Displaying publications 21 - 40 of 42 in total

Abstract:
Sort:
  1. Veeramuthu V, Seow P, Narayanan V, Wong JHD, Tan LK, Hernowo AT, et al.
    Acad Radiol, 2018 09;25(9):1167-1177.
    PMID: 29449141 DOI: 10.1016/j.acra.2018.01.005
    RATIONALE AND OBJECTIVES: Magnetic resonance spectroscopy is a noninvasive imaging technique that allows for reliable assessment of microscopic changes in brain cytoarchitecture, neuronal injuries, and neurochemical changes resultant from traumatic insults. We aimed to evaluate the acute alteration of neurometabolites in complicated and uncomplicated mild traumatic brain injury (mTBI) patients in comparison to control subjects using proton magnetic resonance spectroscopy (1H magnetic resonance spectroscopy).

    MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale.

    RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P 

  2. Low LS, Wong JHD, Tan LK, Chan WY, Jalaludin MY, Anuar Zaini A, et al.
    J Neuroradiol, 2023 Mar;50(2):271-277.
    PMID: 34800564 DOI: 10.1016/j.neurad.2021.11.004
    BACKGROUND: In subjects with isolated growth hormone deficiency (IGHD), recombinant human growth hormone (rhGH) is an approved method to achieve potential mid-parental height. However, data reporting rhGH treatment response in terms of brain structure volumes were scarce. We report the volumetric changes of the pituitary gland, basal ganglia, corpus callosum, thalamus, hippocampus and amygdala in these subjects post rhGH treatment.

    MATERIALS AND METHODS: This was a longitudinal study of eight IGHD subjects (2 males, 6 females) with a mean age of 11.1 ± 0.8 years and age-matched control groups. The pituitary gland, basal ganglia and limbic structures volumes were obtained using 3T MRI voxel-based morphology. The left-hand bone age was assessed using the Tanner-Whitehouse method. Follow-up imaging was performed after an average of 1.8 ± 0.4 years on rhGH.

    RESULTS: Subjects with IGHD had a smaller mean volume of the pituitary gland, right thalamus, hippocampus, and amygdala than the controls. After rhGH therapy, these volumes normalized to the age-matched controls. Corpus callosum of IGHD subjects had a larger mean volume than the controls and did not show much volume changes in response to rhGH therapy. There were changes towards normalization of bone age deficit of IGHD in response to rhGH therapy.

    CONCLUSION: The pituitary gland, hippocampus, and amygdala volumes in IGHD subjects were smaller than age-matched controls and showed the most response to rhGH therapy. Semi-automated volumetric assessment of pituitary gland, hippocampus, and amygdala using MRI may provide an objective assessment of response to rhGH therapy.

  3. Letchumanan N, Wong JHD, Tan LK, Ab Mumin N, Ng WL, Chan WY, et al.
    J Digit Imaging, 2023 Aug;36(4):1533-1540.
    PMID: 37253893 DOI: 10.1007/s10278-022-00753-1
    This study investigates the feasibility of using texture radiomics features extracted from mammography images to distinguish between benign and malignant breast lesions and to classify benign lesions into different categories and determine the best machine learning (ML) model to perform the tasks. Six hundred and twenty-two breast lesions from 200 retrospective patient data were segmented and analysed. Three hundred fifty radiomics features were extracted using the Standardized Environment for Radiomics Analysis (SERA) library, one of the radiomics implementations endorsed by the Image Biomarker Standardisation Initiative (IBSI). The radiomics features and selected patient characteristics were used to train selected machine learning models to classify the breast lesions. A fivefold cross-validation was used to evaluate the performance of the ML models and the top 10 most important features were identified. The random forest (RF) ensemble gave the highest accuracy (89.3%) and positive predictive value (66%) and likelihood ratio of 13.5 in categorising benign and malignant lesions. For the classification of benign lesions, the RF model again gave the highest likelihood ratio of 3.4 compared to the other models. Morphological and textural radiomics features were identified as the top 10 most important features from the random forest models. Patient age was also identified as one of the significant features in the RF model. We concluded that machine learning models trained against texture-based radiomics features and patient features give reasonable performance in differentiating benign versus malignant breast lesions. Our study also demonstrated that the radiomics-based machine learning models were able to emulate the visual assessment of mammography lesions, typically used by radiologists, leading to a better understanding of how the machine learning model arrive at their decision.
  4. Seow P, Wong JHD, Ahmad-Annuar A, Mahajan A, Abdullah NA, Ramli N
    Br J Radiol, 2018 Dec;91(1092):20170930.
    PMID: 29902076 DOI: 10.1259/bjr.20170930
    OBJECTIVE:: The diversity of tumour characteristics among glioma patients, even within same tumour grade, is a big challenge for disease outcome prediction. A possible approach for improved radiological imaging could come from combining information obtained at the molecular level. This review assembles recent evidence highlighting the value of using radiogenomic biomarkers to infer the underlying biology of gliomas and its correlation with imaging features.

    METHODS:: A literature search was done for articles published between 2002 and 2017 on Medline electronic databases. Of 249 titles identified, 38 fulfilled the inclusion criteria, with 14 articles related to quantifiable imaging parameters (heterogeneity, vascularity, diffusion, cell density, infiltrations, perfusion, and metabolite changes) and 24 articles relevant to molecular biomarkers linked to imaging.

    RESULTS:: Genes found to correlate with various imaging phenotypes were EGFR, MGMT, IDH1, VEGF, PDGF, TP53, and Ki-67. EGFR is the most studied gene related to imaging characteristics in the studies reviewed (41.7%), followed by MGMT (20.8%) and IDH1 (16.7%). A summary of the relationship amongst glioma morphology, gene expressions, imaging characteristics, prognosis and therapeutic response are presented.

    CONCLUSION:: The use of radiogenomics can provide insights to understanding tumour biology and the underlying molecular pathways. Certain MRI characteristics that show strong correlations with EGFR, MGMT and IDH1 could be used as imaging biomarkers. Knowing the pathways involved in tumour progression and their associated imaging patterns may assist in diagnosis, prognosis and treatment management, while facilitating personalised medicine.

    ADVANCES IN KNOWLEDGE:: Radiogenomics can offer clinicians better insight into diagnosis, prognosis, and prediction of therapeutic responses of glioma.

  5. Yap LPP, Sani FM, Chung E, Gowdh NFM, Ng WL, Wong JHD
    Singapore Med J, 2024 Feb 02.
    PMID: 38305361 DOI: 10.4103/singaporemedj.SMJ-2021-461
    INTRODUCTION: Multiphase computed tomography (CT) using fixed volume contrast media may lead to high radiation exposure and toxicity in patients with low body weight. We evaluated a customised weight-based protocol for multiphase CT in terms of radiation exposure, image quality and cost savings.

    METHODS: A total of 224 patients were recruited. An optimised CT protocol was applied using 100 kV and 1 mL/kg of contrast media dosing. The image quality and radiation dose exposure of this CT protocol were compared to those of a standard 120 kV, 80 mL fixed volume protocol. The radiation dose information and CT Hounsfield units were recorded. The signal-to-noise ratio, contrast-to-noise ratio (CNR) and figure of merit (FOM) were used as comparison metrics. The images were assessed for contrast opacification and visual quality by two radiologists. The renal function, contrast media volume and cost were also evaluated.

    RESULTS: The median effective dose was lowered by 16% in the optimised protocol, while the arterial phase images achieved significantly higher CNR and FOM. The radiologists' evaluation showed more than 97% absolute agreement with no significant differences in image quality. No significant differences were found in the pre- and post-CT estimated glomerular filtration rate. However, contrast media usage was significantly reduced by 1,680 mL, with an overall cost savings of USD 421 in the optimised protocol.

    CONCLUSION: The optimised weight-based protocol is cost-efficient and lowers radiation dose while maintaining overall contrast enhancement and image quality.

  6. Leong SS, Jalalonmuhali M, Md Shah MN, Ng KH, Vijayananthan A, Hisham R, et al.
    Br J Radiol, 2023 Mar 01;96(1144):20220288.
    PMID: 36802861 DOI: 10.1259/bjr.20220288
    OBJECTIVE: Many studies have conflicting findings in using shear wave elastography (SWE) to assess renal fibrosis. This study reviews the use of SWE to evaluate pathological changes in native kidneys and renal allografts. It also tries to elucidate the confounding factors and care taken to ensure the results are consistent and reliable.

    METHODS: The review was carried out according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Literature search was conducted in Pubmed, Web of Science and Scopus database up to 23 October 2021. To evaluate risk and bias applicability, the Cochrane risk-of bias tool and GRADE was used. The review was registered under PROSPERO CRD42021265303.

    RESULTS: A total of 2921 articles were identified. 104 full texts were examined and 26 studies included in systematic review. 11 studies performed on native kidneys and 15 studies on transplanted kidney. A wide range of impact factors was found that affect the accuracy of SWE of renal fibrosis in adult patients.

    CONCLUSIONS: Compared to point SWE, two-dimensional SWE with elastogram could enable better selection of the region of interest in kidneys, leading to reproducible results. Tracking waves were attenuated as the depth from skin to region of interest increased, therefore, SWE is not recommended for overweight or obese patients. Variable transducer forces might also affect SWE reproducibility, thus, training of operators to ensure consistent operator-dependent transducer forces may be helpful.

    ADVANCES IN KNOWLEDGE: This review provides a holistic insight on the efficiency of using SWE in evaluating pathological changes in native and transplanted kidneys, thereby contributing to the knowledge of its utilisation in clinical practice.

  7. Pang T, Wong JHD, Ng WL, Chan CS, Wang C, Zhou X, et al.
    Phys Med Biol, 2024 Feb 19.
    PMID: 38373345 DOI: 10.1088/1361-6560/ad2a95
    OBJECTIVE: Generally, due to a lack of explainability, radiomics based on deep learning has been perceived as a black-box solution for radiologists. Automatic generation of diagnostic reports is a semantic approach to enhance the explanation of deep learning radiomics (DLR).

    APPROACH: In this paper, we propose a novel model called radiomics-reporting network (Radioport), which incorporates text attention. This model aims to improve the interpretability of deep learning radiomics in mammographic calcification diagnosis. Firstly, it employs convolutional neural networks (CNN) to extract visual features as radiomics for multi-category classification based on Breast Imaging Reporting and Data System (BI-RADS). Then, it builds a mapping between these visual features and textual features to generate diagnostic reports, incorporating an attention module for improved clarity.

    MAIN RESULTS: To demonstrate the effectiveness of our proposed model, we conducted experiments on a breast calcification dataset comprising mammograms and diagnostic reports. The results demonstrate that our model can: (i) semantically enhance the interpretability of deep learning radiomics; and, (ii) improve the readability of generated medical reports.

    SIGNIFICANCE: Our interpretable textual model can explicitly simulate the mammographic calcification diagnosis process.

  8. Ab Mumin N, Ramli Hamid MT, Wong JHD, Chiew SF, Rahmat K, Ng KH
    PLoS One, 2024;19(8):e0309131.
    PMID: 39208284 DOI: 10.1371/journal.pone.0309131
    OBJECTIVES: Accurate subtyping of breast cancer is crucial for its diagnosis, management, and prognostication. This study aimed to determine the association of magnetic resonance imaging (MRI) breast features with the molecular subtype and aggressiveness of breast cancer in a multi-ethnic population.

    METHODS: Treatment-naive patients with invasive breast carcinoma were included in this retrospective study. Breast MRI features were recorded based on the American College of Radiology-Breast Imaging Reporting and Data System (ACR-BIRADS) criteria, with tumour size, and apparent diffusion coefficient value (ADC). The statistical association was tested with Pearson Chi-Square Test of Independence for categorical data or the Kruskal-Wallis/ Mann Whitney U test for numerical data between the MRI features and molecular subtype, receptor status, tumour grade, lymphovascular infiltration (LVI) and axillary lymph node (ALN). Multinomial logistic regression was used to test the predictive likelihood of the significant features. The breast cancer subtypes were determined via immunohistochemistry (IHC) and dual-color dual-hapten in-situ hybridization (D-DISH). The expression statuses of ER, PR, and HER-2, LVI, and ALN were obtained from the histopathology report. The ER / PR / HER-2 was evaluated according to the American Society of Clinical Oncology / College of American Pathologists.

    RESULTS: The study included 194 patients; 41.8% (n = 81) Chinese, 40.7% (n = 79) Malay, and 17.5% (n = 34) Indian, involving 71.6%(n = 139) luminal-like, 12.9%(n = 25) HER-2 enriched, and 15.5%(n = 30) Triple-negative breast cancer (TNBC). TNBC was associated with rim enhancement (p = 0.002) and peritumoral oedema (p = 0.004). HER-2 enriched tumour was associated with larger tumour size (p = 0.041). Luminal-like cancer was associated with irregular shape (p = 0.005) with circumscribed margin (p = 0.003). Other associations were ER-negative tumour with circumscribed margin (p = 0.002) and PR-negative with round shape (p = 0.001). Tumour sizes were larger in ER-negative (p = 0.044) and PR-negative (p = 0.022). Rim enhancement was significantly associated with higher grade (p = 0.001), and moderate peritumoral oedema with positive axillary lymph node (p = 0.002).

    CONCLUSION: Certain MRI features can be applied to differentiate breast cancer molecular subtypes, receptor status and aggressiveness, even in a multi-ethnic population.

  9. Yusof FH, Ung NM, Wong JH, Jong WL, Ath V, Phua VC, et al.
    PLoS One, 2015;10(6):e0128544.
    PMID: 26052690 DOI: 10.1371/journal.pone.0128544
    This study was carried out to investigate the suitability of using the optically stimulated luminescence dosimeter (OSLD) in measuring surface dose during radiotherapy. The water equivalent depth (WED) of the OSLD was first determined by comparing the surface dose measured using the OSLD with the percentage depth dose at the buildup region measured using a Markus ionization chamber. Surface doses were measured on a solid water phantom using the OSLD and compared against the Markus ionization chamber and Gafchromic EBT3 film measurements. The effect of incident beam angles on surface dose was also studied. The OSLD was subsequently used to measure surface dose during tangential breast radiotherapy treatments in a phantom study and in the clinical measurement of 10 patients. Surface dose to the treated breast or chest wall, and on the contralateral breast were measured. The WED of the OSLD was found to be at 0.4 mm. For surface dose measurement on a solid water phantom, the Markus ionization chamber measured 15.95% for 6 MV photon beam and 12.64% for 10 MV photon beam followed by EBT3 film (23.79% and 17.14%) and OSLD (37.77% and 25.38%). Surface dose increased with the increase of the incident beam angle. For phantom and patient breast surface dose measurement, the response of the OSLD was higher than EBT3 film. The in-vivo measurements were also compared with the treatment planning system predicted dose. The OSLD measured higher dose values compared to dose at the surface (Hp(0.0)) by a factor of 2.37 for 6 MV and 2.01 for 10 MV photon beams, respectively. The measurement of absorbed dose at the skin depth of 0.4 mm by the OSLD can still be a useful tool to assess radiation effects on the skin dermis layer. This knowledge can be used to prevent and manage potential acute skin reaction and late skin toxicity from radiotherapy treatments.
  10. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Mohd Sharif NH, et al.
    Ultrasound Med Biol, 2020 01;46(1):34-45.
    PMID: 31594681 DOI: 10.1016/j.ultrasmedbio.2019.08.011
    Tissue elasticity is related to the pathologic state of kidneys and can be measured using shear wave elastography (SWE). However, SWE quantification has not been rigorously validated. The aim of this study was to evaluate the accuracy of SWE-measured stiffness and the effect of tissue anisotropy on SWE measurements. Point SWE (pSWE), 2-D SWE and dynamic mechanical analysis (DMA) were used to measure stiffness and evaluate the effect of tissue anisotropy on the measurements. SWE and DMA were performed on phantoms of different gelatin concentrations. In the tissue anisotropy study, SWE and DMA were performed on the outer cortex of sheep kidneys. In the in vivo study, 15 patients with different levels of interstitial fibrosis were recruited for pSWE measurements. Another 10 healthy volunteers were recruited for tissue anisotropy studies. SWE imaging revealed a non-linear increase with gelatin concentration. There was a significant correlation between pSWE and 2-D SWE, leading to the establishment of a linear regression equation between the two SWE ultrasound measurements. In the anisotropy study, the median difference in stiffness between shear waves oriented at 0° and 90° towards the pyramid axis was significant. In the in vivo study, there was a strong positive linear correlation between pSWE and the percentage of interstitial fibrosis. There was a significant difference in the Young's modulus (YM) between severities of fibrosis. The mean YM values were lower in control patients than in patients with mild, moderate and severe fibrosis. YM values were also significantly higher when shear waves were oriented at 0° toward the pyramid axis. Tissue stiffness and anisotropy affects SWE measurements. These factors should be recognized before applying SWE for the interpretation of measured values.
  11. Jong WL, Wong JH, Ung NM, Ng KH, Ho GF, Cutajar DL, et al.
    J Appl Clin Med Phys, 2014 Sep 08;15(5):4869.
    PMID: 25207573 DOI: 10.1120/jacmp.v15i5.4869
    In vivo dosimetry is important during radiotherapy to ensure the accuracy of the dose delivered to the treatment volume. A dosimeter should be characterized based on its application before it is used for in vivo dosimetry. In this study, we characterize a new MOSFET-based detector, the MOSkin detector, on surface for in vivo skin dosimetry. The advantages of the MOSkin detector are its water equivalent depth of measurement of 0.07 mm, small physical size with submicron dosimetric volume, and the ability to provide real-time readout. A MOSkin detector was calibrated and the reproducibility, linearity, and response over a large dose range to different threshold voltages were determined. Surface dose on solid water phantom was measured using MOSkin detector and compared with Markus ionization chamber and GAFCHROMIC EBT2 film measurements. Dependence in the response of the MOSkin detector on the surface of solid water phantom was also tested for different (i) source to surface distances (SSDs); (ii) field sizes; (iii) surface dose; (iv) radiation incident angles; and (v) wedges. The MOSkin detector showed excellent reproducibility and linearity for dose range of 50 cGy to 300 cGy. The MOSkin detector showed reliable response to different SSDs, field sizes, surface, radiation incident angles, and wedges. The MOSkin detector is suitable for in vivo skin dosimetry.
  12. Cheah PL, Krisnan T, Wong JHD, Rozalli FI, Fadzli F, Rahmat K, et al.
    J Magn Reson Imaging, 2021 02;53(2):437-444.
    PMID: 32918328 DOI: 10.1002/jmri.27354
    BACKGROUND: Charcot-Marie-Tooth (CMT) disease is diagnosed through clinical findings and genetic testing. While there are neurophysiological tools and clinical functional scales in CMT, objective disease biomarkers that can facilitate in monitoring disease progression are limited.

    PURPOSE: To investigate the utility of diffusion tensor imaging (DTI) in determining the microstructural integrity of sciatic and peroneal nerves and its correlation with the MRI grading of muscle atrophy severity and clinical function in CMT as determined by the CMT neuropathy score (CMTNS).

    STUDY TYPE: Prospective case-control.

    SUBJECTS: Nine CMT patients and nine age-matched controls.

    FIELD STRENGTH/SEQUENCE: 3 T T1 -weighted in-/out-of phase spoiled gradient recalled echo (SPGR) and DTI sequences.

    ASSESSMENT: Fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) values for sciatic and peroneal nerves were obtained from DTI. Muscle atrophy was graded according to the Goutallier classification using in-/out-of phase SPGRs. DTI parameters and muscle atrophy grades were compared between CMT and controls, and the relationship between DTI parameters, muscle atrophy grades, and CMTNS were assessed.

    STATISTICAL TESTS: The Wilcoxon Signed Ranks test was used to compare DTI parameters between CMT and controls. The relationship between DTI parameters, muscle atrophy grades, and CMTNS were analyzed using the Spearman correlation. Receiver operating characteristic (ROC) analyses of DTI parameters that can differentiate CMT from healthy controls were done.

    RESULTS: There was a significant reduction in FA and increase in RD of both nerves (P 

  13. Lee SA, Chiu CK, Chan CYW, Yaakup NA, Wong JHD, Kadir KAA, et al.
    Spine J, 2020 07;20(7):1114-1124.
    PMID: 32272253 DOI: 10.1016/j.spinee.2020.03.015
    BACKGROUND CONTEXT: Biopsy is important to obtain microbiological and histopathological diagnosis in spine infections and tumors. To date, there have been no prospective randomized trials comparing fluoroscopic guided and computed tomography (CT) transpedicular biopsy techniques. The goal of this study was to evaluate the accuracy, safety, and diagnostic outcome of these two diagnostic techniques.

    PURPOSE: To evaluate the accuracy, safety, and diagnostic outcome of fluoroscopic guided and CT transpedicular biopsy techniques.

    STUDY DESIGN: Prospective randomized trial.

    PATIENT SAMPLE: Sixty consecutive patients with clinical symptoms and radiological features suggestive of spinal infection or malignancy were recruited and randomized into fluoroscopic or CT guided spinal biopsy groups. Both groups were similar in terms of patient demographics, distribution of spinal infections and malignancy cases, and the level of biopsies.

    OUTCOME MEASURES: The primary outcome measure was diagnostic accuracy of both methods, determined based on true positive, true negative, false positive, and false negative biopsy findings. Secondary outcome measures included radiation exposure to patients and doctors, complications, and postbiopsy pain score.

    METHODS: A transpedicular approach was performed with an 8G core biopsy needle. Specimens were sent for histopathological and microbiological examinations. Diagnosis was made based on biopsy results, clinical criteria and monitoring of disease progression during a 6-month follow up duration. Clinical criteria included presence of risk factors, level of inflammatory markers and magnetic resonance imaging findings. Radiation exposure to patients and doctors was measured with dosimeters.

    RESULTS: There was no significant difference between the diagnostic accuracy of fluoroscopic and CT guided spinal biopsy (p=0.67) or between the diagnostic accuracy of spinal infection and spinal tumor in both groups (p=0.402 for fluoroscopy group and p=0.223 for CT group). Radiation exposure to patients was approximately 26 times higher in the CT group. Radiation exposure to doctors in the CT group was approximately 2 times higher compared to the fluoroscopic group if a lead shield was not used. Lead shields significantly reduced radiation exposure to doctors anywhere from 2 to 8 times. No complications were observed for either group and the differences in postbiopsy pain scores were not significant.

    CONCLUSIONS: The accuracy, procedure time, complication rate and pain score for both groups were similar. However, radiation exposure to patients and doctors were significantly higher in the CT group without lead protection. With lead protection, radiation to doctors reduced significantly.

  14. Leong SS, Wong JHD, Md Shah MN, Vijayananthan A, Jalalonmuhali M, Chow TK, et al.
    Nephrology (Carlton), 2021 Jan;26(1):38-45.
    PMID: 33058334 DOI: 10.1111/nep.13805
    AIM: Renal biopsy is the gold standard for the histological characterization of chronic kidney disease (CKD), of which renal fibrosis is a dominant component, affecting its stiffness. The aim of this study was to investigate the correlation between kidney stiffness obtained by shear wave elastography (SWE) and renal histological fibrosis.

    METHODS: Shear wave elastography assessments were performed in 75 CKD patients who underwent renal biopsy. The SWE-derived estimates of the tissue Young's modulus (YM), given as kilopascals (kPa), were measured. YM was correlated to patients' renal histological scores, broadly categorized into glomerular, tubulointerstitial and vascular scores.

    RESULTS: Young's modulus correlates significantly with tubulointerstitial score (ρ = 0.442, P 

  15. Seow P, Narayanan V, Romelean RJ, Wong JHD, Win MT, Chandran H, et al.
    Acad Radiol, 2020 02;27(2):180-187.
    PMID: 31155487 DOI: 10.1016/j.acra.2019.04.015
    RATIONALE AND PURPOSE: Our study evaluated the capability of magnetic resonance imaging in- and opposed-phase (IOP) derived lipid fraction as a novel prognostic biomarker of survival outcome in glioma.

    MATERIALS AND METHODS: We analyzed 46 histologically proven glioma (WHO grades II-IV) patients using standard 3T magnetic resonance imaging brain tumor protocol and IOP sequence. Lipid fraction was derived from the IOP sequence signal-loss ratio. The lipid fraction of solid nonenhancing region of glioma was analyzed, using a three-group analysis approach based on volume under surface of receiver-operating characteristics to stratify the prognostic factors into three groups of low, medium, and high lipid fraction. The survival outcome was evaluated, using Kaplan-Meier survival analysis and Cox regression model.

    RESULTS: Significant differences were seen between the three groups (low, medium, and high lipid fraction groups) stratified by the optimal cut-off point for overall survival (OS) (p ≤ 0.01) and time to progression (p ≤ 0.01) for solid nonenhancing region. The group with high lipid fraction had five times higher risk of poor survival and earlier time to progression compared to the low lipid fraction group. The OS plot stratified by lipid fraction also had a strong correlation with OS plot stratified by WHO grade (R = 0.61, p < 0.01), implying association to underlying histopathological changes.

    CONCLUSION: The lipid fraction of solid nonenhancing region showed potential for prognostication of glioma. This method will be a useful adjunct in imaging protocol for treatment stratification and as a prognostic tool in glioma patients.

  16. Leong SS, Wong JHD, Rozalli FI, Yahya F, Tee YC, Yamin LSM, et al.
    Skeletal Radiol, 2024 Mar;53(3):455-463.
    PMID: 37594519 DOI: 10.1007/s00256-023-04425-1
    OBJECTIVE: To establish the scanning protocol for 2-dimensional shear wave elastography (SWE) on normal entheses by investigating the possible confounding factors that may increase the variability of measured elasticity.

    MATERIAL AND METHODS: 30 normal quadriceps entheses were scanned using SWE to compare the stiffness and coefficient variation by changing the ultrasonic coupling gel thickness, knee position, region of interest size, and scanning plane.

    RESULTS: No significant difference in median shear wave velocity (SWV) was observed in different coupling gel thicknesses. The median SWV was higher in the knee flexion position than in the extended position (p  0.05). For interobserver reliability for the proposed protocol, the intraclass correlation coefficients was 0.763.

    CONCLUSION: In this study, we determined supine position with the knee extended; using 2.0 mm diameter region of interest and image acquisition at the longitudinal plane with thicker layer coupling gel seems most appropriate to reliably image healthy quadriceps entheses with SWE.

  17. Azlan CA, Wong JHD, Tan LK, A D Huri MSN, Ung NM, Pallath V, et al.
    Phys Med, 2020 Dec;80:10-16.
    PMID: 33070007 DOI: 10.1016/j.ejmp.2020.10.002
    PURPOSE: We present the implementation of e-learning in the Master of Medical Physics programme at the University of Malaya during a partial lockdown from March to June 2020 due to the COVID-19 pandemic.

    METHODS: Teaching and Learning (T&L) activities were conducted virtually on e-learning platforms. The students' experience and feedback were evaluated after 15 weeks.

    RESULTS: We found that while students preferred face-to-face, physical teaching, they were able to adapt to the new norm of e-learning. More than 60% of the students agreed that pre-recorded lectures and viewing videos of practical sessions, plus answering short questions, were beneficial. Certain aspects, such as hands-on practical and clinical experience, could never be replaced. The e-learning and study-from-home environment accorded a lot of flexibility. However, students also found it challenging to focus because of distractions, lack of engagement and mental stress. Technical problems, such as poor Internet connectivity and limited data plans, also compounded the problem.

    CONCLUSION: We expect e-learning to prevail in future. Hybrid learning strategies, which includes face-to-face classes and e-learning, will become common, at least in the medical physics programme of the University of Malaya even after the pandemic.

  18. Wong JHD, Zaili Z, Abdul Malik R, Bustam AZ, Saad M, Jamaris S, et al.
    J Appl Clin Med Phys, 2021 Aug;22(8):139-147.
    PMID: 34254425 DOI: 10.1002/acm2.13338
    PURPOSE: This study aims to evaluate in vivo skin dose delivered by intraoperative radiotherapy (IORT) and determine the factors associated with an increased risk of radiation-induced skin toxicity.

    METHODOLOGY: A total of 21 breast cancer patients who underwent breast-conserving surgery and IORT, either as IORT alone or IORT boost plus external beam radiotherapy (EBRT), were recruited in this prospective study. EBT3 film was calibrated in water and used to measure skin dose during IORT at concentric circles of 5 mm and 40 mm away from the applicator. For patients who also had EBRT, the maximum skin dose was estimated using the radiotherapy treatment planning system. Mid-term skin toxicities were evaluated at 3 and 6 months post-IORT.

    RESULTS: The average skin dose at 5 mm and 40 mm away from the applicator was 3.07 ± 0.82 Gy and 0.99 ± 0.28 Gy, respectively. Patients treated with IORT boost plus EBRT received an additional skin dose of 41.07 ± 1.57 Gy from the EBRT component. At 3 months post-IORT, 86% of patients showed no evidence of skin toxicity. However, the number of patients suffering from skin toxicity increased from 15% to 38% at 6 months post-IORT. We found no association between the IORT alone or with the IORT boost plus EBRT and skin toxicity. Older age was associated with increased risk of skin toxicities. A mathematical model was derived to predict skin dose.

    CONCLUSION: EBT3 film is a suitable dosimeter for in vivo skin dosimetry in IORT, providing patient-specific skin doses. Both IORT alone and IORT boost techniques resulted in similar skin toxicity rates.

  19. Yap LPP, Wong JHD, Muhammad Gowdh NF, Ng WL, Chung E, Eturajulu RC, et al.
    J Med Imaging Radiat Sci, 2021 06;52(2):257-264.
    PMID: 33531272 DOI: 10.1016/j.jmir.2021.01.003
    INTRODUCTION: Fixed volume (FV) contrast media administration during CT examination is the standard practice in most healthcare institutions. We aim to validate a customised weight-based volume (WBV) method and compare it to the conventional FV methods, introduced in a regional setting.

    METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.

    RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p 

  20. Seow P, Hernowo AT, Narayanan V, Wong JHD, Bahuri NFA, Cham CY, et al.
    Acad Radiol, 2021 12;28(12):1721-1732.
    PMID: 33023809 DOI: 10.1016/j.acra.2020.09.007
    RATIONALE AND OBJECTIVES: Gliomatous tumors are known to affect neural fiber integrity, either by displacement or destruction. The aim of this study is to investigate the integrity and distribution of the white matter tracts within and around the glioma regions using probabilistic fiber tracking.

    MATERIAL AND METHODS: Forty-two glioma patients were subjected to MRI using a standard tumor protocol with diffusion tensor imaging (DTI). The tumor and peritumor regions were delineated using snake model with reference to structural and diffusion MRI. A preprocessing pipeline of the structural MRI image, DTI data, and tumor regions was implemented. Tractography was performed to delineate the white matter (WM) tracts in the selected tumor regions via probabilistic fiber tracking. DTI indices were investigated through comparative mapping of WM tracts and tumor regions in low-grade gliomas (LGG) and high-grade gliomas (HGG).

    RESULTS: Significant differences were seen in the planar tensor (Cp) in peritumor regions; mean diffusivity, axial diffusivity and pure isotropic diffusion in solid-enhancing tumor regions; and fractional anisotropy, axial diffusivity, pure anisotropic diffusion (q), total magnitude of diffusion tensor (L), relative anisotropy, Cp and spherical tensor (Cs) in solid nonenhancing tumor regions for affected WM tracts. In most cases of HGG, the WM tracts were not completely destroyed, but found intact inside the tumor.

    DISCUSSION: Probabilistic fiber tracking revealed the existence and distribution of WM tracts inside tumor core for both LGG and HGG groups. There were more DTI indices in the solid nonenhancing tumor region, which showed significant differences between LGG and HGG.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links