolemia; and intake of total energy, fruits, vegetables, and red and processed meats, only the highest category of sugar-sweetened carbonated beverage consumption was associated with an increased CAC score compared with the lowest consumption category. The multivariable-adjusted CAC ratio comparing participants who consumed ≥5 sugar-sweetened carbonated beverages per week with nondrinkers was 1.70 (95% CI, 1.03-2.81). This association did not differ by clinical subgroup, including participants at low cardiovascular risk.

    CONCLUSION: Our findings suggest that high levels of sugar-sweetened carbonated beverage consumption are associated with a higher prevalence and degree of CAC in asymptomatic adults without a history of cardiovascular disease, cancer, or diabetes.

    Matched MeSH terms: Blood Glucose/metabolism
  19. Ramli NZ, Chin KY, Zarkasi KA, Ahmad F
    Nutrients, 2018 Aug 02;10(8).
    PMID: 30072671 DOI: 10.3390/nu10081009
    Metabolic syndrome (MetS) is a cluster of diseases comprising of obesity, diabetes mellitus, dyslipidemia, and hypertension. There are numerous pre-clinical as well as human studies reporting the protective effects of honey against MetS. Honey is a nutritional food low in glycemic index. Honey intake reduces blood sugar levels and prevents excessive weight gain. It also improves lipid metabolism by reducing total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL) and increasing high-density lipoprotein (HDL), which leads to decreased risk of atherogenesis. In addition, honey enhances insulin sensitivity that further stabilizes blood glucose levels and protects the pancreas from overstimulation brought on by insulin resistance. Furthermore, antioxidative properties of honey help in reducing oxidative stress, which is one of the central mechanisms in MetS. Lastly, honey protects the vasculature from endothelial dysfunction and remodelling. Therefore, there is a strong potential for honey supplementation to be integrated into the management of MetS, both as preventive as well as adjunct therapeutic agents.
    Matched MeSH terms: Blood Glucose/metabolism
  20. Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, et al.
    Mol Vis, 2016;22:599-609.
    PMID: 27293376
    PURPOSE: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.

    METHODS: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.

    RESULTS: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.

    CONCLUSIONS: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

    Matched MeSH terms: Blood Glucose/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links