Displaying publications 21 - 40 of 50 in total

Abstract:
Sort:
  1. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Front Pharmacol, 2019;10:878.
    PMID: 31440162 DOI: 10.3389/fphar.2019.00878
    Phyllanthus species (family; Euphorbiaceae) have been intensively studied for their immunomodulating effects due to their wide-ranging uses to treat immune-related diseases in indigenous medicine, which are primarily lack of scientific basis. The focuses of this review are on the significance of Phyllanthus species and their bioactive metabolites particularly corilagin (1), geraniin (2), gallic acid (3), phyllanthin (4), hypophyllanthin (5), ellagic acid (6), phyltetralin (7), niranthin (8), catechin (9), quercetin (10), astragalin (11), and chebulagic acid (12) in the modulation of both innate and adaptive immune systems through various mechanisms and their possible therapeutic benefits for treatment of immune-related diseases. We have compiled all significant findings published in the literature, and the data were analyzed critically to provide perspectives and directions for future research for the plants as a prospective source of novel immunomodulating agents. Various Phyllanthus species particularly Phyllanthus amarus, Phyllanthus emblica, Phyllanthus niruri, and Phyllanthus urinaria have been documented to possess significant immunomodulatory effects. However, the possible challenges encountered by the application of extracts of various Phyllanthus species and their bioactive constituents as immunomodulators need to be addressed. Most reports on the biological and pharmacological studies of the plants were based on crude extracts. The extracts were not chemically characterized, and the contributions of their chemical constituents to the bioactivities were not identified. The underlying mechanisms involved in the immunomodulatory effects of the Phyllanthus species were not indepthly studied due to limitations in terms of design, conduct, and interpretation. Extensive experimental and preclinical studies on the immunomodulating potential of Phyllanthus species should be carried out to provide sufficient data to prove that their traditional uses are inherently effective and safe and will allow clinical trials to be pursued for their further development as therapeutic agents to treat immune-related disorders.
  2. Mozumder MK, Jasmine UH, Haque MA, Haque S
    PLoS One, 2023;18(8):e0289597.
    PMID: 37582101 DOI: 10.1371/journal.pone.0289597
    BACKGROUND: Homosexual individuals are at high risk of suicide, but there is a shortage of data from developing countries to confirm this. Estimates on mental health and suicide risk among male homosexuals in Bangladesh are needed to generate awareness and to plan services accordingly.

    METHOD: We assessed mental health and suicidal behavior of 102 self-identified homosexual males from a community-based organization that works with the sexual minority population.

    RESULTS: One-third of the participants (32.4%) had experienced attempted suicide, and almost half (47.1%) had a history of suicidal ideation and self-harm (40.2%). Compared to a heterosexual sample, homosexual males had poorer mental health as they scored higher on Beck Hopelessness Scale (Cohen's d = 0.29) and General Health Questionnaire (GHQ) (Cohen's d = 0.57). The results revealed positive correlations between self-harm, suicidal ideation and suicide attempt scores. Participants with history of suicide attempt, suicide ideation and self-harm reported worse general health, more social dysfunction, and severe depression than those without such history.

    CONCLUSION: Suicidality and mental health conditions among homosexual males in Bangladesh have appeared to be alarming. Given the concerns, we offer some recommendations for practitioners and social workers who are serving this population in Bangladesh.

  3. Ahmad W, Jantan I, Kumolosasi E, Haque MA, Bukhari SNA
    Int Immunopharmacol, 2018 Jul;60:141-151.
    PMID: 29730557 DOI: 10.1016/j.intimp.2018.04.046
    The in vivo immunomodulatory activities of Tinospora crispa have been reported but its molecular mechanisms underlying its immunomodulatory properties remains obscure and the active constituents contributing to the activities have not been identified. The present study was aimed to investigate the immunomodulatory effects of T. crispa extract (TCE) and its chemical constituents on RAW 264.7 macrophages. Six known compounds including magnoflorine and syringin were isolated by various chromatographic techniques from TCE and their structures were determined spectroscopically. A validated HPLC method was used to quantify magnoflorine and syringin in the extract. The immunomodulatory effects of TCE and its isolated compounds on chemotaxis, phagocytosis, production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines which include tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) on macrophages were assessed. TCE increased the chemotaxis and phagocytic activity of macrophages and significantly enhanced the production of ROS, NO and pro-inflammatory cytokines. All alkaloids isolated, specifically magnoflorine showed remarkable inducing effects on the chemotaxis, phagocytic activity, ROS and NO productions and the secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. In contrast, syringin potently reduced the chemotaxis, phagocytic activity, ROS and NO productions and secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. TCE showed strong immunostimulant effects on various components of the immune system and these activities were possibly contributed mainly by the alkaloids specifically magnoflorine. TCE has potential to be developed as an effective natural immunostimulant for improvement of immune-related disorders.
  4. Bari MS, Khandokar L, Haque E, Romano B, Capasso R, Seidel V, et al.
    J Ethnopharmacol, 2021 May 10;271:113834.
    PMID: 33465439 DOI: 10.1016/j.jep.2021.113834
    ETHNOPHARMACOLOGICAL RELEVANCE: The genus Gynura (Compositae) includes around 46 species and is native to the tropical regions of Southeast Asia, Africa and Australia. Many species within this genus are used in ethnomedicine to treat various disorders including skin diseases, injuries, ulcers, wounds, burns, sores, scalds, as well as for the management of diabetes, hypertension, hyperlipidemia, constipation, rheumatism, bronchitis and inflammation.

    AIM OF THE REVIEW: This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus.

    MATERIALS & METHODS: Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures.

    RESULTS: A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile.

    CONCLUSIONS: The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.

  5. Akter S, Jahan I, Khatun MR, Khan MF, Arshad L, Jakaria M, et al.
    Biosci Rep, 2021 01 29;41(1).
    PMID: 33324970 DOI: 10.1042/BSR20203022
    Merremia vitifolia (Burm.f.) Hallier f., an ethnomedicinally important plant, used in the tribal areas to treat various ailments including fever, headache, eye inflammation, rheumatism, dysentery, jaundice and urinary diseases. The present study explored the biological efficacy of the aqueous fraction of M. vitifolia leaves (AFMV) through in vitro and in vivo experimental models. The thrombolytic and anti-arthritic effects of AFMV were evaluated by using the clot lysis technique and inhibition of protein denaturation technique, respectively. The anti-nociceptive activity of AFMV was investigated in Swiss Albino mice by acetic acid-induced writhing test and formalin-induced paw licking test. The antioxidant activities of AFMV, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and total reducing power, were also tested. The qualitative phytochemical assays exhibited AFMV contains secondary metabolites such as alkaloid, carbohydrate, flavonoid, tannin, triterpenoids and phenols. In addition, AFMV showed strong antioxidant effects with the highest scavenging activity (IC50 146.61 µg/mL) and reducing power was increased with a dose-dependent manner. AFMV also revealed notable clot lysis effect and substantial anti-arthritic activity at higher doses (500 µg/mL) as compared with the control. The results demonstrated a promising reduction of the number of writhing and duration of paw licking in acetic acid-induced writhing test and formalin-induced paw licking test in a dose-dependent manner, respectively. In conclusion, AFMV provides the scientific basis of its folkloric usage, suggesting it as the vital source of dietary supplement.
  6. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
  7. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT
    Phytother Res, 2023 Mar;37(3):1036-1056.
    PMID: 36343627 DOI: 10.1002/ptr.7671
    The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
  8. Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Arolu F, et al.
    Mol Biol Rep, 2023 Mar;50(3):2795-2812.
    PMID: 36592290 DOI: 10.1007/s11033-022-07853-9
    Natural and man-made ecosystems worldwide are subjected to flooding, which is a form of environmental stress. Genetic variability in the plant response to flooding involves variations in metabolism, architecture, and elongation development that are related with a low oxygen escape strategy and an opposing quiescence scheme that enables prolonged submergence endurance. Flooding is typically associated with a decrease in O2 in the cells, which is especially severe when photosynthesis is absent or limited, leading to significant annual yield losses globally. Over the past two decades, considerable advancements have been made in understanding of mechanisms of rice adaptation and tolerance to flooding/submergence. The mapping and identification of Sub1 QTL have led to the development of marker-assisted selection (MAS) breeding approach to improve flooding-tolerant rice varieties in submergence-prone ecosystems. The Sub1 incorporated in rice varieties showed tolerance during flash flood, but not during stagnant conditions. Hence, gene pyramiding techniques can be applied to combine/stack multiple resistant genes for developing flood-resilient rice varieties for different types of flooding stresses. This review contains an update on the latest advances in understanding the molecular mechanisms, metabolic adaptions, and genetic factors governing rice flooding tolerance. A better understanding of molecular genetics and adaptation mechanisms that enhance flood-tolerant varieties under different flooding regimes was also discussed.
  9. Haque E, Bari MS, Khandokar L, Anjum J, Jantan I, Seidel V, et al.
    Phytochem Rev, 2023;22(1):211-273.
    PMID: 36345416 DOI: 10.1007/s11101-022-09843-y
    Tinospora crispa (L.) Hook. f. & Thomson (Menispermaceae) is a plant indigenous to Africa and South-East Asia. It is widely used in ethnomedicine to alleviate various diseases including hypertension, diabetes, rheumatism, jaundice, inflammation, fever, fractures, scabies, and urinary disorders. A total of 167 phytoconstituents, belonging to 12 different chemical categories, including alkaloids, flavonoids, terpenoids, and phenolic compounds have thus far been isolated from various parts of T. crispa. Numerous in vitro and in vivo investigations have already established the antidiabetic, anticancer, antiparasitic, antimicrobial, immunomodulatory, hepatoprotective, analgesic, antipyretic, antihyperuricemic, and pesticidal activity of this plant, as well as its effects on the cardiac and the central nervous system. Most pharmacological investigations to date have been carried out on plant extracts and fractions. The exact identity of the phytoconstituents responsible for the observed biological effects and their mode of action at the molecular level are yet to be ascertained. Toxicological studies have demonstrated that T. crispa is relatively safe, although dose-dependent hepatotoxicity is a concern at high doses. This review presents a comprehensive update and analysis on studies related to the ethnomedicinal uses, phytochemistry, pharmacological activity and toxicological profile of T. crispa. It provides some critical insights into the current scientific knowledge on this plant and its future potential in pharmaceutical research.
  10. Goni O, Khan MF, Rahman MM, Hasan MZ, Kader FB, Sazzad N, et al.
    J Ethnopharmacol, 2021 Mar 25;268:113664.
    PMID: 33278545 DOI: 10.1016/j.jep.2020.113664
    ETHNOPHARMACOLOGICAL RELEVANCE: Aglaonema hookerianum Schott is an ethnomedicinally important plant used to treat a variety of diseases, including sexual and depression-like disorders. However, the scientific basis underlying the aforesaid properties have not been well justified.

    AIM OF THE STUDY: The present investigation aimed to investigate the anxiolytic, antidepressant and aphrodisiac potentials of methanol leaves extract of A. hookerianum (MEAH) in Swiss albino mice.

    MATERIALS & METHODS: Swiss albino mice (20-30 g) were orally administrated with MEAH at the doses ranging from 100 to 400 mg/kg, b.w. The elevated plus maze (EPM) and hole board test (HBT) were performed to determine the anxiolytic activity and the forced swimming test (FST) and tail suspension test (TST) were performed to determine the antidepressant activity of MEAH. Besides, the aphrodisiac activity of MEAH was conducted through the mounting behaviour and orientation behaviour analysis. Diazepam (1 mg/kg, b.w., i.p.) for EPM and HBT; fluoxetine HCl (20 mg/kg, b.w., p.o.) for FST and TST, and sildenafil (5 mg/kg, b.w., p.o.) for the mounting behaviour analysis and orientation behaviour analysis were used as reference drugs.

    RESULTS: The administration of the MEAH produced a strong (p 

  11. Haque MA, Jewel MAS, Akhi MM, Atique U, Paul AK, Iqbal S, et al.
    Environ Monit Assess, 2021 Oct 08;193(11):704.
    PMID: 34623504 DOI: 10.1007/s10661-021-09500-5
    Functional classification of phytoplankton could be a valuable tool in water quality monitoring in the eutrophic riverine ecosystems. This study is novel from the Bangladeshi perspective. In this study, phytoplankton cell density and diversity were studied with particular reference to the functional groups (FGs) approach during pre-monsoon, monsoon, and post-monsoon at four sampling stations in Karatoya River, Bangladesh. A total of 54 phytoplankton species were recorded under four classes, viz. Chlorophyceae (21 species) Cyanophyceae (16 species), Bacillariophyceae (15 species), and Euglenophyceae (2 species). A significantly higher total cell density of phytoplankton was detected during the pre-monsoon season (24.20 × 103 cells/l), while the lowest in monsoon (9.43 × 103 cells/l). The Shannon-Wiener diversity index varied significantly (F = 16.109, P = 000), with the highest value recorded during the post-monsoon season. Analysis of similarity (ANOSIM) identified significant variations among the three seasons (P 
  12. Rahaman I, Haque MA, Singh NSS, Jafor MS, Sarkar PK, Rahman MA, et al.
    Micromachines (Basel), 2022 Nov 11;13(11).
    PMID: 36422388 DOI: 10.3390/mi13111959
    In this research, a novel antenna array named Linearly arranged Concentric Circular Antenna Array (LCCAA) is proposed, concerning lower beamwidth, lower sidelobe level, sharp ability to detect false signals, and impressive SINR performance. The performance of the proposed LCCAA beamformer is compared with geometrically identical existing beamformers using the conventional technique where the LCCAA beamformer shows the lowest beamwidth and sidelobe level (SLL) of 12.50° and -15.17 dB with equal elements accordingly. However, the performance is degraded due to look direction error, for which robust techniques, fixed diagonal loading (FDL), optimal diagonal loading (ODL), and variable diagonal loading (VDL), are applied to all the potential arrays to minimize this problem. Furthermore, the LCCAA beamformer is further simulated to reduce the sidelobe applying tapering techniques where the Hamming window shows the best performance having 17.097 dB less sidelobe level compared to the uniform window. The proposed structure is also analyzed under a robust tapered (VDL-Hamming) method which reduces around 69.92 dB and 48.39 dB more sidelobe level compared to conventional and robust techniques. Analyzing all the performances, it is clear that the proposed LCCAA beamformer is superior and provides the best performance with the proposed robust tapered (VDL-Hamming) technique.
  13. Bashar HMK, Juraimi AS, Ahmad-Hamdani MS, Uddin MK, Asib N, Anwar MP, et al.
    PLoS One, 2023;18(1):e0280159.
    PMID: 36608038 DOI: 10.1371/journal.pone.0280159
    Herbicides made from natural molecules are cost-effective and environmentally friendly alternatives to synthetic chemical herbicides for controlling weeds in the crop field. In this context, an investigation was carried out to ascertain the allelopathic potential of Parthenium hysterophorus L. as well as to identify its phenolic components which are responsible for the allelopathic effect. During the observation, the rate of germination and seedlings' growth of Vigna subterranea (L.) Verdc, Raphanus sativus (L.) Domin, Cucurbita maxima Duchesne., Cucumis sativus L., Solanum lycopersicum L., Capsicum frutescens L., Zea mays L., Abelmoschus esculentus (L.) Moench, Daucus carota L., Digitaria sanguinalis (L.) Scop and Eleusine indica (L.) Gaertn were investigated by using methanol extracts, isolated from leaf, stem and flower of P. hysterophorus. Six concentrations (i.e., 25, 50, 75, 100, and 150 g L-1) of methanol extracts were isolated from P. hysterophorus leaf, stem and flower were compared to the control (distilled water). It was also observed that the concentration of methanol extracts (isolated from P. hysterophorus leaf, stem, and flower) while increased, the rate of seed germination and seedling growth of both selected crops and weeds decreased drastically, indicating that these methanol extracts have allelopathic potential. The allelopathic potential of P. hysterophorus leaf extraction (811) was found higher than the extraction of the stem (1554) and flower (1109), which is confirmed by EC50 values. The principal component analysis (PCA) was also used to re-validate the allelopathic potentiality of these methanol extracts and confirmed that Raphanus sativus, Solanum lycopersicum, Capsicum frutescens, Abelmoschus esculentus, Daucus carota, Digitaria sanguinalis, and Eleusine indica were highly susceptible to allelochemicals of P. hysterophorus. Besides these, the LC-MS analysis also revealed that the P. hysterophorus leaf extract contained 7 phenolic compounds which were responsible for the inhibition of tested crops and weeds through allelopathic effect. The results of the current study revealed that the leaf of P. hysterophorus is a major source of allelopathic potential on crops and weeds and which could be used as a valuable natural herbicide in the future for the sustainability of crop production through controlling weeds.
  14. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MA, Mohd Fauzi N, et al.
    Curr Pharm Biotechnol, 2023;24(11):1465-1477.
    PMID: 36545731 DOI: 10.2174/1389201024666221221113020
    BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation.

    OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.

    METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.

    RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).

    CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.

  15. Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, et al.
    Ann Med, 2021 Dec;53(1):1476-1501.
    PMID: 34433343 DOI: 10.1080/07853890.2021.1966088
    Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
  16. Haque MA, Rahman MA, Al-Bawri SS, Yusoff Z, Sharker AH, Abdulkawi WM, et al.
    Sci Rep, 2023 Aug 03;13(1):12590.
    PMID: 37537201 DOI: 10.1038/s41598-023-39730-1
    In this study, we present our findings from investigating the use of a machine learning (ML) technique to improve the performance of Quasi-Yagi-Uda antennas operating in the n78 band for 5G applications. This research study investigates several techniques, such as simulation, measurement, and an RLC equivalent circuit model, to evaluate the performance of an antenna. In this investigation, the CST modelling tools are used to develop a high-gain, low-return-loss Yagi-Uda antenna for the 5G communication system. When considering the antenna's operating frequency, its dimensions are [Formula: see text]. The antenna has an operating frequency of 3.5 GHz, a return loss of [Formula: see text] dB, a bandwidth of 520 MHz, a maximum gain of 6.57 dB, and an efficiency of almost 97%. The impedance analysis tools in CST Studio's simulation and circuit design tools in Agilent ADS software are used to derive the antenna's equivalent circuit (RLC). We use supervised regression ML method to create an accurate prediction of the frequency and gain of the antenna. Machine learning models can be evaluated using a variety of measures, including variance score, R square, mean square error, mean absolute error, root mean square error, and mean squared logarithmic error. Among the nine ML models, the prediction result of Linear Regression is superior to other ML models for resonant frequency prediction, and Gaussian Process Regression shows an extraordinary performance for gain prediction. R-square and var score represents the accuracy of the prediction, which is close to 99% for both frequency and gain prediction. Considering these factors, the antenna can be deemed an excellent choice for the n78 band of a 5G communication system.
  17. Ali Reza ASM, Nasrin MS, Hossen MA, Rahman MA, Jantan I, Haque MA, et al.
    Crit Rev Food Sci Nutr, 2023;63(22):5546-5576.
    PMID: 34955042 DOI: 10.1080/10408398.2021.2021138
    Medicinally important plant-foods offer a balanced immune function, which is essential for protecting the body against antigenic invasion, mainly by microorganisms. Immunomodulators play pivotal roles in supporting immune function either suppressing or stimulating the immune system's response to invading pathogens. Among different immunomodulators, plant-based secondary metabolites have emerged as high potential not only for immune defense but also for cellular immunoresponsiveness. These natural immunomodulators can be developed into safer alternatives to the clinically used immunosuppressants and immunostimulant cytotoxic drugs which possess serious side effects. Many plants of different species have been reported to possess strong immunomodulating properties. The immunomodulatory effects of plant extracts and their bioactive metabolites have been suggested due to their diverse mechanisms of modulation of the complex immune system and their multifarious molecular targets. Phytochemicals such as alkaloids, flavonoids, terpenoids, carbohydrates and polyphenols have been reported as responsible for the immunomodulatory effects of several medicinal plants. This review illustrates the potent immunomodulatory effects of 65 plant secondary metabolites, including dietary compounds and their underlying mechanisms of action on cellular and humoral immune functions in in vitro and in vivo studies. The clinical potential of some of the compounds to be used for various immune-related disorders is highlighted.
  18. Rahman MM, Ferdous KU, Roy S, Nitul IA, Mamun F, Hossain MH, et al.
    Food Sci Nutr, 2020 Jul;8(7):3578-3589.
    PMID: 32724620 DOI: 10.1002/fsn3.1640
    Amla (Emblica officinalis Gaertn.) is a natural source of antioxidants and possesses valuable medicinal properties. However, the protective effect of amla in the kidney of two-kidneys-one-clip (2K1C) rats has not been explained sufficiently. This study was performed to evaluate the renoprotective effect of amla fruit powder (2.5% W/W) supplementation in kidneys of 2K1C rats. 2K1C rats increased the remnant kidney wet weight and also increased plasma creatinine and uric acid concentration compared to the control. Amla supplementation ameliorates elevated creatinine and uric acid concentration in plasma of 2K1C rats. Various oxidative stress indicators such as malondialdehyde, nitric oxide (NO), and advanced protein oxidation product (APOP) were also increased in plasma, heart, and kidney tissues in 2K1C rats that were also significantly brought down to normal level by amla supplementation. Moreover, the inflammatory cells entry and fibrosis in the 2K1C rat's tissues were prevented by amla supplementation. These research results suggest that amla may restore plasma antioxidant capacities and prevents oxidative stress, inflammation, and fibrosis in 2K1C rats. Taken these results as a base, clinical supplementation of dried amla powder in diet or juice to the CKD patients would be beneficial.
  19. Jantan I, Norahmad NA, Yuandani, Haque MA, Mohamed-Hussein ZA, Mohd Abd Razak MR, et al.
    PMID: 38619217 DOI: 10.1080/10408398.2024.2341266
    Inflammatory cascades of the dysregulated inflammatory pathways in COVID-19 can cause excessive production of pro-inflammatory cytokines and chemokines leading to cytokine storm syndrome (CSS). The molecular cascades involved in the pathways may be targeted for discovery of new anti-inflammatory agents. Many plant extracts have been used clinically in the management of COVID-19, however, their immunosuppressive activities were mainly investigated based on in silico activity. Dietary flavonoids of the extracts such as quercetin, luteolin, kaempferol, naringenin, isorhamnetin, baicalein, wogonin, and rutin were commonly identified as responsible for their inhibitory effects. The present review critically analyzes the anti-inflammatory effects and mechanisms of phytochemicals, including dietary compounds against cytokine storm (CS) and hyperinflammation via inhibition of the altered inflammatory pathways triggered by SARS-CoV-2, published since the emergence of COVID-19 in December 2019. Only a few phytochemicals, mainly dietary compounds such as nanocurcumin, melatonin, quercetin, 6-shagoal, kaempferol, resveratrol, andrographolide, and colchicine have been investigated either in in silico or preliminary clinical studies to evaluate their anti-inflammatory effects against COVID-19. Sufficient pre-clinical studies on safety and efficacy of anti-inflammatory effects of the phytochemicals must be performed prior to proper clinical studies to develop them into therapeutic adjuvants in the prevention and treatmemt of COVID-19 symptoms.
  20. Hoque MA, Ahmad S, Chakrabarty N, Khan MF, Hafez Kabir MS, Brishti A, et al.
    Heliyon, 2021 Oct;7(10):e08199.
    PMID: 34729435 DOI: 10.1016/j.heliyon.2021.e08199
    Palm grass (Curculigo recurvata) is an ethnomedicinally important herb reported to have significant medicinal values. The present study aimed to evaluate the antidepressant and anxiolytic activities of a methanol extract of C. recurvata rhizome (Me-RCR) through different approaches. The antidepressant and anxiolytic properties of Me-RCR were assessed by using elevated plus maze (EPM), hole-board (HBT), tail suspension (TST), and forced swimming (FST) tests in Swiss Albino mice. The in-depth antioxidative potential of Me-RCR was also evaluated through DPPH radical scavenging activity, ferric-reducing power capacity, total phenolic, flavonoid, flavonol, and antioxidant content analysis. Computational investigations were performed using computer-aided methods for screening the anxiolytic, antidepressant, and antioxidative activities of the selected lead molecules. Treatment with Me-RCR (200 and 400 mg/kg, b.w.) notably increased the number of open arm entries and the time spent in the EPM test. In the HBT, Me-RCR exhibited significant anxiolytic activity at a dose of 200 mg/kg, whereas similar activity was observed at 400 mg/kg in the EPM test. Me-RCR significantly decreased the immobility time in a dose-dependent manner in both TST and FST. The IC50 for DPPH and reducing power capacity assay were found to be 18.56 and 193 μg/mL, respectively. Promising outcomes were noted for the determination of total phenolics, flavonoids, flavonols, and antioxidant capacity. In the case of computer-aided studies, nyasicoside showed promising binding energy for antidepressant and anxiolytic activities, whereas isocurculigine demonstrated promising effects as an antioxidant. Overall, these findings suggest that Me-RCR could be a favourable therapeutic candidate for the treatment of mental and psychiatric disorders, as well as a good source of antioxidants.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links