Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Ling KH, Hewitt CA, Tan KL, Cheah PS, Vidyadaran S, Lai MI, et al.
    BMC Genomics, 2014;15:624.
    PMID: 25052193 DOI: 10.1186/1471-2164-15-624
    The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84.
  2. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S
    J Neuroinflammation, 2014;11:149.
    PMID: 25182840 DOI: 10.1186/s12974-014-0149-8
    Progression of neurodegenerative diseases occurs when microglia, upon persistent activation, perpetuate a cycle of damage in the central nervous system. Use of mesenchymal stem cells (MSC) has been suggested as an approach to manage microglia activation based on their immunomodulatory functions. In the present study, we describe the mechanism through which bone marrow-derived MSC modulate the proliferative responses of lipopolysaccharide-stimulated BV2 microglia.
  3. Rati Selvaraju T, Khaza'ai H, Vidyadaran S, Sokhini Abd Mutalib M, Ramachandran V, Hamdan Y
    Int J Vitam Nutr Res, 2014;84(3-4):140-51.
    PMID: 26098478 DOI: 10.1024/0300-9831/a000201
    Glutamate is the major mediator of excitatory signals in the mammalian central nervous system. Extreme amounts of glutamate in the extracellular spaces can lead to numerous neurodegenerative diseases. We aimed to clarify the potential of the following vitamin E isomers, tocotrienol-rich fraction (TRF) and α-tocopherol (α-TCP), as potent neuroprotective agents against glutamate-induced injury in neuronal SK-N-SH cells. Cells were treated before and after glutamate injury (pre- and post-treatment, respectively) with 100-300 ng/ml TRF/α-TCP. Exposure to 120 mM glutamate significantly reduced cell viability to 76% and 79% in the pre- and post-treatment studies, respectively; however, pre- and post-treatment with TRF/α-TCP attenuated the cytotoxic effect of glutamate. Compared to the positive control (glutamate-injured cells not treated with TRF/α-TCP), pre-treatment with 100, 200, and 300 ng/ml TRF significantly improved cell viability following glutamate injury to 95.2%, 95.0%, and 95.6%, respectively (p<0.05).The isomers not only conferred neuroprotection by enhancing mitochondrial activity and depleting free radical production, but also increased cell viability and recovery upon glutamate insult. Our results suggest that vitamin E has potent antioxidant potential for protecting against glutamate injury and recovering glutamate-injured neuronal cells. Our findings also indicate that both TRF and α-TCP could play key roles as anti-apoptotic agents with neuroprotective properties.
  4. Nasim Karim Hosseini, Jose, Shinsmon, Vidyadaran, S., Syafinaz Amin Nordin
    MyJurnal
    Introduction: Production of nitric oxide (NO) is one of the main responses elicited by a variety of
    immune cells such as macrophages (e.g. microglia, resident macrophages of brain), during inflammation. Evaluation of NO levels in the inflammatory milieu is considered important to the understanding of the intensity of an immune response; and has been performed using different methods including the Griess assay. To assay NO in culture, an appropriate number of cells are stimulated into an inflammatory phenotype. Common stimuli include lipopolysaccharide (LPS), IFN-γ and TNF-α. However, overt stimulation could cause cell cytotoxicity therefore an ideal concentration of LPS should be used. Objective: To set-up a model of BV-2 cell activation that allows the assay of detectable levels of NO. Optimization of BV-2 microglia cell density and LPS concentrations after stimulation by bacterial lipopolysaccharide (LPS) for the Griess assay is demonstrated in this study. Methods: BV-2 microglia were cultured at different cell densities, and treated with LPS at three concentrations (1, 5, 10 μg/ml). NO production in culture supernatants were then measured at 18, 24, 48 and 72 hours. Moreover, methyl tetrazolium assay (MTT) was also performed to ensure that NO measurement is performed at no-cytotoxic concentrations of LPS. Results and Conclusions: NO production follows a temporal pattern. The density of 25000 cells/ well was the ideal seeding density for NO evaluation in BV-2 cells. BV-2 stimulation by LPS is dose dependent, and NO levels are increased proportional to the LPS concentration up to 1.0μg/ml, whereas the higher LPS concentrations are associated with decreased cell viability may be caused by the high toxic levels of LPS or NO. Although Griess assay has been commonly used by the scientists, however, optimization of its parameters on BV-2 cells will be useful for the experiments which will be performed on this particular cell line. The optimized pattern of Griess assay on BV-2 cells was achieved in this study, hence easier and more practical for the future scientists to perform Griess assay on BV-2 cells.
  5. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
  6. Jose S, Tan SW, Tong CK, Vidyadaran S
    Cell Biol Int, 2015 Dec;39(12):1355-63.
    PMID: 26194799 DOI: 10.1002/cbin.10516
    Microglia are resident macrophages of the central nervous system (CNS). Apart from playing vital roles as sentinel cells, they are crucial in physiological processes such as synaptic pruning during brain development. CNS disorders require an understanding of the contribution of each cellular compartment to the pathogenesis. Elucidating the role of microglia in disease development and progression in the intricate CNS environment is technically challenging and requires the establishment of reliable, reproducible techniques to isolate and culture microglia. A number of different protocols have been developed for isolation of neonatal microglia and here we compare two widely used methods, namely, mild trypsinization and EasySep® magnetic separation. EasySep® magnetic separation provided higher microglia yield, and flow cytometric evaluation of CD11b and F4/80 markers revealed that EasySep® separation method also produced significantly higher purity compared to mild trypsinization. Microglia isolated using EasySep® separation method were functional, as demonstrated by the generation of nitric oxide, IL-6, TNF-α, and MCP-1 in response to lipopolysaccharide stimulation. In summary, this study has revealed that magnetic separation is superior to mild trypsinization in terms of yield and purity of microglia.
  7. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
  8. Lye KL, Nordin N, Vidyadaran S, Thilakavathy K
    Cell Biol Int, 2016 Jun;40(6):610-8.
    PMID: 26992453 DOI: 10.1002/cbin.10603
    Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas.
  9. Tong CK, Vidyadaran S
    Exp Biol Med (Maywood), 2016 Sep;241(15):1669-75.
    PMID: 27555616 DOI: 10.1177/1535370216664430
    Microglia begin colonizing the developing brain as early as embryonic day 9, prior to the emergence of neurons and other glia. Their ontogeny is also distinct from other central nervous system cells, as they derive from yolk sac hematopoietic progenitors and not neural progenitors. In this review, we feature these unique characteristics of microglia and assess the spatiotemporal similarities between microglia colonization of the central nervous system and embryonic neurogenesis. We also infer to existing evidence for microglia function from embryonic through to postnatal neurodevelopment to postulate roles for microglia in neurogenesis.
  10. Musa NH, Mani V, Lim SM, Vidyadaran S, Abdul Majeed AB, Ramasamy K
    J Dairy Res, 2017 Nov;84(4):488-495.
    PMID: 29154736 DOI: 10.1017/S0022029917000620
    Nutritional interventions are now recommended as strategies to delay Alzheimer's disease (AD) progression. The present study evaluated the neuroprotective effect (anti-inflammation) of lactic acid bacteria (either Lactobacillus fermentum LAB9 or L. casei LABPC) fermented cow's milk (CM) against lipopolysaccharide (LPS)-activated microglial BV2 cells in vitro. The ability of CM-LAB in attenuating memory deficit in LPS-induced mice was also investigated. ICR mice were orally administered with CM-LAB for 28 d before induction of neuroinflammation by LPS. Learning and memory behaviour were assessed using the Morris Water Maze Test. Brain tissues were homogenised for measurement of acetylcholinesterase (AChE), antioxidative, lipid peroxidation (malondialdehyde (MDA)) and nitrosative stress (NO) parameters. Serum was collected for cytokine analysis. CM-LAB9 and CM-LABPC significantly (P < 0·05) decreased NO level but did not affect CD40 expression in vitro. CM-LAB attenuated LPS-induced memory deficit in mice. This was accompanied by significant (P < 0·05) increment of antioxidants (SOD, GSH, GPx) and reduction of MDA, AChE and also pro-inflammatory cytokines. Unfermented cow's milk (UCM) yielded greater cytokine lowering effect than CM-LAB. The present findings suggest that attenuation of LPS-induced neuroinflamation and memory deficit by CM-LAB could be mediated via anti-inflammation through inhibition of AChE and antioxidative activities.
  11. Abedi Z, Khaza'ai H, Vidyadaran S, Mutalib MSA
    Biomedicines, 2017 Dec 01;5(4).
    PMID: 29194360 DOI: 10.3390/biomedicines5040068
    Astrocytes are known as structural and supporting cells in the central nervous system (CNS). Glutamate, as a main excitatory amino acid neurotransmitter in the mammalian central nervous system, can be excitotoxic, playing a key role in many chronic neurodegenerative diseases. The aim of the current study was to elucidate the potential of vitamin E in protecting glutamate-injured primary astrocytes. Hence, primary astrocytes were isolated from mixed glial cells of C57BL/6 mice by applying the EasySep® Mouse CD11b Positive Selection Kit, cultured in Dulbecco's modified Eagle medium (DMEM) and supplemented with special nutrients. The IC20 and IC50 values of glutamate, as well as the cell viability of primary astrocytes, were assessed with 100 ng/mL, 200 ng/mL, and 300 ng/mL of tocotrienol-rich fraction (TRF) and alpha-tocopherol (α-TCP), as determined by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The mitochondrial membrane potential (MMP) detected in primary astrocytes was assessed with the same concentrations of TRF and α-TCP. The expression levels of the ionotropic glutamate receptor genes (Gria2, Grin2A, GRIK1) were independently determined using RT-PCR. The purification rate of astrocytes was measured by a flow-cytometer as circa 79.4%. The IC20 and IC50 values of glutamate were determined as 10 mM and 100 mM, respectively. Exposure to 100 mM of glutamate in primary astrocytes caused the inhibition of cell viability of approximately 64.75% and 61.10% in pre- and post-study, respectively (p < 0.05). Both TRF and α-TCP (at the lowest and highest concentrations, respectively) were able to increase the MMP to 88.46% and 93.31% pre-treatment, and 78.43% and 81.22% post-treatment, respectively. Additionally, the findings showed a similar pattern for the expression level of the ionotropic glutamate receptor genes. Increased extracellular calcium concentrations were also observed, indicating that the presence of vitamin E altered the polarization of astrocytes. In conclusion, α-TCP showed better recovery and prophylactic effects as compared to TRF in the pre-treatment of glutamate-injured primary astrocytes.
  12. Seow SL, Naidu M, Sabaratnam V, Vidyadaran S, Wong KH
    Int J Med Mushrooms, 2017;19(5):405-418.
    PMID: 28845770 DOI: 10.1615/IntJMedMushrooms.v19.i5.30
    In Malaysia and China, the sclerotium of Lignosus rhinocerotis is used by local communities and traditional medicine practitioners as a general tonic and remedy to treat a variety of ailments, including inflammation-associated disorders. In this study, 10 samples from different preparations of L. rhinocerotis sclerotium, including a hot aqueous extract (HAE), an ethanol extract (EE), fractions from the HAE and EE, and crude polysaccharides, were tested for their in vitro cytotoxic and nitric oxide (NO) inhibitory activities in lipopolysaccharide (LPS)--stimulated BV2 microglia. Of the 10 samples tested, HAE was the least cytotoxic toward BV2 microglia, with a half-maximal inhibitory concentration of 176.23 ± 2.64 mg/mL at 24 hours of incubation and 20.01 ± 1.69 mg/ mL at 48 hours of incubation. The inhibition of NO production was explored by pretreatment of BV2 microglia with samples at 2 incubation time points (4 and 24 hours) before the stimulation by LPS for 24 hours. After 24 hours of pretreatment, 8 of the 10 samples inhibited NO production by 50% or more, and cytotoxic effects were not observed. Among the 8 active samples, 500 µg/mL of HAE, 250 µg/mL of an n-butanol fraction of the HAE, and 250 µg/mL of an ethyl acetate fraction of HAE showed maximum inhibition of NO production by 88.95%, 86.50%, and 85.93%, respectively. These results suggest that the L. rhinocerotis sclerotium may contain secondary metabolites that have the potential to inhibit NO production.
  13. Wang H, Vidyadaran S, Mohd Moklas MA, Baharuldin MTH
    PMID: 29358962 DOI: 10.1155/2017/2623163
    Objective: To explore the effect of Ficus deltoidea (FD) aqueous extracts on the release of tumor necrosis factor-α (TNF-α), the expression of CD40, and the morphology of microglial cells in lipopolysaccharide- (LPS-) activated BV2 cells.

    Methods: The cytotoxicity of FD extract was assessed by MTS solution. BV2 cells were divided into 5 experimental groups, intervened, respectively, by FD (4 mg/mL) and LPS + FD (0, 1, 2, and 4 mg/mL). Besides, a blank control group was set up without any intervention. TNF-α release was assessed by enzyme linked immunosorbent assay (ELISA). The expression of CD40 was examined by flow cytometry. Immunocytochemical staining was used to show the morphology of BV2 cells.

    Results: FD extract of different concentrations (1, 2, and 4 mg/mL) had no significant toxic effects on the BV2 cells. FD suppressed the activation of microglia in morphology and reduced TNF-α production and expression of CD40 induced by LPS.

    Conclusion: FD extract has a therapeutic potential against neuroinflammatory diseases.

  14. Sandrasaigaran P, Algraittee SJR, Ahmad AR, Vidyadaran S, Ramasamy R
    Cytotechnology, 2018 Jun;70(3):1037-1050.
    PMID: 29497876 DOI: 10.1007/s10616-017-0182-4
    Mesenchymal stem cells (MSCs) exert potent immuno-regulatory activities on various immune cells and also differentiate into various mesodermal lineages besides retaining a distinct self-renewal ability. Such exclusive characteristics had enabled MSCs to be recognised as an ideal source for cell-based treatment in regenerative medicine and immunotherapy. Thus, considering MSCs for treating degenerative disease of organs with limited regenerative potential such as cartilage would serve as an ideal therapy. This study explored the feasibility of generating human cartilage-derived MSCs (hC-MSCs) from sports injured patients and characterised based on multipotent differentiation and immunosuppressive activities. Cartilage tissues harvested from a non-weight bearing region during an arthroscopy procedure were used to generate MSCs. Despite the classic morphology of fibroblast-like cells and a defined immunophenotyping, MSCs expressed early embryonic transcriptional markers (SOX2, REX1, OCT4 and NANOG) and differentiated into chondrocytes, adipocytes and osteocytes when induced accordingly. Upon co-culture with PHA-L activated T-cells, hC-MSCs suppressed the proliferation of the T-cells in a dose-dependent manner. Although, hC-MSCs did not alter the activation profile of T cells significantly, yet prevented the entering of activated T cells into S phase of the cell cycle by cell cycle arrest. The present study has strengthened the evidence of tissue-resident mesenchymal stem cells in human cartilage tissue. The endogenous MSCs could be an excellent tool in treating dysregulated immune response that associated with cartilage since hC-MSCs exerted both immunosuppressive and regenerative capabilities.
  15. Lee HC, Md Yusof HH, Leong MP, Zainal Abidin S, Seth EA, Hewitt CA, et al.
    Int J Neurosci, 2019 Sep;129(9):871-881.
    PMID: 30775947 DOI: 10.1080/00207454.2019.1580280
    Aims: The JAK-STAT signalling pathway is one of the key regulators of pro-gliogenesis process during brain development. Down syndrome (DS) individuals, as well as DS mouse models, exhibit an increased number of astrocytes, suggesting an imbalance of neurogenic-to-gliogenic shift attributed to dysregulated JAK-STAT signalling pathway. The gene and protein expression profiles of JAK-STAT pathway members have not been characterised in the DS models. Therefore, we aimed to profile the expression of Jak1, Jak2, Stat1, Stat3 and Stat6 at different stages of brain development in the Ts1Cje mouse model of DS. Methods: Whole brain samples from Ts1Cje and wild-type mice at embryonic day (E)10.5, E15, postnatal day (P)1.5; and embryonic cortex-derived neurospheres were collected for gene and protein expression analysis. Gene expression profiles of three brain regions (cerebral cortex, cerebellum and hippocampus) from Ts1Cje and wild-type mice across four time-points (P1.5, P15, P30 and P84) were also analysed. Results: In the developing mouse brain, none of the Jak/Stat genes were differentially expressed in the Ts1Cje model compared to wild-type mice. However, Western blot analyses indicated that phosphorylated (p)-Jak2, p-Stat3 and p-Stat6 were downregulated in the Ts1Cje model. During the postnatal brain development, Jak/Stat genes showed complex expression patterns, as most of the members were downregulated at different selected time-points. Notably, embryonic cortex-derived neurospheres from Ts1Cje mouse brain expressed lower Stat3 and Stat6 protein compared to the wild-type group. Conclusion: The comprehensive expression profiling of Jak/Stat candidates provides insights on the potential role of the JAK-STAT signalling pathway during abnormal development of the Ts1Cje mouse brains.
  16. Omar Zaki SS, Kanesan L, Leong MYD, Vidyadaran S
    Cell Biol Int, 2019 Oct;43(10):1201-1204.
    PMID: 30811086 DOI: 10.1002/cbin.11122
    Our work cautions against the use of serum-supplemented culture media in a transwell migration assay when using chemoattractants other than FBS. At 24 h, a 5% foetal bovine serum (FBS) gradient caused BV2 microglia to migrate toward the lower compartment of the transwell apparatus. Interestingly, FBS-supplemented media in the absence of a gradient also resulted in notable microglia migration. Serum can therefore confound the interpretation of a transwell migration assay when another chemoattractant is used.
  17. Ismail EN, Jantan I, Vidyadaran S, Jamal JA, Azmi N
    BMC Complement Med Ther, 2020 Jul 01;20(1):202.
    PMID: 32611404 DOI: 10.1186/s12906-020-02961-0
    BACKGROUND: Phyllanthus amarus has been shown to attenuate lipopolysaccharide (LPS)-induced peripheral inflammation but similar studies in the central nervous system are scarce. The aim of the present study was to investigate the neuroprotective effects of 80% ethanol extract of P. amarus (EPA) in LPS-activated BV2 microglial cells.

    METHODS: BV2 microglial cells c for 24 h, pre-treated with EPA for 24 h prior to LPS induction for another 24 h. Surface expression of CD11b and CD40 on BV2 cells was analyzed by flow cytometry. ELISA was employed to measure the production of pro-inflammatory mediators i.e. nitric oxide (NO) and tumor necrosis factor (TNF)-α. Western blotting technique was used to determine the expression of inducible nitric oxide synthase (iNOS), myeloid differentiation protein 88 (MYD88), nuclear factor kappa B (NF-κB), caspase-1, and mitogen activated protein kinase (MAPK).

    RESULTS: Qualitative and quantitative analyses of the EPA using a validated ultra-high pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method indicated the presence of phyllanthin, hypophyllanthin, niranthin, ellagic acid, corilagin, gallic acid, phyltetralin, isolintetralin and geraniin. EPA suppressed the production of NO and TNFα in LPS-activated BV2 microglial cells. Moreover, EPA attenuated the expression of MyD88, NF-κB and MAPK (p-P38, p-JNK and p-ERK1/2). It also inhibited the expression of CD11b and CD40. EPA protected against LPS-induced microglial activation via MyD88 and NF-κB signaling in BV2 microglial cells.

    CONCLUSIONS: EPA demonstrated neuroprotective effects against LPS-induced microglial cells activation through the inhibition of TNFα secretion, iNOS protein expression and subsequent NO production, inhibition of NF-κB and MAPKs mediated by adapter protein MyD88 and inhibition of microglial activation markers CD11b and CD40.

  18. Maqbool M, Algraittee SJR, Boroojerdi MH, Sarmadi VH, John CM, Vidyadaran S, et al.
    Innate Immun, 2020 07;26(5):424-434.
    PMID: 32635840 DOI: 10.1177/1753425919899132
    Although monocytes represent an essential part of the host defence system, their accumulation and prolonged stimulation could be detrimental and may aggravate chronic inflammatory diseases. The present study has explored the less-understood immunomodulatory effects of mesenchymal stem cells on monocyte functions. Isolated purified human monocytes were co-cultured with human umbilical cord-derived mesenchymal stem cells under appropriate culture conditions to assess monocytes' vital functions. Based on the surface marker analysis, mesenchymal stem cells halted monocyte differentiation into dendritic cells and macrophages and reduced their phagocytosis functions, which rendered an inability to stimulate T-cell proliferation. The present study confers that mesenchymal stem cells exerted potent immunosuppressive activity on monocyte functions such as differentiation, phagocytosis and Ag presentation; hence, they promise a potential therapeutic role in down-regulating the unwanted monocyte-mediated immune responses in the context of chronic inflammatory diseases.
  19. Tan SW, Israf Ali DAB, Khaza'ai H, Wong JW, Vidyadaran S
    Cell Immunol, 2020 11;357:104200.
    PMID: 32979761 DOI: 10.1016/j.cellimm.2020.104200
    Tocopherols long dominated studies on vitamin E, although interest has shifted to tocotrienols. It was previously shown that δ-tocotrienol derived from palm oil reduced nitric oxide released by BV2 microglia as early as 18 h after lipopolysaccharide stimulation. The current study measured δ-tocotrienol uptake by BV2 over a 24 h incubation period and its anti-inflammatory effects on primary microglia. Uptake of 17.5 μg/mL δ-tocotrienol by BV2 microglia began as early as 5 min and rose steeply to 21 ± 3% of the amount administered at 24 h. The amount of δ-tocotrienol retained in the lipopolysaccharide-stimulated microglia at 24 h was 14 ± 2%, with no substantial difference seen in unstimulated microglia. The same δ-tocotrienol regimen reduced nitric oxide levels by 82% at 24 h after lipopolysaccharide stimulation (p 
  20. Kushairi N, Phan CW, Sabaratnam V, Vidyadaran S, Naidu M, David P
    Int J Med Mushrooms, 2020;22(12):1171-1181.
    PMID: 33463934 DOI: 10.1615/IntJMedMushrooms.2020036938
    Pleurotus eryngii (king oyster mushroom) is a renowned culinary mushroom with various medicinal properties that may be beneficial for health maintenance and disease prevention. However, its effect on the nervous system remains elusive. In this study, hot water (PE-HWA) and ethanol (PE-ETH) extracts of P. eryngii were investigated and compared for their neuroprotective, anti-inflammatory, and neurite outgrowth activities in vitro. Based on the results, both extracts up to 400 μg/mL were nontoxic to PC12 cells and BV2 microglia (p > 0.05). Treatment with 250 μM hydrogen peroxide (H2O2) markedly (p < 0.0001) reduced the PC12 cell viability to 67.74 ± 6.47%. Coincubation with 200 μg/mL and 400 μg/mL of PE-ETH dose-dependently increased the cell viability to 85.34 ± 1.91% (p < 0.001) and 98.37 ± 6.42% (p < 0.0001) respectively, while PE-HWA showed no activity. Nitric oxide (NO) released by BV2 microglia was notably (p < 0.0001) increased by 1 μg/mL lipopolysaccharides (LPS) from 7.46 ± 0.73 μM to 80.00 ± 3.78 μM indicating an inflammatory reaction. However, coincubation with 200 and 400 μg/mL of PE-ETH significantly (p < 0.0001) reduced the NO level to 58.57 ± 6.19 μM and 52.86 ± 3.43 μM respectively, while PE-HWA was noneffective. PE-ETH and PE-HWA at 40 μg/mL significantly increased the neurite-bearing cells from 4.70 ± 3.36% to 13.12 ± 2.82% (p < 0.01) and 20.93 ± 5.37% (p < 0.0001) respectively. Pleurotus eryngii, particularly the ethanol extract (PE-ETH) and its potentially bioactive compounds, could be explored as a neurohealth promoting agent, due to its collective neuroprotective, anti-inflammatory, and neurite outgrowth activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links