Displaying publications 341 - 360 of 407 in total

Abstract:
Sort:
  1. Seow LJ, Beh HK, Umar MI, Sadikun A, Asmawi MZ
    Int Immunopharmacol, 2014 Nov;23(1):186-91.
    PMID: 25194675 DOI: 10.1016/j.intimp.2014.08.020
    Gynura segetum, family Compositae, is a cultivated species and can be found growing in the tropical regions of Indonesia and Malaysia. The plant is known for its use for the treatment of cancer, inflammation, diabetes, hypertension and skin afflictions. In the current study, in vivo anti-inflammatory effect of the methanol extract G. segetum leaf and its antioxidant effect in vitro have been investigated for the first time. The in vitro antioxidant activities of the methanol extract were measured using common methods including total phenolic content; total flavonoid content; scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching assays. The in vivo anti-inflammatory activities were tested using the cotton pellet implanted animal model. The measurement of pro-inflammatory cytokine (TNF-α and IL-1) levels in the blood samples of the rats was carried out by using ELISA kits. The inhibitory activity on cyclooxygenase (COX) enzyme of methanol extract was also evaluated. The methanol extract exhibited good antioxidant activity which is associated with their total phenolic and flavonoid contents. Methanol extract strongly inhibited the granuloma tissue formation in rats and the anti-inflammatory potential was mediated through the inhibition of pro-inflammatory cytokines and COX-2 enzyme activities. Taken together, the present study suggests that G. segetum's leaf is a natural source of antioxidants and has potential therapeutic benefits against chronic inflammation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/blood
  2. Wong PF, Jamal J, Tong KL, Khor ES, Yeap CE, Jong HL, et al.
    Microvasc Res, 2017 11;114:26-33.
    PMID: 28595801 DOI: 10.1016/j.mvr.2017.06.002
    miRNAs are important regulators of cellular senescence yet the extent of their involvement remains to be investigated. We sought to identify miRNAs that are involved in cytokine-induced premature senescence (CIPS) in endothelial cells. CIPS was established in young human pulmonary microvascular endothelial cells (HMVEC-Ls) following treatment with a sublethal dose (20ng/ml) of tumor necrosis factor alpha (TNF-α) for 15days. In parallel, HMVEC-Ls were grown and routinely passaged until the onset of replicative senescence (RS). Differential expression analysis following miRNA microarray profiling revealed an overlapped of eight deregulated miRNAs in both the miRNA profiles of RS and TNF-α-induced premature senescence cells. Amongst the deregulated miRNAs were members of the miR 17-92 cluster which are known regulators of angiogenesis. The role of hsa-miR-20b in TNF-α-induced premature senescence, a paralog member of the miR 17-92 cluster, was further investigated. Biotin-labeled hsa-miR-20b captured the enriched transcripts of retinoblastoma-like 1 (RBL1), indicating that RBL1 is a target of hsa-miR-20b. Knockdown of hsa-miR-20b attenuated premature senescence in the TNF-α-treated HMVEC-Ls as evidenced by increased cell proliferation, increased RBL1 mRNA expression level but decreased protein expression of p16INK4a, a cellular senescence marker. These findings provide an early insight into the role of hsa-miR-20b in endothelial senescence.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/pharmacology*
  3. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/pharmacology*
  4. Salga MS, Ali HM, Abdulla MA, Abdelwahab SI
    Chem Biol Interact, 2012 Jan 25;195(2):144-53.
    PMID: 22178775 DOI: 10.1016/j.cbi.2011.11.008
    Zinc complexes were reported to have anti-ulcer activity and used as drug for the treatment of gastrointestinal disorders. A novel compound dichlorido-zinc(II)-4-(2-(5-methoxybenzylidene amino)ethyl)piperazin-1-iumphenolate (ZnHMS) was synthesized, characterized and evaluated for its gastroprotective activity against ethanol-induced ulcer in rats. Gross and microscopic lesions, histochemical staining of glycogen storage, biochemical and immunological parameters were taken into consideration. Oral administration of ZnHMS (30 and 60 mg/kg; 14 days) dose-dependently inhibited gastric lesions. It significantly increased the mucus content and total acidity compared to the control group (P<0.01). Serum levels of aspartate (AST), alanine (ALT) transaminases, pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α) and anti-inflammatory interleukin-10 (IL-10) in the rats exposed to ethanol induced ulceration have been altered. ZnHMS considerably enhances (P<0.05) the protection of gastric epithelia by modulating the acute alterations of AST, ALT, IL-6, IL-10, TNF-α and stomach glycogen. Interestingly, ZnHMS did interfere with the natural release of nitric oxide. In addition, acute toxicity study revealed no abnormal sign to the rats treated with ZnHMS (2000 mg/kg). These findings suggest that the gastroprotective activity of ZnHMS might contribute in adjusting the inflammatory cytokine-mediated oxidative damage to the gastric mucosa.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  5. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  6. Ching JJ, Shuib AS, Abdullah N, Majid NA, Taufek NM, Sutra J, et al.
    Fish Shellfish Immunol, 2021 Sep;116:61-73.
    PMID: 34157396 DOI: 10.1016/j.fsi.2021.06.005
    In aquaculture, commercial fish such as red hybrid tilapia are usually raised at high density to boost the production within a short period of time. This overcrowded environment, however, may cause stress to the cultured fish and increase susceptibility to infectious diseases. Antibiotics and chemotherapeutics are used by fish farmers to overcome these challenges, but this may increase the production cost. Studies have reported on the potential of mushroom polysaccharides that can act as immunostimulants to enhance the immune response and disease resistance in fish. In the current study, hot water extract (HWE) from mushroom stalk waste (MSW) was used to formulate fish feed and hence administered to red hybrid tilapia to observe the activation of immune system. Upon 30 days of feeding, the fish were challenged with pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharides (LPS) and polyinosinic:polycytidylic acid (poly (I:C)) to mimic bacterial and viral infection, respectively. HWE supplementation promoted better feed utilisation in red hybrid tilapia although it did not increase the body weight gain and specific growth rate compared to the control diet. The innate immunological parameters such as phagocytic activity and respiratory burst activity were significantly higher in HWE-supplemented group than that of the control group following PAMPs challenges. HWE-supplemented diet also resulted in higher mRNA transcription of il1b and tnfa in midgut, spleen and head kidney at 1-day post PAMPs injection. Tlr3 exhibited the highest upregulation in the HWE fed fish injected with poly (I:C). At 3-days post PAMPs injection, both ighm and tcrb expression were upregulated significantly in the spleen and head kidney. Results showed that HWE supplementation enhances the immune responses of red hybrid tilapia and induced a higher serum bactericidal activity against S. agalactiae.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/genetics
  7. Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, et al.
    Eur J Pharmacol, 2017 Jan 05;794:127-134.
    PMID: 27845065 DOI: 10.1016/j.ejphar.2016.11.009
    Boesenbergia rotunda (L.) Mansf. had been traditionally used as herbs to treat pain and rheumatism. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is a compound isolated from Boesenbergia rotunda (L.) Mansf.. Previous study had shown the potential of cardamonin in inhibiting the release of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. Thus, the possible therapeutic effect of cardamonin in the rheumatoid arthritis (RA) joints is postulated. This study was performed to investigate the anti-arthritic properties of cardamonin in rat model of induced RA, particularly on the inflammatory and pain response of RA. Rheumatoid arthritis paw inflammation was induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA) in Sprague Dawley rats. Using four doses of cardamonin (0.625, 1.25, 2.5, and 5.0mg/kg), anti-arthritic activity was evaluated through the paw edema, mechanical allodynia and thermal hyperalgesia responses. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the plasma level of TNF-α, IL-1β, and IL-6. Histological slides were prepared from the harvested rat paws to observe the arthritic changes in the joints. Behavioral, biochemical, and histological studies showed that cardamonin demonstrated significant inhibition on RA-induced inflammatory and pain responses as well as progression of joint destruction in rats. ELISA results showed that there was significant inhibition in TNF-α, IL-1β, and IL-6 levels in plasma of the cardamonin-treated RA rats. Overall, cardamonin possesses potential anti-arthritic properties in CFA-induced RA rat model.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/blood
  8. Saad HM, Sim KS, Tan YS
    Int J Med Mushrooms, 2018;20(2):141-153.
    PMID: 29773006 DOI: 10.1615/IntJMedMushrooms.2018025463
    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/analysis
  9. Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, et al.
    Molecules, 2018 Jun 05;23(6).
    PMID: 29874809 DOI: 10.3390/molecules23061355
    Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/pharmacology*
  10. Rahiman SSF, Morgan M, Gray P, Shaw PN, Cabot PJ
    Peptides, 2017 04;90:48-54.
    PMID: 28219695 DOI: 10.1016/j.peptides.2017.02.004
    Dynorphin 1-17 (DYN 1-17) is biotransformed rapidly to a range of fragments in rodent inflamed tissue with dynorphin 3-14 (DYN 3-14) being the most stable and prevalent. DYN 1-17 has been shown previously to be involved in the regulation of inflammatory response following tissue injury, in which the biotransformation fragments of DYN 1-17 may possess similar features. This study investigated the effects of DYN 3-14 on lipopolysaccharide (LPS)-induced nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of pro-inflammatory cytokines interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in differentiated THP-1 cells. Treatment with DYN 3-14 (10nM) resulted in 35% inhibition of the LPS-induced nuclear translocation of NF-κB/p65. Furthermore, DYN 3-14 modulated both IL-1β and TNF-α release; inhibiting IL-1β and paradoxically augmenting TNF-α release in a concentration-independent manner. A number of opioids have been implicated in the modulation of the toll-like receptor 4 (TLR4), highlighting the complexity of their immunomodulatory effects. To determine whether DYN 3-14 modulates TLR4, HEK-Blue™-hTLR4 cells were stimulated with LPS in the presence of DYN 3-14. DYN 3-14 (10μM) inhibited TLR4 activation in a concentration-dependent fashion by suppressing the LPS signals around 300-fold lower than LPS-RS, a potent TLR4 antagonist. These findings indicate that DYN 3-14 is a potential TLR4 antagonist that alters cellular signaling in response to LPS and cytokine release, implicating a role for biotransformed endogenous opioid peptides in immunomodulation.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/genetics
  11. Manogaran M, Vuanghao L, Mohamed R
    J Ethnopharmacol, 2020 Mar 01;249:112410.
    PMID: 31747560 DOI: 10.1016/j.jep.2019.112410
    ETHNOPHARMACOLOGY RELEVANCE: Gynura procumbens (Lour.) Merr. displayed cardio-protective effect that may prevent atherogenesis. The primary underlying pathological process of cardiovascular disease is atherosclerosis. Atherosclerotic lesion composed of macrophages, T cells and other immune cells which incorporated with cholesterol that infiltrates from the blood.

    AIM OF THE STUDY: The present study was performed to determine underlying mechanism of G. procumbens ethanol extract and its fractions such as aqueous, chloroform, ethyl acetate and hexane affect macrophage derived foam cell formation.

    MATERIALS AND METHODS: Lipid droplets accumulation in treated macrophages were visualized by Oil Red O staining while the total cholesterol present in the treated macrophages were measured using Cholestryl Ester quantification assay kit. Enzyme-Linked Immunosorbent Assay (ELISA) were used to detect TNF-α and IL-1β secretion in the supernatant of treated macrophages. Gene expression of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and ATP-binding cassette transporter A-1 (ABCA-1) in treated macrophages were analyzed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR).

    RESULTS: G. procumbens ethanol extract and its fractions reduced lipid droplet accumulation and total cholesterol in oxLDL-treated macrophages together with significantly reduction of TNF-α and IL-1β secretions in supernatant oxLDL-treated macrophages. LOX-1 gene expression was significantly reduced when G. procumbens ethanol extract and its fractions were added in oxDL-treated macrophages. In contrast, G. procumbens ethanol extract and its fractions significantly increased the expression of ABCA-1 gene in oxLDL-treated macrophages.

    CONCLUSION: In conclusion, G. procumbens ethanol extract and its fractions inhibit the formation of macrophage derived foam cell by reducing TNF-α and IL-1β expression, which usually highly expressed in atherosclerotic plaques, suppressing scavenger receptor LOX-1 gene that binds oxLDL but induced ABCA-1 gene that mediate lipid efflux from macrophages.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  12. Rehman K, Zulfakar MH
    Pharm Res, 2017 01;34(1):36-48.
    PMID: 27620176 DOI: 10.1007/s11095-016-2036-8
    PURPOSE: To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis.

    METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.

    RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.

    CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  13. Tan BE, Lim AL, Kan SL, Lim CH, Tsang EEL, Ch'ng SS, et al.
    Rheumatol Int, 2017 Oct;37(10):1719-1725.
    PMID: 28695274 DOI: 10.1007/s00296-017-3772-8
    The effect of biologic disease modifying anti-rheumatic drugs (bDMARDs) in treating rheumatoid arthritis (RA) in real-world clinical practice remains unknown in Southeast Asia. We aimed to assess the efficacy and safety of bDMARDs among Malaysian RA patients treated in routine clinical practice. A retrospective medical chart review of RA patients from 11 government hospitals were conducted from January 2003 to January 2014. A standardized questionnaire was used to abstract patient's demographic, clinical and treatment data. Level of disease activity was measured by DAS28 collected at baseline, 3, 6 and 12 months. Three hundred and one patients were available for analysis, mean age 41 (SD, 10.8) years, mean RA duration 12.3 (SD, 6.9) years and 98% had history of two or more conventional-synthetic DMARDs. There were 467 bDMARD courses prescribed with mean bDMARDs duration use of 12.9 months (SD 14.7). Tumour necrosis factor alpha inhibitors were the most common prescribed bDMARDs (77.1%), followed by Tocilizumab (14.6%) and Rituximab (8.4%). We observed significant improvement in mean DAS28 values from baseline to 3, 6 and 12 months (p 
    Matched MeSH terms: Tumor Necrosis Factor-alpha/antagonists & inhibitors
  14. Rasheed ZB, Lee YS, Kim SH, Teoh T, MacIntyre DA, Bennett PR, et al.
    PMID: 36213265 DOI: 10.3389/fendo.2022.983924
    BACKGROUND: Prematurity is the leading cause of childhood death under the age of five. The aetiology of preterm birth is multifactorial; however, inflammation and infection are the most common causal factors, supporting a potential role for immunomodulation as a therapeutic strategy. 15-Deoxy-Delta-12,14-prostaglandin J2 (15dPGJ2) is an anti-inflammatory prostaglandin and has been shown to delay lipopolysaccharide (LPS) induced preterm labour in mice and improve pup survival. This study explores the immunomodulatory effect of 15dPGJ2 on the transcription factors NF-κB and AP-1, pro-inflammatory cytokines, and contraction associated proteins in human cultured myocytes, vaginal epithelial cell line (VECs) and primary amnion epithelial cells (AECs).

    METHODS: Cells were pre-incubated with 32µM of 15dPGJ2 and stimulated with 1ng/mL of IL-1β as an in vitro model of inflammation. Western immunoblotting was used to detect phosphorylated p-65 and phosphorylated c-Jun as markers of NF-κB and AP-1 activation, respectively. mRNA expression of the pro-inflammatory cytokines IL-6, IL-8, and TNF-α was examined, and protein expression of COX-2 and PGE2 were detected by western immunoblotting and ELISA respectively. Myometrial contractility was examined ex-vivo using a myograph.

    RESULTS: 15dPGJ2 inhibited IL-1β-induced activation of NF-κB and AP-1, and expression of IL-6, IL-8, TNF-α, COX-2 and PGE2 in myocytes, with no effect on myometrial contractility or cell viability. Despite inhibiting IL-1β-induced activation of NF-κB, expression of IL-6, TNF-α, and COX-2, 15dPGJ2 led to activation of AP-1, increased production of PGE2 and increased cell death in VECs and AECs.

    CONCLUSION: We conclude that 15dPGJ2 has differential effects on inflammatory modulation depending on cell type and is therefore unlikely to be a useful therapeutic agent for the prevention of preterm birth.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  15. Nahar N, Mohamed S, Mustapha NM, Lau S, Ishak NIM, Umran NS
    Naunyn Schmiedebergs Arch Pharmacol, 2021 Mar;394(3):457-467.
    PMID: 33047165 DOI: 10.1007/s00210-020-01989-w
    Diabetes mellitus (DM) often causes ocular disorders leading to vision loss. Metformin is commonly prescribed for type 2 diabetes. This study assessed the effect of metformin on hyperglycemic histopathological eye abnormalities and some possible pathways involved. Male rats were divided into 3 groups (N = 6), namely, healthy control, hyperglycemic non-treated control, and hyperglycemic rats treated with 200 mg/kg metformin. Two weeks after diabetes induction by an intraperitoneal streptozotocin (60 mg streptozotocin (STZ)/kg) injection, the rats develop ocular abnormalities, and metformin (200 mg/kg) treatment was administered daily. Rats underwent dilated retinal digital ophthalmoscope examination and graded for diabetic retinopathy. Rats were sacrificed at 12 weeks, and the cornea, lens, sclera, ciliary body, iris, conjunctiva, retinal, and optic nerve were examined histologically. Rats' fasting blood glucose and body weight were monitored. Serum tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), claudin-1, and glutathione/malondialdehyde ratios were analyzed. Metformin significantly attenuated diabetes-related histopathological ocular deteriorations in the cornea, lens, sclera, ciliary body, iris, conjunctiva, retina, and optic nerve partly by restoring serum TNF-α, VEGF, claudin-1, and glutathione/malondialdehyde ratios without significantly affecting the fasting blood glucose levels or body weight in these hyperglycemic rats. Metformin attenuated hyperglycemia-associated histopathological eye deteriorations, possibly partly by ameliorating vascular leakage, oxidative stress, inflammation, and neovascularization, without affecting the fasting blood glucose levels or body weights in these STZ-induced diabetic rats.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/blood
  16. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  17. Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, et al.
    Mol Vis, 2016;22:599-609.
    PMID: 27293376
    PURPOSE: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into proinflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular changes in rats with streptozotocin-induced diabetes.

    METHODS: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), and vascular endothelial growth factor (VEGF) levels.

    RESULTS: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal tissue in the ginger extract-treated group compared to the vehicle-treated group.

    CONCLUSIONS: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal microvascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further investigation.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  18. Fernandez SH
    Malays J Pathol, 2000 Jun;22(1):25-9.
    PMID: 16329534
    A 26-year-old Indian lady was admitted for lower abdominal pain, diarrhoea, vomiting, fever and cough. The initial diagnosis was that of peritonitis secondary to ruptured or perforated viscus with lobar pneumonia. On laparotomy, she was found to have necrotizing or Kikuchi's lymphadenitis of the abdominal lymph nodes. The initial two antinuclear antibody (ANA) results came back negative. She was diagnosed to have systemic lupus erythematosus (SLE) when the third sample for ANA came back positive and the double-stranded DNA (dsDNA) antibody test was homogenously positive. This case illustrates a need to be aware that necrotizing lymphadenitis can precede the onset of systemic lupus erythematosus.
    Matched MeSH terms: Necrosis
  19. Kamin S
    Singapore Dent J, 1994 Jan;19(1):22-4.
    PMID: 9582680
    A case report of sequestra formation in the oral cavity most probably as a sequelae of periodontal abscess in a diabetic patient is presented. The sequestra probably formed as a complication of uncontrolled diabetes mellitus rather than erythroleukemia. The lesion was located at the bifurcation area of the lower left second molar. Removal of the sequestra, scaling and a course of antibiotics managed to control the lesion.
    Matched MeSH terms: Necrosis
  20. Sucedaram Y, Johns EJ, Husain R, Abdul Sattar M, H Abdulla M, Nelli G, et al.
    J Inflamm Res, 2021;14:689-710.
    PMID: 33716510 DOI: 10.2147/JIR.S299083
    Purpose: We hypothesized that low estrogen levels aggravate obesity-related complications. Diet-induced obesity can cause distinct pathologies, including impaired glucose tolerance, inflammation, and organ injury that leads to fatty liver and chronic kidney diseases. To test this hypothesis, ovariectomized (OVX) rats were fed a high-fat style diet (HFSD), and we examined structural changes and inflammatory response in the kidney and liver.

    Methods: Sprague-Dawley female rats were ovariectomized or sham-operated and divided into four groups: sham-operated rats fed a normal diet (ND); ovariectomized rats fed a normal diet (OVX-ND); sham-operated rats fed a HFSD; ovariectomized rats fed a high-fat style diet (OVX-HFSD). Mean blood pressure and fasting blood glucose were measured on weeks 0 and 10. The rats were sacrificed 10 weeks after initiation of ND or HFSD, the kidney and liver were harvested for histological, immunohistochemical and immunofluorescence studies.

    Results: HFSD-fed rats presented a significantly greater adiposity index compared to their ND counterparts. Liver index, fasting blood glucose and mean blood pressure was increased in OVX-HFSD rats compared to HFSD rats at study terminal. Histological and morphometric studies showed focal interstitial mononuclear cell infiltration in the kidney of HFSD rats with mesangial expansion being greater in the OVX-HFSD rats. Both HFSD fed groups showed increased expressions of renal inflammatory markers, namely TNF-alpha, IL-6 and MCP-1, and infiltrating M1 macrophages with some influence of ovarian hormonal status. HFSD-feeding also caused hepatocellular steatosis which was aggravated in ovariectomized rats fed the same diet. Furthermore, hepatocellular ballooning was observed only in the OVX-HFSD rats. Similarly, HFSD-fed rats showed increased expressions of the inflammatory markers and M1 macrophage infiltration in the liver; however, only IL-6 expression was magnified in the OVX-HFSD.

    Conclusion: Our data suggest that some of the structural changes and inflammatory response in the kidney and liver of rats fed a HFSD are exacerbated by ovariectomy.

    Matched MeSH terms: Tumor Necrosis Factor-alpha
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links