Displaying publications 21 - 40 of 95 in total

Abstract:
Sort:
  1. Liu C, Liu L, Huang Y, Shi R, Wu Y, Hakimah Binti Ismail I
    Int Immunopharmacol, 2023 Jan;114:109493.
    PMID: 36527879 DOI: 10.1016/j.intimp.2022.109493
    Minimal change disease (MCD) is a common type of nephrotic syndrome with high recurrence rate. This study aims to explore the impacts of interleukin (IL)-33 in MCD and to discuss its potential mechanism. In adriamycin (ADM) and puromycin aminonucleoside (PAN)-induced MCD rat model, IL-33 was used for treatment. H&E staining was applied for detecting histological changes. Critical proteins were examined by western blot. Corresponding commercial kits tested oxidative stress- and inflammation-related factors. Cell apoptosis was measured by TUNEL assay. ADM-induced podocyte injury model was establish to mimic MCD in vitro. Cell proliferation and apoptosis were detected by CCK-8 and TUNEL assays. Finally, podocyte was stimulated by innate lymphoid type-2 cells-secreted Th2 cytokines (ILC2s: IL-13 and IL-5 respectively), with or without incubation with M1 macrophage medium to further explore the immune-regulation of ILC2s behind the inflammatory environment of MCD. It was found that PAN-induced kidney jury, inflammation, oxidative stress and apoptosis were severer than ADM, and IL-33 treatment significantly alleviated the above injuries in PAN and ADM-induced MCD rat model. Moreover, IL-33 reversed the reduced viability and increased oxidative stress and apoptosis in ADM-induced podocyte injury model. Further, the capacities of IL-13 alone in inducing M1/M2 macrophage polarization, apoptosis, inflammation, kidney injury and reducing cell viability are stronger than IL-5. However, IL-13 reversed reduced cell viability and stimulated apoptosis, inflammation, kidney injury mediated by co-incubation with M1-conditioned medium. Collectively, IL-33 might protect against immunologic injury in MCD via mediating ILC2s-secreted IL-13.
  2. Wu Y, Mou B, Song S, Tan CP, Lai OM, Shen C, et al.
    Food Res Int, 2020 10;136:109301.
    PMID: 32846513 DOI: 10.1016/j.foodres.2020.109301
    Present study prepared curcumin liposomes with high encapsulation efficiency (>70%) using bovine milk and krill phospholipids; and investigated the effects of phospholipids composition on storage stability, in-vitro bioavailability, antioxidative and anti-hyperglycemic properties of the curcumin liposomes. Curcumin liposomes prepared from bovine milk phospholipids have smaller particle sizes (163.1 ± 6.42 nm) and greater negative zeta potentials (-26.7 mv) as compared to that prepared from krill phospholipids (particle size: 212.2 ± 4.1 nm, zeta potential: -15.23 mv). In addition, curcumin liposomes from bovine milk phospholipids demonstrated better stability under harsh storage conditions (alkaline conditions, oxygen, high temperature and relative humidity). Nevertheless, curcumin-loaded liposomes prepared from bovine milk phospholipids have inferior bioavailability compared to that prepared from krill phospholipids. No significant differences can be observed in terms of anti-oxidative and anti-hyperglycemic properties of liposomes prepared from both bovine milk and krill phospholipids. Findings from present study will open up new opportunities for development of stable curcumin liposomes with good functional properties (high digestibility, bioavailability and pharmacological effects).
  3. Kim HS, Wu Y, Lin SJ, Deerochanawong C, Zambahari R, Zhao L, et al.
    Curr Med Res Opin, 2008 Jul;24(7):1951-63.
    PMID: 18547466 DOI: 10.1185/03007990802138731
    BACKGROUND: Data on achieving National Cholesterol Education Program Adult Treatment Panel III (ATP III) goals in Asia are limited.

    OBJECTIVE: To examine treatment patterns, goal attainment, and factors influencing treatment among patients in 6 Asian countries who were taking statins.

    METHODS: A retrospective cohort study was conducted in China, Korea, Malaysia, Singapore, Taiwan, and Thailand, where 437 physicians (41% cardiologists) recruited adults with hypercholesterolemia newly initiated on statin monotherapy.

    RESULTS: Of 2622 patients meeting inclusion and exclusion criteria, approximately 66% had coronary heart disease (CHD)/diabetes mellitus, 24% had no CHD but > or =2 risk factors, and 10% had no CHD and <2 risk factors. Most patients ( approximately 90%) received statins at medium or lower equipotency doses. Across all cardiovascular risk categories, 48% of patients attained ATP III targets for low-density lipoprotein cholesterol (LDL-C), including 38% of those with CHD/diabetes (goal: <100 mg/dL), 62% of those without CHD but with > or =2 risk factors (goal: <130 mg/dL), and 81% of those without CHD and <2 risk factors (goal: <160 mg/dL). Most patients who achieved goals did so within the first 3 months. Increasing age (odds ratio (OR)=1.015 per 1-year increment; 95% confidence interval (CI)=1.005-1.206; p=0.0038) and initial statin potency (OR=2.253; 95% CI=1.364-3.722; p=0.0015) were directly associated with goal attainment, whereas increased cardiovascular risk (OR=0.085; 95% CI=0.053-0.134; p<0.0001 for CHD/diabetes mellitus at baseline compared with <2 risk factors,) and baseline LDL-C (OR=0.990; 95% CI=0.987-0.993); p<0.0001 per 1-mg/dL increment) were inversely associated with LDL-C goal achievement. Limitations of this study include potential differences in treatment settings and cardiovascular risk factors between different countries and centers. In addition, the effects on cholesterol goal achievement of concomitant changes in lifestyle were not assessed.

    CONCLUSION: LDL-C goal attainment is low in Asians, particularly those with CHD/diabetes. More effective patient monitoring, treatments, including combining regimens and dose titration, and adherence to these treatments along with therapeutic lifestyle counseling may facilitate goal attainment.

  4. Zhang X, Dong X, Saripan MIB, Du D, Wu Y, Wang Z, et al.
    Thorac Cancer, 2023 Jul;14(19):1802-1811.
    PMID: 37183577 DOI: 10.1111/1759-7714.14924
    BACKGROUND: Radiomic diagnosis models generally consider only a single dimension of information, leading to limitations in their diagnostic accuracy and reliability. The integration of multiple dimensions of information into the deep learning model have the potential to improve its diagnostic capabilities. The purpose of study was to evaluate the performance of deep learning model in distinguishing tuberculosis (TB) nodules and lung cancer (LC) based on deep learning features, radiomic features, and clinical information.

    METHODS: Positron emission tomography (PET) and computed tomography (CT) image data from 97 patients with LC and 77 patients with TB nodules were collected. One hundred radiomic features were extracted from both PET and CT imaging using the pyradiomics platform, and 2048 deep learning features were obtained through a residual neural network approach. Four models included traditional machine learning model with radiomic features as input (traditional radiomics), a deep learning model with separate input of image features (deep convolutional neural networks [DCNN]), a deep learning model with two inputs of radiomic features and deep learning features (radiomics-DCNN) and a deep learning model with inputs of radiomic features and deep learning features and clinical information (integrated model). The models were evaluated using area under the curve (AUC), sensitivity, accuracy, specificity, and F1-score metrics.

    RESULTS: The results of the classification of TB nodules and LC showed that the integrated model achieved an AUC of 0.84 (0.82-0.88), sensitivity of 0.85 (0.80-0.88), and specificity of 0.84 (0.83-0.87), performing better than the other models.

    CONCLUSION: The integrated model was found to be the best classification model in the diagnosis of TB nodules and solid LC.

  5. Zhang ZY, Yang WY, Dominiczak AF, Wang JG, Wu Y, Almustafa B, et al.
    Hypertension, 2019 11;74(5):1064-1067.
    PMID: 31422692 DOI: 10.1161/HYPERTENSIONAHA.119.13206
  6. Yan Q, Li X, Ma B, Zou Y, Wang Y, Liao X, et al.
    Front Microbiol, 2018;9:3129.
    PMID: 30619199 DOI: 10.3389/fmicb.2018.03129
    Antibiotic residues that enter the soil through swine manure could disturb the number, community structure and functions of microbiota which could also degrade antibiotics in soil. Five different concentrations of doxycycline (DOX) incorporated into swine manure were added to soil to explore the effects of DOX on microbiota in soil and degradation itself. The results showed that the soil microbiome evolved an adaptation to the soil containing DOX by generating resistance genes. Moreover, some of the organisms within the soil microbiome played crucial roles in the degradation of DOX. The average degradation half-life of DOX in non-sterile groups was 13.85 ± 0.45 days, which was significantly shorter than the 29.26 ± 0.98 days in the group with sterilized soil (P < 0.01), indicating that the soil microbiome promoted DOX degradation. DOX addition affected the number of tetracycline resistance genes, depending on the type of gene and the DOX concentration. Among these genes, tetA, tetM, tetW, and tetX had significantly higher copy numbers when the concentration of DOX was higher. In contrast, a lower concentration of DOX had an inhibitory effect on tetG. At the same time, the microbial compositions were affected by the initial concentration of DOX and the different experimental periods. The soil chemical indicators also affected the microbial diversity changes, mainly because some microorganisms could survive in adversity and become dominant bacterial groups, such as the genera Vagococcus and Enterococcus (which were associated with electrical conductivity) and Caldicoprobacter spp. (which were positively correlated with pH). Our study mainly revealed soil microbiota and DOX degradation answered differently under variable concentrations of DOX mixed with swine manure in soil.
  7. Liu L, Mi J, Wang Y, Zou Y, Ma B, Liao X, et al.
    Sci Total Environ, 2018 Apr 01;619-620:1673-1681.
    PMID: 29056384 DOI: 10.1016/j.scitotenv.2017.10.133
    Antibiotic residues in swine manure when entered the soil would most likely affect the complex composition and functions of the soil microbiome, which is also responsible for degrading these antibiotics. Three different methods of adding ciprofloxacin (CIP), a common antibiotic used in the swine industry, to the soil were used to investigate the effects of CIP on the soil microbiome and the degradation of CIP. Results of the study showed that the microbiome could promote the degradation of CIP in the soil when CIP was incorporated into the soil together with manure. However, the CIP degradation time was prolonged when adding the manure of swine fed with diet containing CIP in the soil. All treatments did not affect the copy number of the resistance genes, except for aac(6')-Ib-cr, as compared with the initial numbers of each treatment. MiSeq Illumina sequencing and Biolog-ECO microplates results showed that CIP had a significant effect on the abundance, structure, and function of the soil microbiome, but different addition methods resulted in distinct effects. Results of the present study demonstrated that the microbiome and fate of CIP responded differently to the different methods of adding CIP to the soil.
  8. Wang C, Pang Y, Wu Y, Zhang N, Yang R, Li Y, et al.
    Angew Chem Int Ed Engl, 2021 12 20;60(52):26978-26985.
    PMID: 34665909 DOI: 10.1002/anie.202110149
    A divergent synthesis of skeletally distinct arboridinine and arborisidine was achieved. The central divergent strategy was inspired by the divergent biosynthetic cyclization mode of arboridinine and arborisidine and their hidden topological connection. The branch point was reached through a Michael and Mannich cascade process. A site-selective intramolecular Mannich reaction was developed to construct the tetracyclic core of arboridinine, while a site-selective intramolecular α-amination of ketone was used to access the tetracyclic core of arborisidine. A strategic Peterson olefination through intramolecular nucleophile delivery was able to set up the exocyclic olefin of arboridinine.
  9. Lv J, Wong MG, Hladunewich MA, Jha V, Hooi LS, Monaghan H, et al.
    JAMA, 2022 May 17;327(19):1888-1898.
    PMID: 35579642 DOI: 10.1001/jama.2022.5368
    IMPORTANCE: The effect of glucocorticoids on major kidney outcomes and adverse events in IgA nephropathy has been uncertain.

    OBJECTIVE: To evaluate the efficacy and adverse effects of methylprednisolone in patients with IgA nephropathy at high risk of kidney function decline.

    DESIGN, SETTING, AND PARTICIPANTS: An international, multicenter, double-blind, randomized clinical trial that enrolled 503 participants with IgA nephropathy, proteinuria greater than or equal to 1 g per day, and estimated glomerular filtration rate (eGFR) of 20 to 120 mL/min/1.73 m2 after at least 3 months of optimized background care from 67 centers in Australia, Canada, China, India, and Malaysia between May 2012 and November 2019, with follow-up until June 2021.

    INTERVENTIONS: Participants were randomized in a 1:1 ratio to receive oral methylprednisolone (initially 0.6-0.8 mg/kg/d, maximum 48 mg/d, weaning by 8 mg/d/mo; n = 136) or placebo (n = 126). After 262 participants were randomized, an excess of serious infections was identified, leading to dose reduction (0.4 mg/kg/d, maximum 32 mg/d, weaning by 4 mg/d/mo) and addition of antibiotic prophylaxis for pneumocystis pneumonia for subsequent participants (121 in the oral methylprednisolone group and 120 in the placebo group).

    MAIN OUTCOMES AND MEASURES: The primary end point was a composite of 40% decline in eGFR, kidney failure (dialysis, transplant), or death due to kidney disease. There were 11 secondary outcomes, including kidney failure.

    RESULTS: Among 503 randomized patients (mean age, 38 years; 198 [39%] women; mean eGFR, 61.5 mL/min/1.73 m2; mean proteinuria, 2.46 g/d), 493 (98%) completed the trial. Over a mean of 4.2 years of follow-up, the primary outcome occurred in 74 participants (28.8%) in the methylprednisolone group compared with 106 (43.1%) in the placebo group (hazard ratio [HR], 0.53 [95% CI, 0.39-0.72]; P 

  10. Cao Z, Liang JB, Liao XD, Wright AD, Wu YB, Yu B
    Animal, 2016 Oct;10(10):1666-76.
    PMID: 27052363 DOI: 10.1017/S1751731116000525
    The primary objective of this study was to investigate the effect of dietary fiber on methanogenic diversity and community composition in the hindgut of indigenous Chinese Lantang gilts to explain the unexpected findings reported earlier that Lantang gilts fed low-fiber diet (LFD) produced more methane than those fed high-fiber diet (HFD). In total, 12 Lantang gilts (58.7±0.37 kg) were randomly divided into two dietary groups (six replicates (pigs) per group) and fed either LFD (NDF=201.46 g/kg) or HFD (NDF=329.70 g/kg). Wheat bran was the main source of fiber for the LFD, whereas ground rice hull (mixture of rice hull and rice bran) was used for the HFD. Results showed that the methanogens in the hindgut of Lantang gilts belonged to four known species (Methanobrevibacter ruminantium, Methanobrevibacter wolinii, Methanosphaera stadtmanae and Methanobrevibacter smithii), with about 89% of the methanogens belonging to the genus Methanobrevibacter. The 16S ribosomal RNA (rRNA) gene copies of Methanobrevibacter were more than three times higher (P0.05) was observed in 16S rRNA gene copies of Fibrobacter succinogenes between the two dietary groups, and 18S rRNA gene copies of anaerobic fungi in gilts fed LFD were lower than (P<0.05) those fed HFD. To better explain the effect of different fiber source on the methanogen community, a follow-up in vitro fermentation using a factorial design comprised of two inocula (prepared from hindgut content of gilts fed two diets differing in their dietary fiber)×four substrates (LFD, HFD, wheat bran, ground rice hull) was conducted. Results of the in vitro fermentation confirmed that the predominant methanogens belonged to the genus of Methanobrevibacter, and about 23% methanogens was found to be distantly related (90%) to Thermogymnomonas acidicola. In vitro fermentation also seems to suggest that fiber source did change the methanogens community. Although the density of Methanobrevibacter species was positively correlated with CH4 production in both in vivo (P<0.01, r=0.737) and in vitro trials (P<0.05, r=0.854), which could partly explain the higher methane production from gilts fed LFD compared with those in the HFD group. Further investigation is needed to explain how the rice hull affected the methanogens and inhibited CH4 emission from gilts fed HFD.
  11. Huang L, Wen X, Wang Y, Zou Y, Ma B, Liao X, et al.
    J Environ Sci (China), 2014 Oct 1;26(10):2001-6.
    PMID: 25288543 DOI: 10.1016/j.jes.2014.07.012
    Effects of antibiotic residues on methane production in anaerobic digestion are commonly studied using the following two antibiotic addition methods: (1) adding manure from animals that consume a diet containing antibiotics, and (2) adding antibiotic-free animal manure spiked with antibiotics. This study used chlortetracycline (CTC) as a model antibiotic to examine the effects of the antibiotic addition method on methane production in anaerobic digestion under two different swine wastewater concentrations (0.55 and 0.22mg CTC/g dry manure). The results showed that CTC degradation rate in which manure was directly added at 0.55mg CTC/g (HSPIKE treatment) was lower than the control values and the rest of the treatment groups. Methane production from the HSPIKE treatment was reduced (p<0.05) by 12% during the whole experimental period and 15% during the first 7days. The treatments had no significant effect on the pH and chemical oxygen demand value of the digesters, and the total nitrogen of the 0.55mg CTC/kg manure collected from mediated swine was significantly higher than the other values. Therefore, different methane production under different antibiotic addition methods might be explained by the microbial activity and the concentrations of antibiotic intermediate products and metabolites. Because the primary entry route of veterinary antibiotics into an anaerobic digester is by contaminated animal manure, the most appropriate method for studying antibiotic residue effects on methane production may be using manure from animals that are given a particular antibiotic, rather than adding the antibiotic directly to the anaerobic digester.
  12. Chen W, Liao X, Wu Y, Liang JB, Mi J, Huang J, et al.
    Waste Manag, 2017 Mar;61:506-515.
    PMID: 28117129 DOI: 10.1016/j.wasman.2017.01.014
    Biochar, because of its unique physiochemical properties and sorption capacity, may be an ideal amendment in reducing gaseous emissions during composting process but there has been little information on the potential effects of different types of biochar on undesired gaseous emissions. The objective of this study was to examine the ability and mechanism of different types of biochar, as co-substrate, in mitigating gaseous emission from composting of layer hen manure. The study was conducted in small-scale laboratory composters with the addition of 10% of one of the following biochars: cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar. The results showed that the cumulative NH3 production was significantly reduced by 24.8±2.9, 9.2±1.3, 20.1±2.6, 14.2±1.6, 11.8±1.7% (corrected for initial total N) in the cornstalk biochar, bamboo biochar, woody biochar, layer manure biochar and coir biochar treatments, respectively, compared to the control. Total CH4 emissions was significantly reduced by 26.1±2.3, 15.5±2.1, 22.4±3.1, 17.1±2.1% (corrected for the initial total carbon) for cornstalk biochar, bamboo biochar, woody biochar and coir biochar treatments than the control. Moreover, addition of cornstalk biochar increased the temperature and NO3(-)-N concentration and decreased the pH, NH4(+)-N and organic matter content throughout the composting process. The results suggested that total volatilization of NH3 and CH4 in cornstalk biochar treatment was lower than the other treatments; which could be due to (i) decrease of pH and higher nitrification, (ii) high sorption capacity for gases and their precursors, such as ammonium nitrogen from composting mixtures, because of the higher surface area, pore volumes, total acidic functional groups and CEC of cornstalk biochar.
  13. Yang P, Zhu X, Lan H, Wu Y, Pan D
    Mikrochim Acta, 2024 Mar 08;191(4):188.
    PMID: 38457047 DOI: 10.1007/s00604-024-06248-w
    A solid-phase microextraction (SPME) Arrow and high-performance liquid chromatography-UV detector (HPLC-UV, detection at 225 nm) based method was developed for the selective determination of nine alkylphenols (APs) in milk. The functionalized mesoporous UiO-66 (4-meso-UiO-66) was utilized as the new coating material, which was synthesized by post-modification of pore-expanded UiO-66-NH2 by an esterification reaction with 4-pentylbenzoic acid. It was fully characterized by X-ray photoelectron spectroscopy (XPS), fourier transformation infrared spectrometry, nitrogen sorption-desorption test, scanning electron microscopy, transmission electron microscopy, and X-ray diffractometer. The characterization results showed the ester groups and benzene rings were introduced into the 4-meso-UiO-66, and the mesoporous structure was predominant in the 4-meso-UiO-66. The extraction mechanism of 4-meso-UiO-66 to APs is the synergistic effect of Zr-O electrostatic interaction and the size exclusion effect resulting from XPS, selectivity test, and nitrogen sorption-desorption test. The electrospinning technique was utilized to fabricate the 4-meso-UiO-66 coated SPME Arrow and polyacrylonitrile (PAN) was used as the adhesive. The mass rate of 4-meso-UiO-66 to PAN and the electrospinning time were evaluated. The extraction and desorption parameters were also studied. The linear range of this method was 0.2-1000 μg L-1 with a coefficient of determination greater than 0.9989 under the optimal conditions. The detection limits were 0.05-1 μg L-1, the inter-day and intra-day precision (RSD) were 2.8-11.5%, and the recovery was 83.6%-112%. The reusability study showed that the extraction performance of this new SPME Arrow could be maintained after 80 adsorption-desorption cycles. This method showed excellent applicability for the selective determination of APs in milk.
  14. Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, et al.
    Bioresour Technol, 2021 Mar;324:124631.
    PMID: 33454445 DOI: 10.1016/j.biortech.2020.124631
    The demands of energy sustainability drive efforts to bio-chemical conversion of biomass into biofuels through pretreatment, enzymatic hydrolysis, and microbial fermentation. Pretreatment leads to significant structural changes of the complex lignin polymer that affect yield and productivity of the enzymatic conversion of lignocellulosic biomass. Structural changes of lignin after pretreatment include functional groups, inter unit linkages and compositions. These changes influence non-productive adsorption of enzyme on lignin through hydrophobic interaction and electrostatic interaction as well as hydrogen bonding. This paper reviews the relationships between structural changes of lignin and enzymatic hydrolysis of pretreated lignocellulosic biomass. The formation of pseudo-lignin during dilute acid pretreatment is revealed, and their negative effect on enzymatic hydrolysis is discussed.
  15. Wu Y, Levis B, Riehm KE, Saadat N, Levis AW, Azar M, et al.
    Psychol Med, 2020 06;50(8):1368-1380.
    PMID: 31298180 DOI: 10.1017/S0033291719001314
    BACKGROUND: Item 9 of the Patient Health Questionnaire-9 (PHQ-9) queries about thoughts of death and self-harm, but not suicidality. Although it is sometimes used to assess suicide risk, most positive responses are not associated with suicidality. The PHQ-8, which omits Item 9, is thus increasingly used in research. We assessed equivalency of total score correlations and the diagnostic accuracy to detect major depression of the PHQ-8 and PHQ-9.

    METHODS: We conducted an individual patient data meta-analysis. We fit bivariate random-effects models to assess diagnostic accuracy.

    RESULTS: 16 742 participants (2097 major depression cases) from 54 studies were included. The correlation between PHQ-8 and PHQ-9 scores was 0.996 (95% confidence interval 0.996 to 0.996). The standard cutoff score of 10 for the PHQ-9 maximized sensitivity + specificity for the PHQ-8 among studies that used a semi-structured diagnostic interview reference standard (N = 27). At cutoff 10, the PHQ-8 was less sensitive by 0.02 (-0.06 to 0.00) and more specific by 0.01 (0.00 to 0.01) among those studies (N = 27), with similar results for studies that used other types of interviews (N = 27). For all 54 primary studies combined, across all cutoffs, the PHQ-8 was less sensitive than the PHQ-9 by 0.00 to 0.05 (0.03 at cutoff 10), and specificity was within 0.01 for all cutoffs (0.00 to 0.01).

    CONCLUSIONS: PHQ-8 and PHQ-9 total scores were similar. Sensitivity may be minimally reduced with the PHQ-8, but specificity is similar.

  16. Wang S, Yang J, Kuang X, Li H, Du H, Wu Y, et al.
    J Ethnopharmacol, 2024 May 23;326:117913.
    PMID: 38360380 DOI: 10.1016/j.jep.2024.117913
    ETHNOPHARMACOLOGICAL RELEVANCE: Kaempferia galanga Linn. is an aromatic medicinal herb with extensively applied in India, China, Malaysia and other South Asia countries for thousands of years. It has been mentioned to treat abdominal tumors. Ethyl cinnamate (EC), one of the main chemical constituents of the rhizome of K. galanga, exhibited nematocidal, sedative and vasorelaxant activities. However, its anti-angiogenic activity, and anti-tumor effect have not been investigated.

    AIM OF THE STUDY: To investigate the anti-angiogenic mechanism of EC and its anti-tumor effect by suppressing angiogenesis.

    MATERIALS AND METHODS: The in vitro anti-angiogenic effect was evaluated using HUVECs model induced by VEGF and zebrafish model in vivo. The influence of the EC on phosphorylation of VEGFR2 and its downstream signaling pathways were evaluated by western blotting assay. Molecule docking technology was conducted to explore the interaction between EC and VEGFR2. SPR assay was used for detecting the binding affinity between EC and VEGFR2. To further investigate the molecular mechanism of EC on anti-angiogenesis, VEGFR2 knockdown in HUVECs and examined the influence of the EC. Anti-tumor activity of EC was evaluated using colony formation assay and apoptosis assay. The inhibitory effect of EC on tumor growth was explored using HT29 colon cancer xenograft model.

    RESULTS: EC obviously inhibited proliferation, migration, invasion and tube formation of VEGF-induced HUVECs. EC also induced apoptosis of HUVECs. Moreover, it inhibited the development of vessel formation in zebrafish. Further investigations demonstrated that EC could suppress the phosphorylation of VEGFR2, and its downstream signaling pathways were altered in VEGF-induced HUVECs. EC formed a hydrogen bond to bind with the ATP binding site of the VEGFR2, and EC-VEGFR2 interaction was shown in SPR assay. The suppressive effect of EC on angiogenesis was abrogated after VEGFR2 knockdown in HUVECs. EC inhibited the colon cancer cells colony formation and induced apoptosis. In addition, EC suppressed tumor growth in colon cancer xenograft model, and no detectable hepatotoxicity and nephrotoxicity. In addition, it inhibited the phosphorylation of VEGFR2, and its downstream signal pathways in tumor.

    CONCLUSIONS: EC could inhibit tumor growth in colon cancer by suppressing angiogenesis via VEGFR2 signaling pathway, and suggested EC as a promising candidate for colon cancer treatment.

  17. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  18. Cheng P, Wang Y, Liang J, Wu Y, Wright A, Liao X
    Front Microbiol, 2018;9:1342.
    PMID: 29988353 DOI: 10.3389/fmicb.2018.01342
    There is growing interest in the use of unconventional feed ingredients containing higher dietary fiber for pig production due to increasing prices of cereal grains and the potential health benefits of dietary fiber on host animals. This study aimed to gain insight into the community-wide microbiome population between the Chinese native Lantang pigs and the commercial Duroc pigs to uncover the microbiological mechanisms for the degradation capacity of fiber in pigs. Utilizing the metagenomics approach, we compared the phylogeny and functional capacity of the fecal microbiome from approximately 150-day-old female Lantang and Duroc pigs fed a similar diet. The structure of the fecal microbial community from the two pig breeds was different at the genus level; the number of genes associated with fiber degradation was higher in Lantang pigs. Further analysis and prediction of their functions from the fecal microbiomes of the two pig breeds revealed that the degradation capacities of fiber, branched chain fatty acids, and oligosaccharides were higher in Lantang pigs. The ability of lignocellulose bonding modules and the transport capacities of xylose, L-arabinose, ribose and methyl galactose were also higher in Lantang pigs. Similarly, the metabolic capacities of xylose, ribose, and fucose and the potential effectiveness of the tricarboxylic acid cycle (TCA) and gene abundance in the hydrogen sink pathway were higher in the fecal microbiome from Lantang pigs. Lantang pigs have a higher capacity to utilize dietary fiber than Duroc pigs, and the differences in the capability to utilize dietary fiber between the indigenous and commercial pigs could be differences in the composition and biological function of the gut microbiota.
  19. Wu Y, Li S, Tao Y, Li D, Han Y, Show PL, et al.
    Food Chem, 2021 Jun 30;348:129083.
    PMID: 33517000 DOI: 10.1016/j.foodchem.2021.129083
    In this study, three potential probiotic strains were selected to ferment blueberry and blackberry juices. The viable cell counts of selected strains were increased by 0.4-0.7 log CFU/mL in berry juices environments after 48-h fermentation. Meanwhile, the contents of cyanindin-3-glucoside and peonidin-3-glucoside decreased over 30%. Heatmap presented an upgrade trend of syringic acid, ferulic acid, gallic acid and lactic acid during fermentation. However, the contents of p-coumaric acid, protocatechuic acid, chlorogenic acid, critic acid and malic acid showed downgrade trend. The metabolism of phenolics probably contributed to the enhancement of the ABTS radical scavenging activity (40%-60%) in fermented berry juices. Moreover, the three strains presented different capacities on changing the quality of berry juices according to the PCA and LDA analysis. The contents of individual organic acids had positive correlations with sensory quality, especially for sourness. Overall, probiotic fermentation could improve the sensory quality of berry juices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links