Displaying publications 361 - 380 of 4601 in total

Abstract:
Sort:
  1. Ramli MI, Hamzaid NA, Engkasan JP, Usman J
    Biomed Eng Online, 2023 May 22;22(1):50.
    PMID: 37217941 DOI: 10.1186/s12938-023-01103-0
    BACKGROUND: Over the decades, many publications have established respiratory muscle training (RMT) as an effective way in improving respiratory dysfunction in multiple populations. The aim of the paper is to determine the trend of research and multidisciplinary collaboration in publications related to RMT over the last 6 decades. The authors also sought to chart the advancement of RMT among people with spinal cord injury (SCI) over the last 60 years.

    METHODS: Bibliometric analysis was made, including the publications' profiles, citation analysis and research trends of the relevant literature over the last 60 years. Publications from all time frames were retrieved from Scopus database. A subgroup analysis of publications pertinent to people with SCI was also made.

    RESULTS: Research on RMT has been steadily increasing over the last 6 decades and across geographical locations. While medicine continues to dominate the research on RMT, this topic also continues to attract researchers and publications from other areas such as engineering, computer science and social science over the last 10 years. Research collaboration between authors in different backgrounds was observed since 2006. Source titles from non-medical backgrounds have also published articles pertinent to RMT. Among people with SCI, researchers utilised a wide range of technology from simple spirometers to electromyography in both intervention and outcome measures. With various types of interventions implemented, RMT generally improves pulmonary function and respiratory muscle strength among people with SCI.

    CONCLUSIONS: While research on RMT has been steadily increasing over the last 6 decades, more collaborations are encouraged in the future to produce more impactful and beneficial research on people who suffer from respiratory disorders.

    Matched MeSH terms: Respiratory Muscles/physiology
  2. Manor R, Cheaha D, Perimal E, Sathirapanya P, Kumarnsit E, Samerphob N
    In Vivo, 2023;37(4):1649-1657.
    PMID: 37369513 DOI: 10.21873/invivo.13250
    BACKGROUND/AIM: There seems to be a correlation between changes in movement patterns with aging and brain activation. In the preparation and execution of movements, neural oscillations play an important role. In this study, cortical high frequency brain oscillations were analyzed in 15 healthy young adults and 15 elderly adults who participated in eye-hand coordination tasks.

    PATIENTS AND METHODS: The brain activities of healthy young and older adults were recorded using electroencephalography (EEG).

    RESULTS: Elderly participants spent significantly more time completing the task than young participants. During eye-hand coordination in elderly groups, beta power decreased significantly in the central midline and parietal brain regions. The data suggest that healthy elderly subjects had intact cognitive performance, but relatively poor eye-hand coordination associated with loss of beta brain oscillation in the central midline and parietal cortex and reduced ability to attentional movement.

    CONCLUSION: Beta frequency in the parietal brain sites may contribute to attentional movement. This could be an important method for monitoring cognitive brain function changes as the brain ages.

    Matched MeSH terms: Brain/physiology
  3. Surin J
    PMID: 7939942
    Freshwater snails, Stenomelania denisoniensis (Brot) from Tinaroo Dam, North Queensland, Australia were found to be infected with a heterophyid cercaria identified as Procerovum sp. The tail of the cercaria has finfolds which are bilateral anteriorly and dorso-ventral posteriorly, features which separate it from other genera in the Haplorchis-group. This group is differentiated from the cercariae of all the other heterophyid genera by the presence of the penetration glands that extend to the posterior end of the body lateral to the excretory bladder. This paper presents a full description of the cercaria, together with comparisons with other known species of Procerovum.
    Matched MeSH terms: Trematoda/physiology*
  4. Jimi N, Britayev TA, Sako M, Woo SP, Martin D
    Sci Rep, 2024 Jul 29;14(1):17123.
    PMID: 39075131 DOI: 10.1038/s41598-024-66465-4
    Nudibranch mollusks, which are well-known for their vivid warning coloration and effective defenses, are mimicked by diverse invertebrates to deter predation through both Müllerian and Batesian strategies. Despite extensive documentation across different taxa, mimickers have not been detected among annelids, including polychaetes, until now. This study described a new genus and species of polychaete living on Dendronephthya octocorals in Vietnam and Japan. Belonging to Syllidae, it exhibits unique morphological adaptations such as a low number of body segments, simple chaetae concealed within the parapodia and large and fusiform antennae and cirri. Moreover, these appendages are vividly colored, featuring an internal dark red area with numerous terminal white spots and bright yellow tips, effectively contributing to mimicking the appearance of a nudibranch. This discovery not only documents the first known instance of such mimicry among annelids, but also expands our understanding of evolutionary adaptation and ecological strategies in marine invertebrates.
    Matched MeSH terms: Biological Mimicry/physiology
  5. Guo W, Soh KG, Zakaria NS, Hidayat Baharuldin MT, Gao Y
    Front Public Health, 2022;10:840490.
    PMID: 35444975 DOI: 10.3389/fpubh.2022.840490
    BACKGROUND: Resistance training has been widely used in various sports and improves competition performance, especially in swimming. Swimming performance is highly dependent on muscle strength, especially short distances. For adolescent athletes, the existing literature has bound to prove that resistance training is undoubtedly bound to improve swimmers' performance.

    OBJECTIVES: This study adopts a systematic literature review to (1) examine the effects of resistance training on the performance of adolescent swimmers, and (2) summarize their training methods and intensity.

    METHODS: The literature search was undertaken in five international databases: the SCOUPS, PubMed, EBSCOhost (SPORTDiscus), CNKL, Web of Science. The searches covered documents in English and Chinese published until 30th December 2020. Electronic databases using various keywords related to "strength training" and "adolescent swimmers" were searched. Sixteen studies met the inclusion and exclusion criteria where the data was then systematically reviewed using the PRISMA guideline. Furthermore, the physical therapy evidence database (PEDro) scale was used to measure each study's scientific rigor.

    RESULTS: This review found that to improve the swimming performance of adolescents, two types of resistance training were used, specifically in water and on land, where both types of training can improve swimming performance. In addition, training with two types of resistance machines were better in the water than with one equipment. Resistance training can improve the swimming performance of adolescent swimmers at 50 m, 100 m, 200 m and 400 m distances. However, most studies only focused on the swimming performance at 50 m and 100 m lengths. A low-intensity, high-speed resistance training programme is recommended for adolescent swimmers to obtain the best training results.

    CONCLUSION: Water or land resistance training can improve the swimming performance. Given that both types of exercises have their strengths and weaknesses, combining these methods may enhance the swimmers' performance. In addition, despite the starting and turning phases consuming up to one-third of the total swimming time for short distances, literature in this area is limited.

    SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/prospero, identifier: CRD42021231510.

    Matched MeSH terms: Swimming/physiology
  6. Newbery DM, Lingenfelder M
    PLoS One, 2022;17(6):e0270140.
    PMID: 35771743 DOI: 10.1371/journal.pone.0270140
    Time-series data offer a way of investigating the causes driving ecological processes as phenomena. To test for possible differences in water relations between species of different forest structural guilds at Danum (Sabah, NE Borneo), daily stem girth increments (gthi), of 18 trees across six species were regressed individually on soil moisture potential (SMP) and temperature (TEMP), accounting for temporal autocorrelation (in GLS-arima models), and compared between a wet and a dry period. The best-fitting significant variables were SMP the day before and TEMP the same day. The first resulted in a mix of positive and negative coefficients, the second largely positive ones. An adjustment for dry-period showers was applied. Interactions were stronger in dry than wet period. Negative relationships for overstorey trees can be interpreted in a reversed causal sense: fast transporting stems depleted soil water and lowered SMP. Positive relationships for understorey trees meant they took up most water at high SMP. The unexpected negative relationships for these small trees may have been due to their roots accessing deeper water supplies (if SMP was inversely related to that of the surface layer), and this was influenced by competition with larger neighbour trees. A tree-soil flux dynamics manifold may have been operating. Patterns of mean diurnal girth variation were more consistent among species, and time-series coefficients were negatively related to their maxima. Expected differences in response to SMP in the wet and dry periods did not clearly support a previous hypothesis differentiating drought and non-drought tolerant understorey guilds. Trees within species showed highly individual responses when tree size was standardized. Data on individual root systems and SMP at several depths are needed to get closer to the mechanisms that underlie the tree-soil water phenomena in these tropical forests. Neighborhood stochasticity importantly creates varying local environments experienced by individual trees.
    Matched MeSH terms: Trees/physiology
  7. Motevalli S, Salahshour HM, Bailey RP
    J Affect Disord, 2023 Oct 15;339:676-682.
    PMID: 37479040 DOI: 10.1016/j.jad.2023.07.043
    INTRODUCTION: This study aimed to examine the mediating role of cognitive flexibility in the relationship between cognitive emotion regulation strategies and mindfulness in patients with type 2 diabetes.

    METHODS: The research was conducted by correlation method) using Structural Equation Modeling). The statistical population consisted of all women and men with type 2 diabetes. Two hundred fifty-three samples were selected by convenience sampling method. The participants responded to the Cognitive Emotion Regulation Questionnaire, the Kentucky inventory of mindfulness skills, and the Cognitive Flexibility Inventory.

    RESULTS: The results showed that the total path coefficient between the adaptive cognitive emotion regulation strategies and mindfulness (β = 0.243, P = 0.005) was positive and significant, and the total path coefficient between the maladaptive cognitive emotion regulation strategies and mindfulness (β = -0.453, P = 0.001) was negative and significant. The path coefficient between cognitive flexibility and mindfulness (β = 0.273, P = 0.009) was positive and significant. The indirect path coefficient between the adaptive cognitive emotion regulation strategies and mindfulness (β = 0.094, P = 0.007) was positive and significant, and the indirect path coefficient between the maladaptive cognitive emotion regulation strategies and mindfulness (β = -0.117, P = 0.009) was negative and significant.

    CONCLUSION: Improving emotion regulation skills increases cognitive flexibility and mindfulness in patients with type 2 diabetes.

    Matched MeSH terms: Emotions/physiology
  8. Kovanich D, Low TY, Zaccolo M
    Int J Mol Sci, 2023 Feb 28;24(5).
    PMID: 36902098 DOI: 10.3390/ijms24054667
    cAMP is a second messenger that regulates a myriad of cellular functions in response to multiple extracellular stimuli. New developments in the field have provided exciting insights into how cAMP utilizes compartmentalization to ensure specificity when the message conveyed to the cell by an extracellular stimulus is translated into the appropriate functional outcome. cAMP compartmentalization relies on the formation of local signaling domains where the subset of cAMP signaling effectors, regulators and targets involved in a specific cellular response cluster together. These domains are dynamic in nature and underpin the exacting spatiotemporal regulation of cAMP signaling. In this review, we focus on how the proteomics toolbox can be utilized to identify the molecular components of these domains and to define the dynamic cellular cAMP signaling landscape. From a therapeutic perspective, compiling data on compartmentalized cAMP signaling in physiological and pathological conditions will help define the signaling events underlying disease and may reveal domain-specific targets for the development of precision medicine interventions.
    Matched MeSH terms: Signal Transduction/physiology
  9. Dinh TD, Ambak MA, Hassan A, Phuong NT
    Pak J Biol Sci, 2007 Oct 01;10(19):3284-94.
    PMID: 19090143
    This study describe the reproductive biological characteristics and population parameters of the goby, Pseudapocryptes elongatus (Cuvier, 1816), in the coastal mud flat areas of the Mekong Delta, Vietnam. A total of 1058 specimens was collected from January 2004 to June 2005 and results showed that the breeding season occurred with two spawning peaks in July and October. Length at first maturity (L(m)) was 15.4 and 16.3 cm for females and males, respectively. The batch fecundity estimates ranged from 2,652 to 29,406 hydrated oocytes per ovary in the fish ranging from 12.8 to 22.4 cm TL. Length frequency data of the goby ranging from 9.0 to 24.0 cm TL were analyzed using the FiSAT II software. The von Bertalanffy growth parameters were determined as L8 = 25.9 cm, K = 0.66 year(-1) and t(o) = - 0.26 year(-1). The longevity (t(max)) of the goby was estimated to be 4.55 years. There were two recruitment peaks with very different magnitudes and the means of these two peaks were separated by an interval of 5 months. Length at first capture (L(c)) was 10.05 cm, the instantaneous fishing mortality rate (F = 1.38 year(-1)) and natural mortality rate (M = 1.46 year(-1)) accounted for 49 and 51% of the total mortality (Z = 2.84 year(-1)), respectively. Relative yield-per-recruit and biomass-per-recruit analyses gave E(max) = 0.65, E0.1 = 0.55 and E0.5 = 0.33. Results show that the fish stock is subjected to growth overexploitation.
    Matched MeSH terms: Fishes/physiology*
  10. Johan I, Maznah WO, Mashhor M, Abu Hena MK, Amin SM
    Pak J Biol Sci, 2012 Jul 01;15(13):647-52.
    PMID: 24218935
    Investigation on copepod communities in Perai river estuary was conducted from November 2005 to May 2006. Five stations were established for monthly sampling and were located from the river mouth to the upper reaches of the river. Copepod samples were collected from vertical tows using a standard zooplankton net. The Perai river estuary was slightly stratified and salinity decreases significantly from the mouth of the river towards the upper reaches of the river. A total of 28 species of copepods were recorded and comprised of 14 families, Paracalanidae, Oithonidae, Corycaeidae, Acartiidae, Calanidae, Centropagidae, Eucalanidae, Pontellidae, Pseudodiaptomidae, Tortanidae, Ectinosomatidae, Euterpinidae, Clausidiidae and Cyclopidae. A total of 10 species showed high positive affiliation towards salinity (R > 0.60), Acartia spinicauda, Euterpina acutifrons, Microsetella norvegica, Oithona nana, Oithona simplex, Paracalanus crassirostris, Paracalanus elegans, Paracalanus parvus, Pseudodiaptomus sp. and Hemicyclops sp. The copepod species Pseudodiaptomus dauglishi were negatively affiliated towards salinity (R = -0.71). The copepod assemblages classified into two distinct groups according to salinity regimes, euryhaline-polyhaline group (25 marine affiliated species) and oligohaline-mesohaline group (3 freshwater affiliated species).
    Matched MeSH terms: Copepoda/physiology
  11. Mansor NI, Balqis TN, Lani MN, Lye KL, Nor Muhammad NA, Ismail WIW, et al.
    Int J Mol Sci, 2024 Nov 06;25(22).
    PMID: 39595973 DOI: 10.3390/ijms252211904
    Despite significant improvements in the comprehension of neuro-regeneration, restoring nerve injury in humans continues to pose a substantial therapeutic difficulty. In the peripheral nervous system (PNS), the nerve regeneration process after injury relies on Schwann cells. These cells play a crucial role in regulating and releasing different extracellular matrix proteins, including laminin and fibronectin, which are essential for facilitating nerve regeneration. However, during regeneration, the nerve is required to regenerate for a long distance and, subsequently, loses its capacity to facilitate regeneration during this progression. Meanwhile, it has been noted that nerve regeneration has limited capabilities in the central nervous system (CNS) compared to in the PNS. The CNS contains factors that impede the regeneration of axons following injury to the axons. The presence of glial scar formation results from this unfavourable condition, where glial cells accumulate at the injury site, generating a physical and chemical barrier that hinders the regeneration of neurons. In contrast to humans, several species, such as axolotls, polychaetes, and planarians, possess the ability to regenerate their neural systems following amputation. This ability is based on the vast amount of pluripotent stem cells that have the remarkable capacity to differentiate and develop into any cell within their body. Although humans also possess these cells, their numbers are extremely limited. Examining the molecular pathways exhibited by these organisms has the potential to offer a foundational understanding of the human regeneration process. This review provides a concise overview of the molecular pathways involved in axolotl, polychaete, and planarian neuro-regeneration. It has the potential to offer a new perspective on therapeutic approaches for neuro-regeneration in humans.
    Matched MeSH terms: Ambystoma mexicanum/physiology
  12. Washif JA, Pyne DB
    Int J Sports Physiol Perform, 2025 Feb 01;20(2):321-327.
    PMID: 39265975 DOI: 10.1123/ijspp.2024-0227
    BACKGROUND: In high-performance sport, the support provided by sport scientists and other staff can be a valuable resource for coaches and athletes.

    PURPOSE: We propose and detail here the approach of "minimal, adequate, and accurate" sport-science support to ensure that programs of work and solutions are both economical and effective.

    METHODS: Our support provision advocates for utilization of "minimal" resources (employing the least amount of time, tools, and funding) necessary to achieve the desired outcomes. We strive for "adequate" information that fulfills specific objectives without excess and with the requirement that methods and data used are "accurate" (valid and reliable). To illustrate the principles of this approach, we outline a real-world example of supporting 100-m track (athletics) sprinters preparing and competing in an international competition. The provision of performance support emphasizes an integrated approach, combining knowledge and insights from multiple sport-science disciplines. The key facets managed under this approach are (1) neuromuscular readiness, (2) wellness monitoring, (3) movement observation, (4) motivation, (5) biomechanics and performance analysis, and (6) qualitative feedback. These facets are based on the specific performance determinants and influencing factors of an event (100-m dash).

    CONCLUSIONS: Application of this quantitative and qualitative approach can enhance the ability to make informed decisions. Nevertheless, the approach must be planned, evaluated, and refined on a regular basis to enable effective decision making in sport-science support. The 3-element approach of "minimal, adequate, and accurate" should be codesigned and supported by the athletes, coaches, and staff to ensure successful implementation.

    Matched MeSH terms: Running/physiology
  13. Fan X, Soh KG, Mun CY, Soh KL
    Aging Clin Exp Res, 2025 Jan 22;37(1):32.
    PMID: 39841325 DOI: 10.1007/s40520-024-02894-5
    BACKGROUND: Tai Chi (TC) is widely acknowledged for its positive impact on improving motor function in older adults. Nevertheless, limited research has directly compared the effects of different TC styles on older adults with functional impairments.

    OBJECTIVE: This study aimed to assess the impact of different TC styles on motor function in older adults with functional impairments.

    METHOD: We searched five databases-PubMed, Scopus, Chinese National Knowledge Infrastructure (CNKI), Web of Science, and Wiley Online Library-including studies published up to September 2024. The selection of literature adhered to PRISMA guidelines, with quality assessment independently carried out by two researchers.

    RESULTS: Fourteen studies met the inclusion criteria for this review. The analysis revealed that TC interventions for functionally impaired older adults primarily employed Yang-style, Sun-style, Chen-style, and simplified-style TC. The populations studied included individuals with mild cognitive impairment (MCI), nonspecific low back pain (NS-LBP), preclinical disabilities, chronic diseases, poor balance, osteoarthritis (OA), Parkinson's disease (PD), sarcopenia, and those at risk of falls. The findings indicated that motor function in functionally impaired older adults were closely linked to balance, gait, mobility, strength, and fall rates. Among the various TC styles, Yang-style was the most frequently utilised intervention.

    CONCLUSION: This review examined four types of TC interventions and found strong evidence supporting the effectiveness of Yang-style TC in improving motor function in older adults with functional impairments. Additionally, five assessment methods-Single-Leg Stance (SL), Six-Minute Walk Test (6MWT), Timed Up and Go Test (TUGT), Chair Stand Test (CST), and Fall Efficacy Scale (FES)-were identified as suitable for evaluating this population. Based on the findings, it is recommended that individuals with functional impairments engage in Yang-style 24-movement TC, with an intervention duration of 12 weeks, practicing two to five times a week for 60 min each session.

    Matched MeSH terms: Gait/physiology
  14. Makar P, Musa RM, Silva RM, Muracki J, Trybulski R, Altundağ E, et al.
    Sci Rep, 2024 Nov 18;14(1):28547.
    PMID: 39558131 DOI: 10.1038/s41598-024-80181-z
    This study aims to explore the interplay between locomotor demands and goal differentials to better understand their combined influence on overall success. Spanning three competitive seasons within the male Turkish Super League, this study analyzed all participating teams across 124 matches. Locomotor demands, including total distance (m) covered (TD), distances covered (m) at different speed thresholds (0.21-2.0 m/s; 2.01-4.0 m/s; 4.01-5.5 m/s; and 5.5-7.7 m/s), and the number of accelerations in range of 5.5-7.0 m/s (n), were quantified using an optical tracking system. Subsequently, regression models were employed to predict the total points earned by all teams over the three seasons. The logistic regression model, tailored to predict team categorization as high-points earners (HPE) or low-points earners (LPE) based on locomotor variables, exhibited a mean accuracy of 74%. Notably, total distance covered, running speed intervals between 4.4 and 5.5 m/s, and the number of accelerations in range of 5.5-7.0 m/s emerged as significant predictors of team success. Our findings highlight the pivotal role of running speed (4.01-5.5 m/s), number of accelerations, and total distance in predicting success for high-performing teams. Coaches can leverage these insights to refine training programs, thereby optimizing team performance, and fostering success in competitive environments.
    Matched MeSH terms: Locomotion/physiology
  15. Şendil AM, Canlı U, Sheeha BB, Alkhamees NH, Batrakoulis A, Al-Mhanna SB
    Sci Rep, 2024 Nov 18;14(1):28462.
    PMID: 39558052 DOI: 10.1038/s41598-024-79811-3
    The aim of the study was to evaluate the effects of a structured coordinative exercise intervention based on motor skill elements on physical fitness (PF), motor competence (MC) and inhibitory control (IC) in preschool children. A total of 41 kindergarten children (27 boys and 17 girls) aged between 5 and 6 years participated and were divided into exercise (EG; n = 18) and control (CG; n = 23) groups. The exercise group participated in a structured coordinative exercise programme focusing on locomotor and balance skills such as side-stepping, galloping, jumping and running for 30 min, 2 days a week for 8 weeks. The control group followed the normal curriculum. Children participated in measurements before and after 8 weeks, respectively; motor competence was assessed using the Körperkoordinationstest für Kinder (KTK3+) test battery, which includes eye-hand coordination and other coordinative skills. Physical fitness was measured by balance, agility and vertical jump tests. Inhibitory control was assessed using the Go/NoGo test in the Early Years Toolbox. As a result of the two-factor analysis of variance for mixed measures to determine whether being in the exercising group had a significant effect on the test scores, group by time interaction effect showed that the increase in the scores of the exercise group was significantly higher than that of the control group in the parameters of static balance, KTK sideways jump and KTK eye-hand coordination [respectively: F(1-39) = 6.993, p = 0.012; 6.443, p = 0.015; 8.180, p = 0.007). The results show that structured coordinative exercises improve PF and MC but have no significant effect on IC. This study targets the development of motor and cognitive skills considered to be important in preschool children and is one of the few studies to evaluate these parameters simultaneously. It also provides a comprehensive perspective on interventions aimed to positively affect health and development in early childhood.Trial Registration: NCT06631248. Registered on October 07, 2024.
    Matched MeSH terms: Postural Balance/physiology
  16. Aksentijevic A, Elliott MA
    Q J Exp Psychol (Hove), 2017 Aug;70(8):1535-1548.
    PMID: 27244533 DOI: 10.1080/17470218.2016.1192657
    Dynamic distortion of the visual field has been shown to affect perceptual judgment of visual dimensions such as size, length, and distance. Here, we report four experiments demonstrating that the different aspects of a triangle differently influence judgments of distance. Specifically, when the base of the triangle faces the centre of the display, participants consistently underestimate and overestimate the distance of a small dot from the unmarked centre of the display relative to conditions in which the vertex of the triangle faces the centre. When the dot is close to the figure, the distance of the dot to the centre is underestimated. Conversely, when the dot is close to the figure, the distance to the centre is overestimated. The effect is replicated when the internal distances are equalized and when ellipses are used instead of triangles. These results support a ripple model of spatial distortion in which local curvature acts to attract or repel objects. In conclusion, we suggest some implications of our findings for theories of perceptual organization.
    Matched MeSH terms: Distance Perception/physiology*; Judgment/physiology*; Pattern Recognition, Visual/physiology*; Perceptual Distortion/physiology*; Space Perception/physiology*
  17. Shaharudin S, Agrawal S
    J Sports Med Phys Fitness, 2016 Sep;56(9):980-9.
    PMID: 25732319
    BACKGROUND: The purpose of this study was to evaluate the muscle synergies during incremental rowing VO2 max Test of collegiate rowers and untrained subjects. As a power endurance sport, high aerobic capacity was one of the determinants of rowing performance. The modulation of muscle recruitment patterns following specific physiological demands was an indication of the robustness of muscle synergies composition which was overlooked in previous studies.

    METHODS: Ten male collegiate rowers and physically active untrained subjects were recruited. Muscle synergies were extracted from 16 rowing-specific muscles using Principal Component Analysis with varimax rotation. Incremental rowing VO2 max Test was performed on slides ergometer (SE). Rowing performance and physiological variables were analyzed.

    RESULTS: Rowers exerted greater power output, more energy expenditure and better rowing economy compared to untrained subjects. Rowers preferred to row slower with longer strokes compared to the untrained subjects. Three muscle synergies with high indices of similarity of waveform patterns were extracted in both groups. Significant association was found between muscle synergies and rowing economy.

    CONCLUSIONS: The findings of this study showed that muscle synergies were robust during aerobic-dominant activity for collegiate rowers and untrained subjects. Rowers and coaches could utilize the findings by emphasizing on muscle coordination training, which may enhance the rowing economy.

    Matched MeSH terms: Oxygen Consumption/physiology*; Sports/physiology*; Exercise/physiology; Muscle, Skeletal/physiology*; Athletic Performance/physiology*
  18. Islam MA, Sundaraj K, Ahmad RB, Sundaraj S, Ahamed NU, Ali MA
    PLoS One, 2014;9(8):e104280.
    PMID: 25090008 DOI: 10.1371/journal.pone.0104280
    In mechanomyography (MMG), crosstalk refers to the contamination of the signal from the muscle of interest by the signal from another muscle or muscle group that is in close proximity.
    Matched MeSH terms: Movement/physiology; Posture/physiology*; Wrist/physiology*; Range of Motion, Articular/physiology; Muscle, Skeletal/physiology*
  19. Yousefi B, Loo CK
    ScientificWorldJournal, 2014;2014:723213.
    PMID: 25276860 DOI: 10.1155/2014/723213
    Research on psychophysics, neurophysiology, and functional imaging shows particular representation of biological movements which contains two pathways. The visual perception of biological movements formed through the visual system called dorsal and ventral processing streams. Ventral processing stream is associated with the form information extraction; on the other hand, dorsal processing stream provides motion information. Active basic model (ABM) as hierarchical representation of the human object had revealed novelty in form pathway due to applying Gabor based supervised object recognition method. It creates more biological plausibility along with similarity with original model. Fuzzy inference system is used for motion pattern information in motion pathway creating more robustness in recognition process. Besides, interaction of these paths is intriguing and many studies in various fields considered it. Here, the interaction of the pathways to get more appropriated results has been investigated. Extreme learning machine (ELM) has been implied for classification unit of this model, due to having the main properties of artificial neural networks, but crosses from the difficulty of training time substantially diminished in it. Here, there will be a comparison between two different configurations, interactions using synergetic neural network and ELM, in terms of accuracy and compatibility.
    Matched MeSH terms: Motion Perception/physiology*; Movement/physiology; Nerve Net/physiology; Pattern Recognition, Visual/physiology*; Psychomotor Performance/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links