Affiliations 

  • 1 Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
  • 2 Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
  • 3 Unit of Electron Microscope, Institute for Medical Research, Kuala Lumpur, Malaysia
  • 4 Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
  • 5 Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Electronic address: jamal3024@yahoo.com
Arab J Gastroenterol, 2017 Mar;18(1):13-20.
PMID: 28336227 DOI: 10.1016/j.ajg.2017.02.001

Abstract

BACKGROUND AND STUDY AIMS: The complex series of deleterious events among diabetes patients leads to multiple organ failure. Therefore, a holistic approach of treatment is urgently required to prevent worsening of complications. The present investigation was carried out to study the possible protective effects of Roselle or Hibiscus sabdariffa Linn (HSL) calyxes aqueous extract, as an antidiabetic and antioxidant agent against oxidative liver injury in streptozotocin-induced diabetic rats.

MATERIAL AND METHODS: A single dose of streptozotocin (45mg/kg body weight, iv) was used to induced diabetes in male Sprague Dawley rats which were then divided into two groups: Diabetic control (DC) and HSL-treated diabetic (DR) group. Normal rats were divided into normal control (NC), HSL-treated control (NR). Aqueous calyxes extract of HSL (100mg/kg/day, orally) was given for 28 consecutive days in the treated group. Weight, biochemical and histopathological (light and electron microscopic) parameters were compared in all groups.

RESULTS: Supplementation of HSL significantly lowered the level of fasting blood glucose and increased plasma insulin level in DR group compared to DC group (p<0.05). Alanine aminotransaminases and aspartate aminotransferase enzymes level were found to be significantly reduced in DR compared to DC. Microscopic examination demonstrated destruction of the liver architecture, cytoplasmic vacuolation of the hepatocytes and signs of necrosis in diabetic rats. Moreover, dilatation and congestion of blood vessels with leucocytes adherence were detected. Ultrastructural study using electron microscope showed homogeneous substance accumulation in nuclear chromatin, a decrease of organelles and mitochondrial degeneration in the diabetic rats.

CONCLUSION: Administration of HSL in diabetic rats causes significant decrease in hepatocyte destruction and prevented the changes associated with the diabetic condition. Thus, our findings provide a scientific rationale for the use of HSL as promising agent in preventing liver injury in diabetes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.