Particular attention has been paid to capillary electrophoresis as versatile and environmentally friendly approach for enantioseparations of a wide spectrum of compounds. Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) is a method of choice to provide effective separation toward hydrophobic and uncharged stereoisomers. The chiral discrimination of the solutes relies upon the partitioning between a given CD in the aqueous phase and micelles formed from a surfactant. Synergistic combinations of chiral selectors, surfactant, and modifier contribute to successful enantioseparations of the enantiomers. In this chapter, an application of CD-MEKC for the enantioseparation of selected imidazole drugs employing a dual CDs system is described.
Graphene (G) modified with magnetite (Fe3O4) and sol-gel hybrid tetraethoxysilane-methyltrimethoxysilane (TEOS-MTMOS) was used as a clean-up adsorbent in magnetic solid phase extraction (MSPE) for direct determination of acrylamide in various food samples prior to gas chromatography-mass spectrometry analysis. Good linearity (R2=0.9990) was achieved for all samples using matrix-matched calibration. The limit of detection (LOD=3×SD/m) obtained was 0.061-2.89µgkg-1 for the studied food samples. Native acrylamide was found to be highest in fried potato with bright-fleshed (900.81µgkg-1) and lowest in toasted bread (5.02µgkg-1). High acrylamide relative recovery (RR=82.7-105.2%) of acrylamide was obtained for spiked (5 and 50µgkg-1) food samples. The Fe3O4@G-TEOS-MTMOS is reusable up to 7 times as a clean-up adsorbent with good recovery (>85%). The presence of native acrylamide was confirmed by mass analysis at m/z=71 ([C3H5NO]+) and m/z=55 ([C3H3O]+).
New-generation adsorbent, Fe3O4@SiO2/GO, was developed by modification of graphene oxide (GO) with silica-coated (SiO2) magnetic nanoparticles (Fe3O4). The synthesized adsorbent was characterized using Fourier transform infrared spectroscopy, X-ray diffractometry, energy-dispersive X-ray spectroscopy, and field emission scanning electron microscopy. The developed adsorbent was used for the removal and simultaneous preconcentration of As(III) and As(V) from environmental waters prior to ICP-MS analysis. Fe3O4@SiO2/GO provided high adsorption capacities, i.e., 7.51 and 11.46 mg g(-1) for As(III) and As(V), respectively, at pH 4.0. Adsorption isotherm, kinetic, and thermodynamic were investigated for As(III) and As(V) adsorption. Preconcentration of As(III) and As(V) were studied using magnetic solid-phase extraction (MSPE) method at pH 9.0 as the adsorbent showed selective adsorption for As(III) only in pH range 7-10. MSPE using Fe3O4@SiO2/GO was developed with good linearities (0.05-2.0 ng mL(-1)) and high coefficient of determination (R (2) = 0.9992 and 0.9985) for As(III) and As(V), respectively. The limits of detection (LODs) (3× SD/m, n = 3) obtained were 7.9 pg mL(-1) for As(III) and 28.0 pg mL(-1) for As(V). The LOD obtained is 357-1265× lower than the WHO maximum permissible limit of 10.0 ng mL(-1). The developed MSPE method showed good relative recoveries (72.55-109.71 %) and good RSDs (0.1-4.3 %, n = 3) for spring water, lake, river, and tap water samples. The new-generation adsorbent can be used for the removal and simultaneous preconcentration of As(III) and As(V) from water samples successfully. The adsorbent removal for As(III) is better than As(V).
This study describes the synthesis, characterization and application of a new chrysin-based silica core-shell magnetic nanoparticles (Fe3O4@SiO2-N-chrysin) as an adsorbent for the preconcentration of Cu(II) from aqueous environment. The morphology, thermal stability and magnetic property of Fe3O4@SiO2-N-chrysin were analyzed using FTIR, FESEM, TEM, XRD, thermal analysis and VSM. The extraction efficiency of Fe3O4@SiO2-N-chrysin was analyzed using the batch wise method with flame atomic absorption spectrometry. Parameters such as the pH, the sample volume, the adsorption-desorption time, the concentration of the desorption solvent, the desorption volume, the interference effects and the regeneration of the adsorbent were optimized. It was determined that Cu(II) adsorption is highly pH-dependent, and a high recovery (98%) was achieved at a pH 6. The limit of detection (S/N=3), the limit of quantification (S/N=10), the preconcentration factor and the relative standard deviation for Cu(II) extraction were 0.3 ng mL(-1), 1 ng mL(-1), 100 and 1.9% (concentration=30 ng mL(-1), n=7), respectively. Excellent relative recoveries of 97-104% (%RSD<3.12) were achieved from samples from a spiked river, a lake and tap water. The MSPE method was also validated using certified reference materials SLRS-5 with good recovery (92.53%).
Novel, fast, selective, eco-friendly and reproducible solid-phase membrane tip extraction and gas chromatography with mass spectrometry methods were developed and validated for the analysis of triazine herbicides (atrazine and secbumeton) in stream and lake waters. The retention times of atrazine and secbumeton were 7.48 and 8.51 min. The solid-phase membrane tip extraction was carried out in semiautomated dynamic mode on multiwall carbon nanotubes enclosed in a cone-shaped polypropylene membrane cartridge. Acetone and methanol were found as the best preconditioning and desorption solvents, respectively. The extraction and desorption times for these herbicides were 15.0 and 10.0 min, respectively. The percentage recoveries of atrazine and secbumeton were 88.0 and 99.0%. The linearity range was 0.50-80.0 μg/L (r(2) > 0.994), with detection limits (<0.47 μg/L, S/N = 3) and good reproducibility (<8.0%). The ease of operation, eco-friendly nature, and low cost of solid-phase membrane tip extraction made these methods novel. The Solid-phase membrane tip extraction method was optimized by considering the effect of extraction time, desorbing solvents and time.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6-tri-O-methyl)-β-cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5-s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively.
The progress of novel sorbents and their function in preconcentration techniques for determination of trace elements is a topic of great importance. This review discusses numerous analytical approaches including the preparation and practice of unique modification of solid-phase materials. The performance and main features of ion-imprinting polymers, carbon nanotubes, biosorbents, and nanoparticles are described, covering the period 2007-2012. The perspective and future developments in the use of these materials are illustrated.
A metal-free mesoporous carbon nitride (MCN) was investigated for the first time as an adsorbent for N-nitrosopyrrolidine (NPYR), which is one of the nitrosamine pollutants. Under the same condition, the adsorption capability of the MCN was found to be higher than that of the MCM-41. Since the adsorption isotherm was consistent with Langmuir and Freundlich model equations, it was suggested that the adsorption of NPYR molecules on the MCN occurred in the form of mono-molecular layer on the heterogeneous surface sites. It was proposed that MCN with suitable adsorption sites was beneficial for the adsorption of NPYR. The evidence on the interaction between the NPYR molecules and the MCN was supported by fluorescence spectroscopy. Two excitation wavelengths owing to the terminal N-C and N=C groups were used to monitor the interactions between the emission sites of the MCN and the NPYR molecules. It was confirmed that the intensity of the emission sites was quenched almost linearly with the concentration of NPYR. This result obviously suggested that the MCN would be applicable as a fluorescence sensor for detection of the NPYR molecules. From the Stern-Volmer plot, the quenching rate constant of terminal N-C groups was determined to be ca. two times higher than that of the N=C groups on MCN, suggesting that the terminal N-C groups on MCN would be the favoured sites interacted with the NPYR. Since initial concentration can be easily recovered, the interactions of NPYR on MCN were weak and might only involve electrostatic interactions.
A simple adsorption/desorption procedure using a mixed matrix membrane (MMM) as extraction medium is demonstrated as a new miniaturized sample pretreatment and preconcentration technique. Reversed-phase particles namely polymeric bonded octadecyl (C18) was incorporated through dispersion in a cellulose triacetate (CTA) polymer matrix to form a C18-MMM. Non-steroidal anti-inflammatory drugs (NSAIDs) namely diclofenac, mefenamic acid and ibuprofen present in the environmental water samples were selected as targeted model analytes. The extraction setup is simple by dipping a small piece of C18-MMM (7 mm × 7 mm) in a stirred 10 mL sample solution for analyte adsorption process. The entrapped analyte within the membrane was then desorbed into 100 μL of methanol by ultrasonication prior to high performance liquid chromatography (HPLC) analysis. Each membrane was discarded after single use to avoid any analyte carry-over effect. Several important parameters, such as effect of sample pH, salting-out effect, sample volume, extraction time, desorption solvent and desorption time were comprehensively optimized. The C18-MMM demonstrated high affinity for NSAIDs spiked in tap and river water with relative recoveries ranging from 92 to 100% and good reproducibility with relative standard deviations between 1.1 and 5.5% (n=9). The overall results obtained were found comparable against conventional solid phase extraction (SPE) using cartridge packed with identical C18 adsorbent.
Cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) method was developed for simultaneous enantioseparation of three imidazole drugs namely tioconazole, isoconazole and fenticonazole. Three easily available and inexpensive cyclodextrins namely 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) were evaluated to discriminate the six stereoisomers of the drugs. However, none of the three CDs gave a complete enantioseparation of the drugs. Effective enantioseparation of tioconazole, isoconazole and fenticonazole was achieved using a combination of 35 mM HP-γ-CD and 10 mM DM-β-CD as chiral selectors. The best separation using both HP-γ-CD and DM-β-CD (35 mM:10 mM) as chiral selectors were accomplished in background electrolyte (BGE) containing 35 mM phosphate buffer (pH 7.0), 50 mM sodium dodecyl sulfate (SDS) and 15% (v/v) acetonitrile at 27 kV and 30 °C with all peaks resolved in less than 15 min with resolutions, Rs 1.90-27.22 and peak efficiencies, N > 180 000. The developed method was linear over the concentration range of 25-200 mg l(-1) (r(2) > 0.998) and the detection limits (S/N = 3) of the three imidazole drugs were found to be 2.7-7.7 mg l(-1). The CD-MEKC method was successfully applied to the determination of the three imidazole drugs in spiked human urine sample and commercial cream formulation of tioconazole and isoconazole with good recovery (93.6-106.2%) and good RSDs ranging from 2.30-6.8%.
Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet (DLLME-SFO) was developed for the analysis of triazines. As model compounds four selected triazine herbicides namely, simazine, atrazine, secbumeton and cyanazine were employed to estimate the extraction efficiency. The experimental conditions were comprehensively studied for the DLLME-SFO method. Under the use of 10 μL of 1-undecanol as extraction solvent, 100 μL of acetonitrile as disperser solvent and 5% (w/v) NaCl for 3 min the results demonstrated that the repeatability (RSD%) of the optimised DLLME-SFO method ranged from 0.03% to 5.1% and the linearity in the range of 0.01-100 ppb. Low limits of detection (0.037-0.008 ppb), and good enrichment factors (195-322) were obtained. The DLLME-SFO method applied in water and sugarcane samples showed excellent relative recoveries (95.7-116.9%) with RSDs <8.6% (n=3) for all samples.
In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.
A cyclodextrin-modified micellar electrokinetic chromatography (CD-MEKC) technique has been developed for enantioseparation of vinpocetine using an inexpensive 2-hydroxypropyl-β-CD (HP-β-CD) as the chiral selector (CS). The best chiral separation was achieved using 40 mM HP-β-CD as the CS in 50 mM phosphate buffer (pH 7.0) consisting of 40 mM sodium dodecyl sulfate (SDS) at a separation temperature and separation voltage of 25°C and 25 kV, respectively. To the author's best knowledge, this is the first CD-MEKC study able to successfully separate the four stereoisomer of vinpocetine in separation time of 9.5 min and resolution of 1.04-3.87.
Linearity assessment as required in method validation has always been subject to different interpretations and definitions by various guidelines and protocols. However, there are very limited applicable implementation procedures that can be followed by a laboratory chemist in assessing linearity. Thus, this work proposes a simple method for linearity assessment in method validation by a regression analysis that covers experimental design, estimation of the parameters, outlier treatment, and evaluation of the assumptions according to the International Union of Pure and Applied Chemistry guidelines. The suitability of this procedure was demonstrated by its application to an in-house validation for the determination of plasticizers in plastic food packaging by GC.
A three-phase hollow fiber liquid-phase microextraction method coupled with CE was developed and used for the determination of partition coefficients and analysis of selected nitrophenols in water samples. The selected nitrophenols were extracted from 14 mL of aqueous solution (donor solution) with the pH adjusted to pH 3 into an organic phase (1-octanol) immobilized in the pores of the hollow fiber and finally backextracted into 40.0 microL of the acceptor phase (NaOH) at pH 12.0 located inside the lumen of the hollow fiber. The extractions were carried out under the following optimum conditions: donor solution, 0.05 M H(3)PO(4), pH 3.0; organic solvent, 1-octanol; acceptor solution, 40 microL of 0.1 M NaOH, pH 12.0; agitation rate, 1050 rpm; extraction time, 15 min. Under optimized conditions, the calibration curves for the analytes were linear in the range of 0.05-0.30 mg/L with r(2)>0.9900 and LODs were in the range of 0.01-0.04 mg/L with RSDs of 1.25-2.32%. Excellent enrichment factors of up to 398-folds were obtained. It was found that the partition coefficient (K(a/d)) values were high for 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, 2,4-dinitrophenol and 2,6-dinitrophenol and that the individual partition coefficients (K(org/d) and K(a/org)) promoted efficient simultaneous extraction from the donor through the organic phase and further into the acceptor phase. The developed method was successfully applied for the analysis of water samples.
An efficient method for the simultaneous enantioseparation of cyproconazole, bromuconazole, and diniconazole enantiomers was developed by CD-modified MEKC using a dual mixture of neutral CDs as chiral selector. Three neutral CDs namely hydroxypropyl-beta-CD, hydroxypropyl-gamma-CD, and gamma-CD were tested as chiral selectors at different concentrations ranging from 10, 20, 30 and 40 mM, but enantiomers of the studied fungicides were not completely separated. The best dual chiral recognition mode for the simultaneous separation of cyproconazole, bromuconazole, and diniconazole enantiomers was achieved with a mixture of 27 mM hydroxypropyl-beta-CD and 3 mM hydroxypropyl-gamma-CD in 25 mM phosphate buffer (pH 3.0) containing 40 mM SDS to which methanol-acetonitrile (10%:5% v/v) was added as organic modifiers. The best separation was based on the appearance of 10 peaks simultaneously, with good resolution (R(s) 1.1-15.9), and peak efficiency (N>200,000). Good repeatabilities in the migration time, peak area, and peak height were obtained in terms of RSD ranging from (0.72 to 1.06)%, (0.39 to 3.49)%, and (1.90 to 4.84)%, respectively.
LOD and LOQ are two important performance characteristics in method validation. This work compares three methods based on the International Conference on Harmonization and EURACHEM guidelines, namely, signal-to-noise, blank determination, and linear regression, to estimate the LOD and LOQ for volatile organic compounds (VOCs) by experimental methodology using GC. Five VOCs, toluene, ethylbenzene, isopropylbenzene, n-propylbenzene, and styrene, were chosen for the experimental study. The results indicated that the estimated LODs and LOQs were not equivalent and could vary by a factor of 5 to 6 for the different methods. It is, therefore, essential to have a clearly described procedure for estimating the LOD and LOQ during method validation to allow interlaboratory comparisons.
A liquid-phase microextraction coupled with LC method has been developed for the determination of organophosphorus pesticides (methidation, quinalphos and profenofos) in drinking water samples. In this method, a small amount (3 microL) of isooctane as the acceptor phase was introduced continually to fill-up the channel of a 1.5 cm polypropylene hollow fiber using a microsyringe while the hollow fiber was immersed in an aqueous donor solution. A portion of the acceptor phase (ca. 0.4 microL) was first introduced into the hollow fiber and additional amounts (ca. 0.2 microL) of the acceptor phase were introduced to replenish at intervals of 3 min until set end of extraction (40 min). After extraction, the acceptor phase was withdrawn and transferred into a 2 mL vial for a drying step prior to injection into a LC system. Parameters that affect the extraction efficiency were studied including the organic solvent, length of fiber, volume of acceptor and donor phase, stirring rate, extraction time, and effect of salting out. The proposed method provided good enrichment factors of up to 189.50, with RSD ranging from 0.10 to 0.29%, analyte recoveries of over 79.80% and good linearity ranging from 10.0 to 1.25 mg/L. The LOD ranged from 2.86 to 82.66 microg/L. This method was applied successfully to the determination of organophosphorus pesticides in selected drinking water samples.
Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.
A new mesoporous silica based on the sol-gel material cyanopropyltriethoxysilane (CNPrTEOS) was successfully synthesized by the hydrolysis and condensation of CNPrTEOS in the presence of ammonium solution as catalyst and methanol as solvent. It was used as a solid-phase extraction sorbent for the simultaneous extraction of three organophosphorus pesticides, namely, polar dicrotophos and non-polar diazinon and chlorpyrifos. Analysis was performed using high-performance liquid chromatography with UV detection. CNPrTEOS was characterized by FTIR spectroscopy, field-emission scanning electron microscopy and nitrogen gas adsorption. The surface area and average pore diameter of the optimum sol-gel CNPrTEOS are 379 m(2) /g and 4.7 nm (mesoporous), respectively. The proposed solid-phase extraction based on CNPrTEOS exhibited good linearity in the range of 0.8-100 μg/L, satisfactory precision (1.15-3.82%), high enrichment factor (800) and low limit of detection (0.072-0.091 μg/L). The limits of detection obtained using the proposed solid-phase extraction method are well below the maximum residue limit set by European Union and are also lower (13.6-48.5×) than that obtained by using a commercial CN-SPE cartridge (0.98-4.41 μg/L). The new mesoporous sol-gel CNPrTEOS showed promising alternative as SPE sorbent material for the simultaneous extraction of polar and non-polar organophosphorus pesticides.