Displaying publications 341 - 360 of 927 in total

Abstract:
Sort:
  1. Mazlun MH, Sabran SF, Mohamed M, Abu Bakar MF, Abdullah Z
    Molecules, 2019 Jul 04;24(13).
    PMID: 31277371 DOI: 10.3390/molecules24132449
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB) remains one of the deadliest, infectious diseases worldwide. The detrimental effects caused by the existing anti-TB drugs to TB patients and the emergence of resistance strains of M. tuberculosis has driven efforts from natural products researchers around the globe in discovering novel anti-TB drugs that are more efficacious and with less side effects. There were eleven main review publications that focused on natural products with anti-TB potentials. However, none of them specifically emphasized antimycobacterial phenolic compounds. Thus, the current review's main objective is to highlight and summarize phenolic compounds found active against mycobacteria from 2000 to 2017. Based on the past studies in the electronic databases, the present review also focuses on several test organisms used in TB researches and their different distinct properties, a few types of in vitro TB bioassay and comparison between their strengths and drawbacks, different methods of extraction, fractionation and isolation, ways of characterizing and identifying isolated compounds and the mechanism of actions of anti-TB phenolic compounds as reported in the literature.
    Matched MeSH terms: Microbial Sensitivity Tests
  2. Saito H, Tamrin ML
    Biocontrol Sci, 2019;24(2):73-80.
    PMID: 31204358 DOI: 10.4265/bio.24.73
    Fungal infection mostly caused by marine oomycetes had hindered crustacean production thus searching for natural and safe treatment is currently needed. Thus, this study was conducted to investigate the antimycotic effect of different seaweed extract against marine oomycetes (Lagenidium spp. and Haliphthoros spp) . Two seaweeds species (Eucheuma cottonii and Caulerpa lentillifera) were extracted using ethanol, methanol and water. Each extracts was tested on four fungi strains of marine oomycetes species for minimum inhibitory concentration (MIC) and fungicidal activities. C. lentillifera ethanol extract showed the highest antifungal effect where it can inhibit three from four fungal strains. Meanwhile, E. cottonii ethanol extract has lowest MIC (500 ppm) and inhibit L. thermophilum IPMB 1401 and H. sabahensis IPMB 1402 hyphal growths. Antimycotic effect on zoospores production shows reduction in production after 12 h immersion for three marine oomycetes species. Seaweed extracts toxicity on Artemia sp. showed approximately 5% mortality at 12 h immersion. It is suggested that 12 h immersion of seaweed extract is a suitable treatment for marine oomycetes in aquaculture. This study does not only show potential alternative control method for crab larvae health management, it may also contribute to the sustainable development and food security of aquaculture industry.
    Matched MeSH terms: Microbial Sensitivity Tests
  3. Umar MF, Ahmad F, Saeed H, Usmani SA, Owais M, Rafatullah M
    Nanomaterials (Basel), 2020 Jun 01;10(6).
    PMID: 32492878 DOI: 10.3390/nano10061096
    A novel method of preparing reduced graphene oxide (RGOX) from graphene oxide (GOX) was developed employing vegetable extract, Chenopodium album, as a reducing and stabilizing agent. Chenopodium album is a green leafy vegetable with a low shelf life, fresh leaves of this vegetable are encouraged to be used due to high water content. The previously modified 'Hummers method' has been in practice for the preparation of GOX by using precursor graphite powder. In this study, green synthesis of RGOX was functionally verified by employing FTIR and UV-visible spectroscopy, along with SEM and TEM. Our results demonstrated typical morphology of RGOX stacked in layers that appeared as silky, transparent, and rippled. The antibacterial activity was shown by analyzing minimal inhibitory concentration values, agar diffusion assay, fluorescence techniques. It showed enhanced antibacterial activity against Gram-positive and Gram-negative bacteria in comparison to GOX. It has also been shown that the synthesized compound exhibited enhanced antibiofilm activity as compared to its parent compound. The efficacy of RGOX and GOX has been demonstrated on a human breast cancer cell line, which suggested RGOX as a potential anticancer agent.
    Matched MeSH terms: Microbial Sensitivity Tests
  4. Ali SM, Siddiqui R, Khan NA
    J Pharm Pharmacol, 2018 Oct;70(10):1287-1300.
    PMID: 30003546 DOI: 10.1111/jphp.12976
    OBJECTIVES: Whether vertebrates/invertebrates living in polluted environments are an additional source of antimicrobials.

    KEY FINDINGS: Majority of antimicrobials have been discovered from prokaryotes and those which are of eukaryotic origin are derived mainly from fungal and plant sources. With this in mind, it is important to note that pests, such as cockroaches come across pathogenic bacteria routinely, yet thrive in polluted environments. Other animals, such as snakes thrive from feeding on germ-infested rodents. Logically, such species must have developed an approach to protect themselves from these pathogens, yet they have largely been ignored as a potential source of antimicrobials despite their remarkable capability to fight disease-causing organisms.

    SUMMARY: Animals living in polluted environments are an underutilized source for potential antimicrobials, hence it is believed that several novel bioactive molecule(s) will be identified from these sources to counter increasingly resistant bacterial infections. Further research will be necessary in the development of novel antimicrobial(s) from these unusual sources which will have huge clinical impact worldwide.

    Matched MeSH terms: Microbial Sensitivity Tests
  5. Parasakthi N, Goh KL
    Am J Gastroenterol, 1995 Mar;90(3):519.
    PMID: 7872306
    Matched MeSH terms: Microbial Sensitivity Tests
  6. Gunasekharan M, Choi TI, Rukayadi Y, Mohammad Latif MA, Karunakaran T, Mohd Faudzi SM, et al.
    Molecules, 2021 Sep 01;26(17).
    PMID: 34500755 DOI: 10.3390/molecules26175314
    Bacterial infections are regarded as one of the leading causes of fatal morbidity and death in patients infected with diseases. The ability of microorganisms, particularly methicillin-resistant Staphylococcus aureus (MRSA), to develop resistance to current drugs has evoked the need for a continuous search for new drugs with better efficacies. Hence, a series of non-PAINS associated pyrrolylated-chalcones (1-15) were synthesized and evaluated for their potency against MRSA. The hydroxyl-containing compounds (8, 9, and 10) showed the most significant anti-MRSA efficiency, with the MIC and MBC values ranging from 0.08 to 0.70 mg/mL and 0.16 to 1.88 mg/mL, respectively. The time-kill curve and SEM analyses exhibited bacterial cell death within four hours after exposure to 9, suggesting its bactericidal properties. Furthermore, the docking simulation between 9 and penicillin-binding protein 2a (PBP2a, PDB ID: 6Q9N) suggests a relatively similar bonding interaction to the standard drug with a binding affinity score of -7.0 kcal/mol. Moreover, the zebrafish model showed no toxic effects in the normal embryonic development, blood vessel formation, and apoptosis when exposed to up to 40 µM of compound 9. The overall results suggest that the pyrrolylated-chalcones may be considered as a potential inhibitor in the design of new anti-MRSA agents.
    Matched MeSH terms: Microbial Sensitivity Tests
  7. Azmi NN, Mahyudin NA, Wan Omar WH, Mahmud Ab Rashid NK, Ishak CF, Abdullah AH, et al.
    Molecules, 2021 Dec 28;27(1).
    PMID: 35011396 DOI: 10.3390/molecules27010170
    Natural clays have recently been proven to possess antibacterial properties. Effective natural antimicrobial agents are needed to combat bacterial contamination on food contact surfaces, which are increasingly more prevalent in the food chain. This study sought to determine the antibacterial activity of clays against the food-borne pathogens Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 13565. Soils were processed to yield leachates and suspensions from untreated and treated clays. Soil particle size, pH, cation-exchange capacity, metal composition and mineralogy were characterized. Antibacterial screening was performed on six Malaysian soils via the disc diffusion method. In addition, a time-kill assay was conducted on selected antibacterial clays after 6 h of exposure. The screening revealed that Munchong and Carey clays significantly inhibit Salmonella typhimurium (11.00 ± 0.71 mm) and S. aureus (7.63 ± 0.48 mm), respectively. Treated Carey clay leachate and suspension completely kill Salmonella typhimurium, while S. aureus viability is reduced (2 to 3 log10). The untreated Carey and all Munchong clays proved ineffective as antibacterials. XRD analysis confirmed the presence of pyrite and magnetite. Treated Carey clays had a higher soluble metal content compared to Munchong; namely Al (92.63 ± 2.18 mg/L), Fe (65.69 ± 3.09 mg/L) and Mg (88.48 ± 2.29 mg/L). Our results suggest that metal ion toxicity is responsible for the antibacterial activity of these clays.
    Matched MeSH terms: Microbial Sensitivity Tests
  8. Mlambo LK, Abbasiliasi S, Tang HW, Ng ZJ, Parumasivam T, Hanafiah KM, et al.
    Curr Microbiol, 2022 Oct 17;79(12):359.
    PMID: 36251092 DOI: 10.1007/s00284-022-03038-6
    This study aims to evaluate the effects of bioactive metabolites produced by lactic acid bacteria against methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. A total of six lactic acid bacteria (LAB) were selected to evaluate the antimicrobial activity against MRSA ATCC 43300, a skin pathogen that is highly resistant to most antibiotics. The K014 isolate from a fermented vegetable recorded the highest inhibition against MRSA ATCC 43300 at 91.93 ± 0.36%. 16S rRNA sequencing revealed the K014 isolate is closely related to L. plantarum and the sequence was subsequently deposited in the GenBank database with an accession number of MW180960, named as Lactiplantibacillus plantarum K014. The cell-free supernatant (CFS) of L. plantarum K014 had tolerance to high temperature as well as acidic pH. The bioactive metabolites, such as hydrogen peroxide, lactic acid and hyaluronic acid, were produced by L. plantarum K014. Result from ABTS assay showed higher antioxidant activity (46.28%) as compared to that obtained by DPPH assay (2.97%). The CFS had showed anti-inflammatory activity for lipoxygenase (LOX) assay at 43.66%. The bioactive metabolites of L. plantarum K014 showed very promising potential to be used topical skin pathogens.
    Matched MeSH terms: Microbial Sensitivity Tests
  9. Chan EWL, Chin MY, Low YH, Tan HY, Ooi YS, Chong CW
    Microb Drug Resist, 2021 Aug;27(8):1018-1028.
    PMID: 33325795 DOI: 10.1089/mdr.2020.0311
    Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
    Matched MeSH terms: Microbial Sensitivity Tests
  10. Wright H, Harris PNA, Chatfield MD, Lye D, Henderson A, Harris-Brown T, et al.
    Trials, 2021 Dec 07;22(1):889.
    PMID: 34876196 DOI: 10.1186/s13063-021-05870-w
    BACKGROUND: Increasing rates of antibiotic resistance in Gram-negative organisms due to the presence of extended-spectrum beta-lactamases (ESBL), hyperproduction of AmpC enzymes, carbapenemases and other mechanisms of resistance are identified in common hospital- and healthcare-associated pathogens including Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. Cefiderocol is a novel siderophore cephalosporin antibiotic with a catechol moiety on the 3-position side chain. Cefiderocol has been shown to be potent in vitro against a broad range of Gram-negative organisms, including carbapenem-resistant Enterobacteriaceae (CRE) and multi-drug-resistant (MDR) P. aeruginosa and A. baumannii. Recent clinical data has shown cefiderocol to be effective in the setting of complicated urinary tract infections and nosocomial pneumonia, but it has not yet been studied as treatment of bloodstream infection.

    METHODS: This study will use a multicentre, open-label non-inferiority trial design comparing cefiderocol and standard of care antibiotics. Eligible participants will be adult inpatients who are diagnosed with a bloodstream infection with a Gram-negative organism on the basis of a positive blood culture result where the acquisition meets the definition for healthcare-associated or hospital-acquired. It will compare cefiderocol with the current standard of care (SOC) antibiotic regimen according to the patient's treating clinician. Eligible participants will be randomised 1:1 to cefiderocol or SOC and receive 5-14 days of antibiotic therapy. Trial recruitment will occur in at least 20 sites in ten countries (Australia, Malaysia, Singapore, Thailand, Turkey and Greece). The sample size has been derived from an estimated 14 day, all-cause mortality rate of 10% in the control group, and a non-inferiority margin of 10% difference in the two groups. A minimum of 284 patients are required in total to achieve 80% power with a two-sided alpha level of 0.05. Data describing demographic information, risk factors, concomitant antibiotics, illness scores, microbiology, multidrug-resistant organism screening, discharge and mortality will be collected.

    DISCUSSION: With increasing antimicrobial resistance, there is a need for the development of new antibiotics with broad activity against Gram-negative pathogens such as cefiderocol. By selecting a population at risk for multi-drug-resistant pathogens and commencing study treatment early in the clinical illness (within 48 h of index blood culture) the trial hopes to provide guidance to clinicians of the efficacy of this novel agent.

    TRIAL REGISTRATION: The GAME CHANGER trial is registered under the US National Institute of Health ClinicalTrials.gov register, reference number NCT03869437 . Registered on March 11, 2019.

    Matched MeSH terms: Microbial Sensitivity Tests
  11. Zhang X, Sun J, Chen F, Qi H, Chen L, Sung YY, et al.
    Microb Genom, 2021 05;7(5).
    PMID: 33952389 DOI: 10.1099/mgen.0.000549
    The virulence of Vibrio parahaemolyticus is variable depending on its virulence determinants. A V. parahaemolyticus strain, in which the virulence is governed by the pirA and pirB genes, can cause acute hepatopancreatic necrosis disease (AHPND) in shrimps. Some V. parahaemolyticus that are non-AHPND strains also cause shrimp diseases and result in huge economic losses, while their pathogenicity and pathogenesis remain unclear. In this study, a non-AHPND V. parahaemolyticus, TJA114, was isolated from diseased Penaeus vannamei associated with a high mortality. To understand its virulence and adaptation to the external environment, whole-genome sequencing of this isolate was conducted, and its phenotypic profiles including pathogenicity, growth characteristics and nutritional requirements were investigated. Shrimps following artificial infection with this isolate presented similar clinical symptoms to the naturally diseased ones and generated obvious pathological lesions. The growth characteristics indicated that the isolate TJA114 could grow well under different salinity (10-55 p.p.t.), temperature (23-37 °C) and pH (6-10) conditions. Phenotype MicroArray results showed that this isolate could utilize a variety of carbon sources, amino acids and a range of substrates to help itself adapt to the high hyperosmotic and alkaline environments. Antimicrobial-susceptibility test showed that it was a multidrug-resistant bacterium. The whole-genomic analysis showed that this V. parahaemolyticus possessed many important functional genes associated with multidrug resistance, stress response, adhesions, haemolysis, putative secreted proteases, dedicated protein secretion systems and a variety of nutritional metabolic mechanisms. These annotated functional genes were confirmed by the phenotypic profiles. The results in this study indicated that this V. parahaemolyticus isolate possesses a high pathogenicity and strong environmental adaptability.
    Matched MeSH terms: Microbial Sensitivity Tests
  12. Hazni H, Ahmad N, Hitotsuyanagi Y, Takeya K, Choo CY
    Planta Med, 2008 Dec;74(15):1802-5.
    PMID: 18991205 DOI: 10.1055/s-0028-1088340
    The methanolic extract of the leaves of CASSIA ALATA was sequentially partitioned in increasing polarity to afford the hexane, chloroform, butanol and residual extract. Crude extracts were evaluated against MRSA using the agar well diffusion assay. The butanol and chloroform extracts both exhibited inhibition against MRSA with inhibition indexes of 1.03 +/- 0.16 and 0.78 +/- 0.07 at the concentration of 50 mg/mL. The butanol extracts were further purified using silica gel and reverse phase chromatography to afford kaempferol ( 1), kaempferol 3- O-beta-glucopyranoside ( 2), kaempferol 3- O-gentiobioside ( 3) and aloe emodin ( 4). The four constituents showed varying degrees of inhibition against MRSA. Both 1 and 4 exhibited MIC (50) values of 13.0 +/- 1.5 microg/mL and 12.0 +/- 1.5 microg/mL, respectively. The kaempferol glycosides 2 and 3 were less active with MIC (50) values of 83.0 +/- 0.9 microg/mL and 560.0 +/- 1.2 microg/mL, respectively. A free hydroxyl group at C-3 of the flavonol structure is a structural requirement for the inhibition of MRSA.
    Matched MeSH terms: Microbial Sensitivity Tests
  13. Subramaniam K, Khaithir TMN, Ding CH, Che Hussin NS
    Malays J Pathol, 2021 Aug;43(2):291-301.
    PMID: 34448793
    BACKGROUND: Bloodstream infection (BSI) is a major cause of morbidity and mortality. The classification of infection into community-acquired, hospital-acquired, and healthcare-associated infection provides an educated guess on the possible aetiological agents and appropriate empirical antimicrobial therapy to be instituted. This study aims to determine the aetiological agents, the antimicrobial susceptibility patterns, and the classification of infections among the paediatric population.

    MATERIALS & METHODS: This study was conducted in Hospital Kuala Lumpur, Malaysia from January 2016 to December 2017. A total of 303 isolates were included in this study which was obtained from 238 patients. The patients' microbiological worksheets and medical notes were reviewed to determine the antimicrobial susceptibility patterns, demographic data, classification of infection, and outcome (survival versus death).

    RESULTS: Most of the patients were in the age group of one to less than five years old (41%) with 58% male and 85% Malay patients. Common causes of BSI were Staphylococcus aureus (17%), followed by Klebsiella pneumoniae (15%), Acinetobacter baumanii (10%), Pseudomonas aeruginosa (10%), and Escherichia coli (6%). Sixty percent of BSI episodes were caused by gram-negative bacteria, 34% by gram-positive bacteria, and 6% by fungi. Most of the infections were classified as hospital-acquired infections (72%), followed by healthcareassociated (20%) and community-acquired infections (8%). There were 33% of methicillin-resistant Staphylococcus aureus, 53% of extended-spectrum beta-lactamase (ESBL) producing Klebsiella pneumoniae, and 33% ESBL producing Escherichia coli. The overall case fatality rate (CFR) was 27% with the highest CFR caused by Serratia marcescens (53.3%).

    CONCLUSIONS: The majority of paediatric bloodstream infections are hospital-acquired. Improvement in prevention strategies and revisions in antibiotic policies are important to overcome it.

    Matched MeSH terms: Microbial Sensitivity Tests
  14. Ouyang Y, Yang H, Zhang P, Wang Y, Kaur S, Zhu X, et al.
    Molecules, 2017 Sep 22;22(10).
    PMID: 28937657 DOI: 10.3390/molecules22101592
    Tuberculosis (TB) is a chronic, potentially fatal disease caused by Mycobacterium tuberculosis (Mtb). The dihyrofolate reductase in Mtb (mt-DHFR) is believed to be an important drug target in anti-TB drug development. This enzyme contains a glycerol (GOL) binding site, which is assumed to be a useful site to improve the selectivity towards human dihyrofolate reductase (h-DHFR). There have been previous attempts to design drugs targeting the GOL binding site, but the designed compounds contain a hydrophilic group, which may prevent the compounds from crossing the cell wall of Mtb to function at the whole cell level. In the current study, we designed and synthesized a series of mt-DHFR inhibitors that contain a 2,4-diaminopyrimidine core with side chains to occupy the glycerol binding site with proper hydrophilicity for cell entry, and tested their anti-tubercular activity against Mtb H37Ra. Among them, compound 16l showed a good anti-TB activity (MIC = 6.25 μg/mL) with a significant selectivity against vero cells. In the molecular simulations performed to understand the binding poses of the compounds, it was noticed that only side chains of a certain size can occupy the glycerol binding site. In summary, the novel synthesized compounds with appropriate side chains, hydrophobicity and selectivity could be important lead compounds for future optimization towards the development of future anti-TB drugs that can be used as monotherapy or in combination with other anti-TB drugs or antibiotics. These compounds can also provide much information for further studies on mt-DHFR. However, the enzyme target of the compounds still needs to be confirmed by pure mt-DHFR binding assays.
    Matched MeSH terms: Microbial Sensitivity Tests
  15. Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, et al.
    Molecules, 2017 May 24;22(6).
    PMID: 28538674 DOI: 10.3390/molecules22060872
    The potential ability of a new yeast strain, Pichia kudriavzevii, in the synthesis of zinc oxide nanoparticles (ZnO-NPs) through a green method was explored in this study. The effect of reaction time (12, 24 and 36 h) on the structure of the resulting ZnO nanoparticles was investigated. From the XRD and TEM results, the ZnO-NPs with a hexagonal wurtzite structure and a particle crystal size of ~10-61 nm was formed at different reaction times. Combing XRD, TEM, and PL results, it was revealed that the sample prepared at intermediate duration (24 h) has the most favorable nanosized structure with the lowest defect concentration. The biomedical properties of ZnO-NPs as free radical scavenging activity, cytotoxicity and antibacterial agents were characterized. Biosynthesized ZnO-NPs showed strong DPPH free radical scavenging and a dose dependent toxicity with non-toxic effects on Vero cells for concentrations below 190 µg/mL. Desirable bactericidal activity was shown by the ZnO-NPs on Gram-positive bacteria (Bacillus subtilis, Staphylococcus epidermidis and Staphylococcus aurous) and Gram-negative bacteria (Escherichia coli and Serratia marcescens). A maximum inhibition zone of ~19 mm was observed for Staphylococcus epidermidis at a concentration of 100 µg/mL for sample prepared at 24 h. The results from this study reveal that ZnO-NPs possesses potential for many medical and industrial applications.
    Matched MeSH terms: Microbial Sensitivity Tests
  16. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 Mar;30(2):449-457.
    PMID: 28649069
    Antibacterial effect is one of the major therapeutic activities of plant-derived Curcumin. This work evaluated the effect of serum albumin, human plasma, and whole blood on the in vitro activity of Curcumin against eight clinical bacterial isolates by standard broth microdilution and plate-counting methods. Toxicological effects of Curcumin towards human red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were also investigated. Curcumin exhibited weak activity against gram-negative bacteria, except Escherichia coli and Shigella flexneri were susceptible and was most active against gram-positive bacteria: Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. The antibacterial activity was impaired in the presence of bovine serum albumin (BSA), human plasma and whole blood. Curcumin was not toxic to PBMCs and RBCs at 200μg/mL. Furthermore, Curcumin showed synergistic activity in combination with antibiotics: Ciprofloxacin, Gentamicin, Vancomycin and Amikacin against Staphylococcus aureus. This study demonstrated that the interaction of Curcumin with plasma proteins diminishes its in vitro antibacterial activity. Curcumin derivatives with reduced affinity for plasma protein may improve the bioavailability and antibacterial activities.
    Matched MeSH terms: Microbial Sensitivity Tests
  17. Odak JA, Manguro LOA, Wong KC
    J Asian Nat Prod Res, 2018 Jun;20(6):510-524.
    PMID: 29338355 DOI: 10.1080/10286020.2017.1420648
    The plant species Elaeodendron buchananii Loes is widely used in folklore medicine to manage microbial infections in Kenya. Previous studies on the plant fruits and root bark revealed the presence of steroids and terpenoids. The present phytochemical analysis of the plant stem bark has led to the isolation of four new triterpenes characterized as methyl 3β-acetoxy-11α, 19α, 28-trihydroxyurs-12-en-23-oic acid (1), 3β, 11α, 19α-trihydroxyurs-12-en-23, 28-dioic acid (2), 3β-acetoxy-19α, 23, 28-trihydroxyurs-12-ene (3) and 3-oxo-19α, 28-dihydroxyurs-12-en-24-oic acid (4), together with ten known ones (5-14), whose structures were elucidated using spectroscopic techniques. The isolate canophyllol (8) showed promising antibacterial activity against N. meningitides with MIC value of 31.25 μg/ml.
    Matched MeSH terms: Microbial Sensitivity Tests
  18. Rivas-Cáceres RR, Luis Stephano-Hornedo J, Lugo J, Vaca R, Del Aguila P, Yañez-Ocampo G, et al.
    Microb Pathog, 2018 Feb;115:358-362.
    PMID: 29305184 DOI: 10.1016/j.micpath.2017.12.075
    This study explored the use of silver nanoparticle as a bactericidal against the propagation of Clavibacter michiganensis onto tomatoes (Lycopersicon esculentum Mill). In Mexico, tomato production covers about 73% of the total vegetable production but it is affected by outbreak of bacteria canker caused by Clavibacter michiganensis subspecies michiganensis (Cmm). Silver ions possess inhibitor properties, bactericides and high specter antimicrobials. In this study, 6 groups of culture were prepared using 6 different petri dishes where silver nanoparticles of varying concentrations (120, 84, 48, 24, 12 and 0 μg) were added. Furthermore, each group was observed for 20 min, 1, 2, 12 and 24 h. The optimum concentration is 84 μg, which shows an average of 2 Cmm colonies after 20 min. Further increase to 120 μg shows no significant change. However, the average colonies was observed for 48 μg after 1, 2, 12, and 24 h. The obtained results indicate that silver nanoparticles are a promising inhibitor, bactericide and high a specter antimicrobial for treatment or prevention of Cmm.
    Matched MeSH terms: Microbial Sensitivity Tests
  19. Daniel DS, Lee SM, Gan HM, Dykes GA, Rahman S
    J Infect Public Health, 2017 02 21;10(5):617-623.
    PMID: 28254461 DOI: 10.1016/j.jiph.2017.02.006
    Enterococcus faecalis ranks as one of the leading causes of nosocomial infections. A strong epidemiological link has been reported between E. faecalis inhabiting animals and environmental sources. This study investigates the genetic diversity, antibiotic resistance and virulence determinants in E. faecalis from three sources in Malaysia. A total of 250 E. faecalis isolates were obtained consisting of 120 isolates from farm animals, 100 isolates from water sources and 30 isolates from hospitalized patients. Pulse-field gel electrophoresis-typing yielded 63 pulsotypes, with high diversity observed in all sources (D=≥0.901). No pulsotype was common to all the three sources. Each patient room had its own unique PFGE pattern which persisted after six months. Minimum inhibitory concentrations of Vancomycin, Gentamicin, Penicillin, Tetracycline, Nitrofurantoin, Levofloxacin, Ciprofloxacin and Fosfomycin were evaluated. Resistance to Tetracycline was most prevalent in isolates from farm animals (62%) and water sources (49%). Water isolates (86%) had a higher prevalence of the asa1 gene, which encodes for aggregation substance, whereas clinical (78%) and farm animal isolates (87%) had a higher prevalence of the esp gene, encoding a surface exposed protein. This study generates knowledge on the genetic diversity of E. faecalis with antibiotic resistance and virulence characteristics from various sources in Malaysia.
    Matched MeSH terms: Microbial Sensitivity Tests
  20. Chuah LO, Shamila Syuhada AK, Mohamad Suhaimi I, Farah Hanim T, Rusul G
    Data Brief, 2018 Apr;17:698-702.
    PMID: 29511712 DOI: 10.1016/j.dib.2018.01.098
    This article describes the Pulsed-field gel electrophoresis clustering of the predominantSalmonellastrains (Salmonellaser. Albany,Salmonellaser. Brancaster, andSalmonellaser. Corvallis) isolated from poultry and processing environment in wet market and small-scale processing plant in Penang and Perlis, the northern states of Malaysia. Agar disk diffusion assay was performed to determine the phenotypic antibiotic resistance of theseSalmonellastrains. The most common antibiograms among the three predominantSalmonellaserovars were reported. The presence of integrase genes and antibiotic resistance genes conferring to resistance against β-lactams, aminoglycosides, tetracyclines, quinolones, sulphonamides and chloramphenicol, was detected via PCR amplification.
    Matched MeSH terms: Microbial Sensitivity Tests
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links