Displaying publications 21 - 40 of 68 in total

Abstract:
Sort:
  1. Lei M, Zhang N, Lee WJ, Tan CP, Lai OM, Wang Y, et al.
    Food Chem, 2020 May 15;312:126047.
    PMID: 31884300 DOI: 10.1016/j.foodchem.2019.126047
    Formation of foams is critical for tailoring the texture and mouthfeel of fat-based products. Diacylglycerol (DAG) is regarded as a preferable alternative structurant to hydrogenated lipid. Effect of DAG concentration (2-10 wt%) on the characteristics of oleogels and foams including crystal polymorphisms, size and distribution, rheological and thermodynamic properties was investigated. Oleogel prepared with 10 wt% DAG had comparable whipping and foaming stability to that of 6 wt% fully hydrogenated palm oil (FHPO). DAG formed small plate-crystals which tend to occur at the bubble surface, whereas FHPO showed needle-like crystals that were formed mainly in the continuous phase. For the 2 wt% FHPO-8 wt% DAG-based oil foams, interfacial templating crystallization effect contributed to the smaller bubble size and improved rheological properties whereby less oil drainage and foam breakdown occurred. Hence, the non-aqueous foam formed by DAG has broad application prospect because of the thermoresponsive properties and the desirable health benefits.
  2. Sim BI, Khor YP, Lai OM, Yeoh CB, Wang Y, Liu Y, et al.
    Food Chem, 2020 Oct 30;328:127147.
    PMID: 32497897 DOI: 10.1016/j.foodchem.2020.127147
    The reduction of the 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) was successfully achieved by the optimization of four processing parameters: phosphoric acid dosage, degumming temperature, bleaching earth dosage, and deodorization temperature by response surface methodology without the need for additional processing steps. The optimized processing conditions were 0.31% phosphoric acid dosage, 50 °C degumming temperature, 3% bleaching earth dosage, and 240 °C deodorization temperature. The optimization resulted in more than 80% and 65% reduction of 3-MCPDE and GE levels, respectively with color and FFA contents maintained in the acceptable range specified by Palm Oil Refiners Association of Malaysia. The optimized refining condition was transferred to macro scale refining units of 1 kg and 3 kg capacities to investigate its successful application during scale-up process.
  3. Yang J, Qiu C, Li G, Lee WJ, Tan CP, Lai OM, et al.
    Food Chem, 2020 Oct 15;327:127014.
    PMID: 32434126 DOI: 10.1016/j.foodchem.2020.127014
    The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.
  4. Mou B, Yang W, Song S, Shen C, Panpipat W, Lai OM, et al.
    Food Chem, 2022 Jan 31;381:132288.
    PMID: 35124494 DOI: 10.1016/j.foodchem.2022.132288
    Milk processing technology disrupts milk fat globule membrane (MFGM) structures and decreases the phospholipid content in MFGM. The present study aimed to evaluate the effects of homogenization, thermal treatment, and cold storage on milk phospholipids. A total of 175 phospholipid molecular species were identified and quantified. Phosphatidylcholine was the most abundant phospholipid, and sphingomyelin accounted for only a small amount of phospholipid in bovine milk. In addition, a total of 37 plasmalogens (167.5 μg/mL) were identified in bovine milk with lysophosphatidylcholine plasmalogen being the most abundant. Processing technologies decreased the phospholipid content with both boiled and frozen milk demonstrating the highest reduction. Compared to raw milk, only 70% of phospholipid remained in frozen milk. Both S-plot and volcano-plot showed that heat treatment and subsequent cold storage decreased the phosphatidylserine and lysophospholipid contents.
  5. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
  6. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    Food Chem, 2018 Feb 15;241:79-85.
    PMID: 28958562 DOI: 10.1016/j.foodchem.2017.08.075
    Tocotrienol microcapsules (TM) were formed by firstly preparing Pickering emulsion containing tocotrienols, which was then gelled into microcapsules using alginate and chitosan. In this study, we examined the stability of TM during storage and when applied into a model food system, i.e. yogurt. During storage at 40°C, TM displayed remarkably lower tocotrienols loss (50.8%) as compared to non-encapsulated tocotrienols in bulk oil (87.5%). When the tocotrienols were incorporated into yogurt, the TM and bulk oil forms showed a loss of 23.5% and 81.0%, respectively. Generally, the tocotrienols were stable in the TM form and showed highest stability when these TM were added into yogurt. δ-Tocotrienol was the most stable isomer in both forms during storage and when incorporated into yogurt. The addition of TM into yogurt caused minimal changes in the yogurt's color and texture but slightly altered the yogurt's viscosity.
  7. Ke W, Lee YY, Cheng J, Tan CP, Lai OM, Li A, et al.
    Food Chem, 2024 Feb 01;433:137374.
    PMID: 37683471 DOI: 10.1016/j.foodchem.2023.137374
    Enzymatic glycerolysis produced ground nut oil-based diacylglycerols (GNO-DAG) with a purity of 43.28 ± 0.89% (GNO-DAG40). GNO-DAG80 (with a DAG purity of 87.33 ± 0.61%) was obtained after purification using molecular distillation. Traditional palm oil was mixed with the "liquid" DAG as margarine base oils. Subsequent evaluations of palm oil-DAG-based fats (PO-GNO DAG) as a margarine replacement in a W/O model system showed that the material was an ideal functional base oil with improved aeration properties and plasticity during application. The binary system physical, textural and crystallization property were determined, and the compatibility of the binary mixed system was analyzed by constructing a phase diagrams. The PO-GNO DAG showed decent compatibility between the two phases and had better texture and rheological properties. In addition, PO-GNO DAG40 showed better apparent viscosity and aeration characteristics than PO-GNO DAG80, with potential application in the food specialty fats industry.
  8. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
  9. Ng SP, Lai OM, Abas F, Lim HK, Tan CP
    Food Res Int, 2014 Oct;64:919-930.
    PMID: 30011735 DOI: 10.1016/j.foodres.2014.08.045
    The rheological properties, microstructure, textural properties, colour and droplet size distribution of mayonnaise-like emulsion models prepared using 10-30wt.% of palm olein-based diacylglycerol (POL-DAG) oil were compared with those of the control (100wt.% VCO) model. There were significant (P<0.05) differences in the particle size distribution of the oil droplets, the textural properties, and the rheological properties of the various emulsion models. The rheological analysis included the determination of the flow curves, yield stress, thixotropy, apparent viscosity, and viscoelastic parameters. The concentrated oil-in-water (O/W) emulsion with 30wt.% POL-DAG substitution exhibited high thixotropy. The POL-DAG content had a substantial effect on the rheological properties of yield stress, storage modulus (G') and loss modulus (G″). The pseudoplastic behaviour of the emulsions was demonstrated. The size of the particles in the 30% POL-DAG-substituted emulsion was dramatically increased after one day and 30days of storage. All of the emulsion samples with POL-DAG substituted for VCO showed a relatively non-uniform bimodal droplet size distribution after one day of storage. In general, substitution of 10-20wt.% POL-DAG oil is appropriate for preparing O/W emulsions that had flow curves and textural properties similar to those of the control sample.
  10. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
  11. Chang HW, Tan TB, Tan PY, Abas F, Lai OM, Wang Y, et al.
    Food Res Int, 2018 03;105:482-491.
    PMID: 29433239 DOI: 10.1016/j.foodres.2017.11.034
    Fish oil-in-water emulsions containing fish oil, thiol-modified β-lactoglobulin (β-LG) fibrils, chitosan and maltodextrin were fabricated using a high-energy method. The results showed that chitosan coating induced charge reversal; denoting successful biopolymers complexation. A significantly (p<0.05) larger droplet size and lower polydispersity index value, attributed to the thicker chitosan coating at the oil-water interface, were observed. At high chitosan concentrations, the cationic nature of chitosan strengthened the electrostatic repulsion between the droplets, thus conferring high oxidative stability and low turbidity loss rate to the emulsions. The apparent viscosity of emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex was higher than those stabilized using β-LG fibrils alone, resulting in the former's higher creaming stability. Under thermal treatments (63°C and 100°C), emulsions stabilized using thiol-modified β-LG fibrils-chitosan complex possessed higher heat stability as indicated by the consistent droplet sizes observed. Chitosan provided a thicker protective layer that protected the oil droplets against high temperature. Bridging flocculation occurred at low chitosan concentration (0.1%, w/w), as revealed through microscopic observations which indicated the presence of large flocs. All in all, this work provided us with a better understanding of the application of protein fibrils-polysaccharide complex to produce stable emulsion.
  12. Lee YY, Tang TK, Phuah ET, Karim NAA, Alitheen NBM, Tan CP, et al.
    Food Res Int, 2018 01;103:200-207.
    PMID: 29389606 DOI: 10.1016/j.foodres.2017.10.022
    Medium-and-Long Chain Triacylglycerol (MLCT) is a type of structured lipid that is made up of medium chain, MCFA (C8-C12) and long chain, LCFA (C16-C22) fatty acid. Studies claimed that consumption of MLCT has the potential in reducing visceral fat accumulation as compared to long chain triacylglycerol, LCT. This is mainly attributed to the rapid metabolism of MCFA as compared to LCFA. Our study was designed to compare the anti-obesity effects of a enzymatically interesterified MLCT (E-MLCT) with physical blend of palm kernel and palm oil (B-PKOPO) having similar fatty acid composition and a commercial MLCT (C-MLCT) made of rapeseed/soybean oil on Diet Induced Obesity (DIO) C57BL/6J mice for a period of four months in low fat, LF (7%) and high fat, HF (30%) diet. The main aim was to determine if the anti-obesity effect of MLCT was contributed solely by its triacylglycerol structure alone or its fatty acid composition or both. Out of the three types of MLCT, mice fed with Low Fat, LF (7%) E-MLCT had significantly (P<0.05) lower body weight gain (by ~30%), body fat accumulation (by ~37%) and hormone leptin level as compared to both the LF B-PKOPO and LF C-MLCT. Histological examination further revealed that dietary intake of E-MLCT inhibited hepatic lipid accumulation. Besides, analysis of serum profile also demonstrated that consumption of E-MLCT was better in regulating blood glucose compared to B-PKOPO and C-MLCT. Nevertheless, both B-PKO-PO and E-MLCT which contained higher level of myristic acid was found to be hypercholesterolemic compared to C-MLCT. In summary, our finding showed that triacylglycerol structure, fatty acid composition and fat dosage play a pivotal role in regulating visceral fat accumulation. Consumption of E-MLCT in low fat diet led to a significantly lesser body fat accumulation. It was postulated that the MLM/MLL/LMM/MML/LLM types of triacylglycerol and C8-C12 medium chain fatty acids were the main factors that contributed to the visceral fat suppressing effect of MLCT. Despite being able to reduce body fat, the so called healthful functional oil E-MLCT when taken in high amount do resulted in fat accumulation. In summary, E-MLCT when taken in moderation can be used to manage obesity issue. However, consumption of E-MLCT may lead to higher total cholesterol and LDL level.
  13. Ng SK, Nyam KL, Nehdi IA, Chong GH, Lai OM, Tan CP
    Food Sci Biotechnol, 2016;25(Suppl 1):15-21.
    PMID: 30263481 DOI: 10.1007/s10068-016-0093-8
    β-Lactoglobulin (β-lg) can produce fibrils that have multi-functional properties. Impacts of different stirring speeds on characteristics of β-lg fibrils as a stable form in β-lg fibril solutions were investigated. Fibril concentration, fibril morphology, turbidity, particle size distribution, zeta potential, and rheological behavior of solutions were studied. Stirring enhanced fibril formation and stability of a fibril solution, in comparison with unstirred solutions. Increasing the stirring speed produced more turbidity and a greater distribution of particle sizes, higher viscosity values, but no differences in zeta potential values of β-lg fibril solutions. However, a high stirring speed is not feasible due to reduction of the fibril yield and changes in fibril morphology.
  14. Chew SC, Tan CP, Lai OM, Nyam KL
    Food Sci Biotechnol, 2018 Jun;27(3):905-914.
    PMID: 30263818 DOI: 10.1007/s10068-017-0295-8
    An optimized refining process for kenaf seed oil was conducted. The 3-monochloro-1,2-propanediol (3-MCPD) contents, triacylglycerol composition, fatty acids composition, bioactive compounds, phosphorus contents, and oxidation indexes of the kenaf seed oil during each stage of the refining process were determined. The results showed that there was no detected 3-MCPD ester in kenaf seed oil throughout the refining process. Deodorization had slightly increased the 2-MCPD ester (9.0 μg/kg) and glycidyl ester (54.8 μg/kg). Oleic (36.53%) and linoleic acids (36.52%) were presented in the largest amount in the refined kenaf seed oil, and triacylglycerols contributed to 99.96% in the oil. There was a removal of 31.6% of phytosterol content and 17.1% of tocopherol and tocotrienol contents in kenaf seed oil after refining. The refining process was totally removed the hydroperoxides, 93% of free fatty acids and 98.8% of phosphorus content in kenaf seed oil.
  15. Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, Wang Y, et al.
    Foods, 2020 Jul 03;9(7).
    PMID: 32635372 DOI: 10.3390/foods9070877
    The present study focused on investigating the storage stability of oil-in-water (O/W) emulsions with high oil volume fractions prepared with palm olein-based diacylglycerol oil (POL-DAG)/soybean oil (SBO) blends at 25 °C. The incorporation of different ratios of oil blends significantly influenced (p < 0.05) the texture, color, droplet size distribution, and rheological parameters of the emulsions. Only emulsions incorporated with 10% to 20% POL-DAG in oil phase exhibited pseudoplastic behavior that fitted the Power Law model well. Furthermore, the O/W emulsions prepared with POL-DAG/SBO blends exhibited elastic properties, with G' higher than G". During storage, the emulsion was found to be less solid-like with the increase in tan δ values. All emulsions produced with POL-DAG/SBO blends also showed thixotropic behavior. Optical microscopy revealed that the POL-DAG incorporation above 40% caused aggregated droplets to coalesce and flocculate and, thus, larger droplet sizes were observed. The current results demonstrated that the 20% POL-DAG substituted emulsion was more stable than the control emulsion. The valuable insights gained from this study would be able to generate a lot more possible applications using POL-DAG, which could further sustain the competitiveness of the palm oil industry.
  16. Khor YP, Hew KS, Abas F, Lai OM, Cheong LZ, Nehdi IA, et al.
    Foods, 2019 Oct 11;8(10).
    PMID: 31614487 DOI: 10.3390/foods8100475
    The stability of refined, bleached, and deodorized palm olein (RBDPO) was studied under controlled heating conditions. RBDPO was heated continuously for 24 h at 160, 170, and 180 °C, with oil sampled at four hour intervals. Thermo-oxidative alterations were measured through various parameters, such as monomeric oxidized triacylglycerols (oxTAG), total polar compounds (TPC), polymerized triacylglycerols (PTG), oxidative stability, and fatty acid composition. After 24 h of heating, the TPC and triacylglycerol oligomers showed a linear increase with heating time at all heating temperatures. At the end of the heating study, more epoxy acids were formed than keto and hydroxy acids. Moreover, caprylic acid, which was not present in fresh oil, was formed in significant amounts. The increase in oxTAG was strongly correlated with the increase in the p-anisidine value and total oxidation value. The decreases in diacylglycerol and free fatty acids were strongly correlated with an increase in PTG.
  17. Tan PY, Tey BT, Chan ES, Lai OM, Chang HW, Tan TB, et al.
    Foods, 2021 Feb 07;10(2).
    PMID: 33562391 DOI: 10.3390/foods10020358
    Calcium carbonate (CaCO3) has been utilized as a pH-responsive component in various products. In this present work, palm tocotrienols-rich fraction (TRF) was successfully entrapped in a self-assembled oil-in-water (O/W) emulsion system by using CaCO3 as the stabilizer. The emulsion droplet size, viscosity and tocotrienols entrapment efficiency (EE) were strongly affected by varying the processing (homogenization speed and time) and formulation (CaCO3 and TRF concentrations) parameters. Our findings indicated that the combination of 5000 rpm homogenization speed, 15 min homogenization time, 0.75% CaCO3 concentration and 2% TRF concentration resulted in a high EE of tocotrienols (92.59-99.16%) and small droplet size (18.83 ± 1.36 µm). The resulting emulsion system readily released the entrapped tocotrienols across the pH range tested (pH 1-9); with relatively the highest release observed at pH 3. The current study presents a potential pH-sensitive emulsion system for the entrapment and delivery of palm tocotrienols.
  18. Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, et al.
    Foods, 2020 Jun 04;9(6).
    PMID: 32512737 DOI: 10.3390/foods9060739
    Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
  19. Lin YK, Show PL, Yap YJ, Ariff A, Annuar MSBM, Lai OM, et al.
    Front Chem, 2018;6:448.
    PMID: 30345267 DOI: 10.3389/fchem.2018.00448
    An extractive bioconversion conducted on soluble starch with cyclodextrin glycosyltransferase (CGTase) enzyme in ethylene oxide-propylene oxide (EOPO)/potassium phosphates liquid biphasic system (LBS) to extract gamma-cyclodextrin (γ-CD) was examined. A range of EOPO (with potassium phosphates) molecular weights was screen to investigate the effect of the latter on the partioning efficency of CGTase and γ-CD. The results show that the optimal top phase γ-CD yield (74.4%) was reached in 35.0% (w/w) EOPO 970 and 10.0% (w/w) potassium phosphate with 2.0% (w/w) sodium chloride. A theoretical explanation for the effect of NaCl on γ-CD was also presented. After a 2 h bioconversion process, a total of 0.87 mg/mL concentration of γ-CD was produced in the EOPO/ phosphates LBS top phase. After the extraction of top phase from LBS, four continuous repetitive batches were successfully conducted with relative CGTase activity of 1.00, 0.86, 0.45, and 0.40 respectively.
  20. Yeo BH, Tang TK, Wong SF, Tan CP, Wang Y, Cheong LZ, et al.
    Front Pharmacol, 2021;12:631136.
    PMID: 33833681 DOI: 10.3389/fphar.2021.631136
    Edible bird's nest (EBN) is recognized as a nourishing food among Chinese people. The efficacy of EBN was stated in the records of traditional Chinese medicine and its activities have been reported in many researches. Malaysia is the second largest exporter of EBNs in the world, after Indonesia. For many years, EBN trade to China was not regulated until August 2011, when a safety alert was triggered for the consumption of EBNs. China banned the import of EBNs from Malaysia and Indonesia due to high level of nitrite. Since then, the Malaysia government has formulated Malaysia Standards for swiftlet farming (MS 2273:2012), edible bird's nest processing plant design and management (MS 2333:2010), and edible bird's nest product quality (MS 2334:2011) to enable the industry to meet the specified standards for the export to China. On the other hand, Indonesia's EBN industry formulated a standard operating procedure (SOP) for exportation to China. Both countries can export EBNs to China by complying with the standards and SOPs. EBN contaminants may include but not limited to nitrite, heavy metals, excessive minerals, fungi, bacteria, and mites. The possible source of contaminants may come from the swiftlet farms and the swiftlets or introduced during processing, storage, and transportation of EBNs, or adulterants. Swiftlet house design and management, and EBN processing affect the bird's nest color. Degradation of its optical quality has an impact on the selling price, and color changes are tied together with nitrite level. In this review, the current and future prospects of EBNs in Malaysia and Indonesia in terms of their quality, and the research on the contaminants and their effects on EBN color changes are discussed.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links