Displaying publications 21 - 40 of 97 in total

Abstract:
Sort:
  1. Shafie MH, Yusof R, Gan CY
    Carbohydr Polym, 2019 Jul 15;216:303-311.
    PMID: 31047070 DOI: 10.1016/j.carbpol.2019.04.007
    The Box-Behnken design was applied to optimize the extraction of pectin from Averrhoa bilimbi (ABP) using deep eutectic solvents (DES). The four variables of extraction were percentage of DES (X1), extraction time (X2), temperature (X3), and molar ratio of DES components (X4). The quadratic regression equation was established as a predicted model with R2 value of 0.9375. The optimal condition was X1 = 3.74% (w/v), X2 = 2.5 h, X3 = 80 °C, and X4 = 1:1. No significant difference between the predicted (14.70%) and experimental (14.44%) maximum yield of sample was noted. Characterization of physico-chemical properties characterization of ABP was performed. The main components of ABP were galacturonic acids, arabinoses, and xyloses. ABP also showed good functional properties such as water holding capacity (3.70 g/g), oil holding capacity (2.40 g/g), and foaming capacity (133.33%). The results also showed that ABP exhibited free radical scavenging activity (41.46%) and ferric reducing antioxidant power (1.15 mM).
  2. Hariono M, Choi SB, Roslim RF, Nawi MS, Tan ML, Kamarulzaman EE, et al.
    PLoS One, 2019;14(1):e0210869.
    PMID: 30677071 DOI: 10.1371/journal.pone.0210869
    Dengue virus Type 2 (DENV-2) is predominant serotype causing major dengue epidemics. There are a number of studies carried out to find its effective antiviral, however to date, there is still no molecule either from peptide or small molecules released as a drug. The present study aims to identify small molecules inhibitor from National Cancer Institute database through virtual screening. One of the hits, D0713 (IC50 = 62 μM) bearing thioguanine scaffold was derivatised into 21 compounds and evaluated for DENV-2 NS2B/NS3 protease inhibitory activity. Compounds 18 and 21 demonstrated the most potent activity with IC50 of 0.38 μM and 16 μM, respectively. Molecular dynamics and MM/PBSA free energy of binding calculation were conducted to study the interaction mechanism of these compounds with the protease. The free energy of binding of 18 calculated by MM/PBSA is -16.10 kcal/mol compared to the known inhibitor, panduratin A (-11.27 kcal/mol), which corroborates well with the experimental observation. Results from molecular dynamics simulations also showed that both 18 and 21 bind in the active site and stabilised by the formation of hydrogen bonds with Asn174.
  3. Arfa R, Yusof R, Shabanzadeh P
    PeerJ Comput Sci, 2019;5:e206.
    PMID: 33816859 DOI: 10.7717/peerj-cs.206
    Trajectory clustering and path modelling are two core tasks in intelligent transport systems with a wide range of applications, from modeling drivers' behavior to traffic monitoring of road intersections. Traditional trajectory analysis considers them as separate tasks, where the system first clusters the trajectories into a known number of clusters and then the path taken in each cluster is modelled. However, such a hierarchy does not allow the knowledge of the path model to be used to improve the performance of trajectory clustering. Based on the distance dependent Chinese restaurant process (DDCRP), a trajectory analysis system that simultaneously performs trajectory clustering and path modelling was proposed. Unlike most traditional approaches where the number of clusters should be known, the proposed method decides the number of clusters automatically. The proposed algorithm was tested on two publicly available trajectory datasets, and the experimental results recorded better performance and considerable improvement in both datasets for the task of trajectory clustering compared to traditional approaches. The study proved that the proposed method is an appropriate candidate to be used for trajectory clustering and path modelling.
  4. Abduraman MA, Hariono M, Yusof R, Rahman NA, Wahab HA, Tan ML
    Heliyon, 2018 Dec;4(12):e01023.
    PMID: 30560214 DOI: 10.1016/j.heliyon.2018.e01023
    Background: Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities.

    Methods: The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format.

    Results: The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable z' factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities.

    Conclusion: The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.

  5. Shafie MH, Samsudin D, Yusof R, Gan CY
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):1183-1192.
    PMID: 29944943 DOI: 10.1016/j.ijbiomac.2018.06.103
    Momordica charantia bioactive polysaccharide (MCBP) was used as an alternative source for the production of bio-based plastics (BPs) with choline chloride/glycerol-based deep eutectic solvent (DES) as a plasticizer. In this study, MCBP was initially extracted using 0.1 M citric acid at temperature 80 °C for 2 h, precipitated using ethanol, and then lyophilized. Subsequently, seven BPs were prepared: MCBP without plasticizer (MCBP), with 1% (w/w) of glycerol (MCBP-G), or with 1% (w/w) of DES at different choline chloride/glycerol molar ratios (i.e. 1.5:1, 1:1, 1:1.5, 1:2, and 1:3). The properties of these BPs were then investigated. Results showed that the tensile strains, stresses and moduli were in the range of 1.3-13.3%, 4.8-19.1 MPa and 132-2487 MPa, respectively. The melting temperatures were found in the range of 92.6-111.4 °C whereas the moisture absorptions and water vapour transmission rates (WVTR) of BPs were 1.4-6.5% and 3.6-5.4 mg/m2·s, respectively. The results also showed that these BPs exhibited bioactivities, such as microbial inhibitory activity (19.5-32.3 mm), free radical scavenging activity (10.3-18.3%) and ferric reducing antioxidant power (FRAP, 16.1-20.0 mM). In addition, it was observed that using DES as a plasticizer had improved the properties of BP, such as tensile strain (354.7-937.5%), melting temperature (4.6-20.3%), radical scavenging activity (0.6-88.6%), FRAP (0.9-18.7%) and antimicrobial activity (12.3-33.6%) compared to MCBP, due to the fact DES has caused different degrees of plasticization via hydrogen bonds and ionic bonds with the polymer chains, and induced a lower pH condition. Therefore, it was suggested that these BPs with DES could contribute to food preservation properties.
  6. Gan CS, Lim SK, Chee CF, Yusof R, Heh CH
    Chem Biol Drug Des, 2018 02;91(2):448-455.
    PMID: 28834304 DOI: 10.1111/cbdd.13091
    Dengvaxia® (CTD-TDV), the only licensed tetravalent dengue vaccine by Sanofi Pasteur, was made available since 2015. However, administration of CTD-TDV, in general, has not received the prequalification recommendation from the World Health Organization. Having a universal antidengue agent for treatment will therefore beneficial. Accordingly, the development of nucleoside inhibitors specific to dengue viral polymerase that perturb dengue infection has been studied by many. Alternatively, we have used a marketed anti-HCV prodrug sofosbuvir to study its in silico and in vitro effects against dengue. As a result, the active metabolite of sofosbuvir (GS-461203) was predicted to bind to the catalytic motif (Gly-Asp-Asp) of dengue viral polymerase with binding affinity of -6.9 kcal/mol. Furthermore, sofosbuvir demonstrated excellent in vitro viral inhibition with an EC90 of 0.4 μm. In addition, this study demonstrated the requirement of specific liver enzymes to activate the prodrug into GS-461203 to exert its antidengue potential. All in all, sofosbuvir should be subjected to in-depth studies to provide information of its efficacy toward dengue and its lead potential as DENV polymerase inhibitor in human subjects. In conclusion, we have expended the potential of the clinically available drug sofosbuvir as treatment for dengue.
  7. Tan WL, Lee YK, Ho YF, Yusof R, Abdul Rahman N, Karsani SA
    PeerJ, 2018;5:e3939.
    PMID: 29404200 DOI: 10.7717/peerj.3939
    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.
  8. Lim KK, Chan YY, Teh CH, Ismail H, Yusof R, Muhi J, et al.
    Asia Pac J Clin Nutr, 2017 8 15;26(5):861-866.
    PMID: 28802296 DOI: 10.6133/apjcn.092016.06
    BACKGROUND AND OBJECTIVES: In 2000, legislation on mandatory universal salt iodisation was enacted in Sabah, Malaysia, to reduce the incidence of iodine deficiency disorders among its population. To evaluate the iodine levels among pregnant women from selected rural divisions in Sabah 13 years after the enactment of the universal salt iodisation programme.

    METHODS AND STUDY DESIGN: This cross-sectional study was conducted from 1 May to 30 June, 2013, in three rural divisions of Sabah (the Interior, the West Coast, and Kudat). Data regarding domestic iodised salt use and iodine-containing supplement consumption were obtained from respondents through face-to-face interviews; goitre enlargement was examined through palpation and graded according to the World Health Organization classification. Spot urine samples were also obtained to assess urinary iodine levels by using an in-house modified micromethod.

    RESULTS: In total, 534 pregnant women participated. The prevalence of goitre was 1.0% (n=5), noted only in the West Coast and Kudat divisions. Although all pregnant women consumed iodised salt, overall median urinary iodine concentration was only 106 μg/L, indicating insufficient iodine intake, with nearly two-thirds of the women (60%) having a median urinary iodine concentrations of <150 μg/L.

    CONCLUSIONS: Pregnant women from the rural divisions in Sabah still exhibit iodine deficiency disorder despite the mandatory universal salt iodisation programme. Iodine supplementation programmes targeting pregnant women are warranted.

  9. Koh KC, Islam M, Chan WK, Lee WY, Ho YW, Alsagoff SAH, et al.
    Med J Malaysia, 2017 08;72(4):209-214.
    PMID: 28889131
    INTRODUCTION: In Malaysia, the prevalence of missed opportunities for HIV-testing is unknown. Missed opportunities have been linked to late diagnosis of HIV and poorer outcome for patients. We describe missed opportunities for earlier HIV-testing in newly-HIV-diagnosed patients.

    METHODS: Cross sectional study. Adult patients diagnosed with HIV infection and had at least one medical encounter in a primary healthcare setting during three years prior to diagnosis were included. We collected data on sociodemographic characteristics, patient characteristics at diagnosis, HIV-related conditions and whether they were subjected to risk assessment and offered HIV testing during the three years prior to HIV diagnosis.

    RESULTS: 65 newly HIV-diagnosed patients (male: 92.3%; Malays: 52.4%; single: 66.7%; heterosexual: 41%; homosexual 24.6%; CD4 <350 at diagnosis: 63%). 93.8% were unaware of their HIV status at diagnosis. Up to 56.9% had presented with HIV-related conditions at a primary healthcare facility during the three years prior to diagnosis. Slightly more than half were had risk assessment done and only 33.8% were offered HIV-testing.

    CONCLUSIONS: Missed opportunities for HIV-testing was unacceptably high with insufficient risk assessment and offering of HIV-testing. Risk assessment must be promoted and primary care physicians must be trained to recognize HIV-related conditions that will prompt them to offer HIVtesting.

  10. Amir-Hassan A, Lee VS, Baharuddin A, Othman S, Xu Y, Huang M, et al.
    J Mol Graph Model, 2017 06;74:273-287.
    PMID: 28458006 DOI: 10.1016/j.jmgm.2017.03.010
    Effective novel peptide inhibitors which targeted the domain III of the dengue envelope (E) protein by blocking dengue virus (DENV) entry into target cells, were identified. The binding affinities of these peptides towards E-protein were evaluated by using a combination of docking and explicit solvent molecular dynamics (MD) simulation methods. The interactions of these complexes were further investigated by using the Molecular Mechanics-Poisson Boltzmann Surface Area (MMPBSA) and Molecular Mechanics Generalized Born Surface Area (MMGBSA) methods. Free energy calculations of the peptides interacting with the E-protein demonstrated that van der Waals (vdW) and electrostatic interactions were the main driving forces stabilizing the complexes. Interestingly, calculated binding free energies showed good agreement with the experimental dissociation constant (Kd) values. Our results also demonstrated that specific residues might play a crucial role in the effective binding interactions. Thus, this study has demonstrated that a combination of docking and molecular dynamics simulations can accelerate the identification process of peptides as potential inhibitors of dengue virus entry into host cells.
  11. Mahmod SA, Snigh S, Djordjevic I, Mei Yee Y, Yusof R, Ramasamy TS, et al.
    Tissue Eng Regen Med, 2017 Apr;14(2):103-112.
    PMID: 30603467 DOI: 10.1007/s13770-016-0004-3
    Clinical investigations have shown a significant relationship between osteoarthritis (OA) and estrogens levels in menopausal women. Therefore, treatment with exogenous estrogens has been shown to decrease the risk of OA. However, the effect estrogen has not been clearly demonstrated in the chondrocytes using phytoestrogens, which lack the specific side-effects of estrogens, may provide an alternative therapy. This study was designed to examine the possible effects of phytoestrogen (daidzein) on human chondrocyte phenotype and extracellular matrix formation. Phytoestrogens which lack the specific side-effects of estrogens may provide beneficial effect without causing hormone based side effect. Human chondrocytes cells were cultured in 2D (flask) and 3D (PCL-CA scaffold) systems. Daidzein cytotoxic effect was determined by MTT assay. Chondrocyte cellular content of glycosaminoglycans (GAGs), total collagen and chondrogenic gene expression were determined in both culture systems after treatment with daidzein. Daidzein showed time-dependent and dose-independent effects on chondrocyte bioactivity. The compound at low doses showed significant (p  0.05). The expression levels of Fibronectin, Laminin and Integrin β1 were significantly increased especially in 3D culture system. This study was illustrated the potential positive effects of daidzein on maintenance of human chondrocyte phenotype and extracellular matrix formation suggesting an attractive and viable alternative therapy for OA.
  12. Rothan HA, Mahmod SA, Djordjevic I, Golpich M, Yusof R, Snigh S
    Tissue Eng Regen Med, 2017 Apr;14(2):93-101.
    PMID: 30603466 DOI: 10.1007/s13770-017-0023-8
    In this paper we report the differentiating properties of platelet-rich plasma releasates (PRPr) on human chondrocytes within elastomeric polycaprolactone triol-citrate (PCLT-CA) porous scaffold. Human-derived chondrocyte cellular content of glycosaminoglycans (GAGs) and total collagen were determined after seeding into PCLT-CA scaffold enriched with PRPr cells. Immunostaining and real time PCR was applied to evaluate the expression levels of chondrogenic and extracellular gene markers. Seeding of chondrocytes into PCLT-CA scaffold enriched with PRPr showed significant increase in total collagen and GAGs production compared with chondrocytes grown within control scaffold without PRPr cells. The mRNA levels of collagen II and SOX9 increased significantly while the upregulation in Cartilage Oligomeric Matrix Protein (COMP) expression was statistically insignificant. We also report the reduction of the expression levels of collagen I and III in chondrocytes as a consequence of proximity to PRPr cells within the scaffold. Interestingly, the pre-loading of PRPr caused an increase of expression levels of following extracellular matrix (ECM) proteins: fibronectin, laminin and integrin β over the period of 3 days. Overall, our results introduce the PCLT-CA elastomeric scaffold as a new system for cartilage tissue engineering. The method of PRPr cells loading prior to chondrocyte culture could be considered as a potential environment for cartilage tissue engineering as the differentiation and ECM formation is enhanced significantly.
  13. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
  14. Gan CS, Lim PJ, Razif MF, Yusof R, Othman S
    Rev Soc Bras Med Trop, 2017 Jan-Feb;50(1):99-103.
    PMID: 28327809 DOI: 10.1590/0037-8682-0207-2016
    INTRODUCTION:: Infection with all serotypes of dengue virus (DV) results in augmented antigen presentation by MHC class I molecules. However, the upregulation of immunoproteasome subunits only results from infection with two serotypes. This study aims to elucidate changes in the expression of immunoproteasome subunits resulting from infection with DV, particularly DV serotype 2 (DV2).

    METHODS:: HepG2 cells were grown in various culture milieu. Total cellular RNA and proteins were extracted and quantified.

    RESULTS:: Results demonstrated sequestration of immunoproteasome subunits LMP2 and LMP7 in DV2-infected cells.

    CONCLUSIONS:: This study provides insights into the mechanisms underlying immune evasion by DV.
  15. Yasin ZAM, Ibrahim F, Rashid NN, Razif MFM, Yusof R
    Curr Pharm Biotechnol, 2017;18(11):864-876.
    PMID: 29256348 DOI: 10.2174/1389201019666171219105920
    BACKGROUND: Skin is the largest and most visible organ of the body. Many of its functions include temperature regulation, immunity from microorganisms, maintaining electrolyte balance, and protection from physical injuries, chemical agents and ultraviolet (UV) radiation. Aging occurs in every layer of the skin, primarily due to the degradation of its components. Induction of degradative enzymes and the abundant production of reactive oxygen species lead to skin aging. Understanding the complexity of skin structure and factors contributing to the skin aging will help us impede the aging process. Applications of anti-aging products are a common method to prevent or repair damages that lead to aging.

    CONCLUSION: This review will provide information on the causes and indicators of skin aging as well as examine studies that have used plants to produce anti-aging products.

  16. Lim SK, Othman R, Yusof R, Heh CH
    Curr Comput Aided Drug Des, 2017;13(2):160-169.
    PMID: 27903217 DOI: 10.2174/1573409912666161130122622
    BACKGROUND: Hepatitis C is a significant cause for end-stage liver diseases and liver transplantation which affects approximately 3% of the global populations. Despite the current several direct antiviral agents in the treatment of Hepatitis C, the standard treatment for HCV infection is accompanied by several drawbacks, such as adverse side effects, high pricing of medications and the rapid emerging rate of resistant HCV variants.

    OBJECTIVES: To discover potential inhibitors for HCV helicase through an optimized in silico approach.

    METHODS: In this study, a homology model (HCV Genotype 3 helicase) was used as the target and screened through a benzopyran-based virtual library. Multiple-seedings of AutoDock Vina and in situ minimization were to account for the non-deterministic nature of AutoDock Vina search algorithm and binding site flexibility, respectively. ADME/T and interaction analyses were also done on the top hits via FAFDRUG3 web server and Discovery Studio 4.5.

    RESULTS: This study involved the development of an improved flow for virtual screening via implemention of multiple-seeding screening approach and in situ minimization. With the new docking protocol, the redocked standards have shown better RMSD value in reference to their native conformations. Ten benzopyran-like compounds with satisfactory physicochemical properties were discovered to be potential inhibitors of HCV helicase. ZINC38649350 was identified as the most potential inhibitor.

    CONCLUSION: Ten potential HCV helicase inhibitors were discovered via a new docking optimization protocol with better docking accuracy. These findings could contribute to the discovery of novel HCV antivirals and serve as an alternative approach of in silico rational drug discovery.

  17. Yusof R, Ahmed MA, Jelip J, Ngian HU, Mustakim S, Hussin HM, et al.
    Emerg Infect Dis, 2016 Aug;22(8):1371-80.
    PMID: 27433965 DOI: 10.3201/eid2208.151885
    Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.
  18. Sakai N, Mohd Yusof R, Sapar M, Yoneda M, Ali Mohd M
    Sci Total Environ, 2016 Apr 01;548-549:43-50.
    PMID: 26799806 DOI: 10.1016/j.scitotenv.2016.01.040
    Beta-agonists and sulfonamides are widely used for treating both humans and livestock for bronchial and cardiac problems, infectious disease and even as growth promoters. There are concerns about their potential environmental impacts, such as producing drug resistance in bacteria. This study focused on their spatial distribution in surface water and the identification of pollution sources in the Langat River basin, which is one of the most urbanized watersheds in Malaysia. Fourteen beta-agonists and 12 sulfonamides were quantitatively analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to visualize catchment areas of the sampling points, and source profiling was conducted to identify the pollution sources based on a correlation between a daily pollutant load of the detected contaminant and an estimated density of human or livestock population in the catchment areas. As a result, 6 compounds (salbutamol, sulfadiazine, sulfapyridine, sulfamethazine, sulfadimethoxine and sulfamethoxazole) were widely detected in mid catchment areas towards estuary. The source profiling indicated that the pollution sources of salbutamol and sulfamethoxazole were from sewage, while sulfadiazine was from effluents of cattle, goat and sheep farms. Thus, this combination method of quantitative and spatial analysis clarified the spatial distribution of these drugs and assisted for identifying the pollution sources.
  19. Rothan HA, Bahrani H, Abdulrahman AY, Mohamed Z, Teoh TC, Othman S, et al.
    Antiviral Res, 2016 Mar;127:50-6.
    PMID: 26794398 DOI: 10.1016/j.antiviral.2016.01.006
    Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.
  20. Yafouz B, Kadri NA, Rothan HA, Yusof R, Ibrahim F
    Electrophoresis, 2016 Feb;37(3):511-8.
    PMID: 26530354 DOI: 10.1002/elps.201500282
    Dielectrophoresis (DEP), the induced movement of dielectric particles placed in a nonuniform electric field, has been used as a potential technique for manipulation and separation of many biological samples without destructive consequences to the cell. Cells of the same genotype in different physiological and pathological states have unique morphological and structural features, therefore, it is possible to differentiate between them using their DEP responses. This paper reports the experimental discrimination of normal and dengue-infected human hepatic fetal epithelial cells (WRL-68 cells) based on their DEP crossover frequency, at which no resultant movement occurs in the cells in response to the DEP force. A microarray dot electrode was used to conduct the DEP experiments. The DEP forces applied to the cells were quantified by analyzing the light intensity shift within the electrode's dot region based on the Cumulative Modal Intensity Shift image analysis technique. The differences in dielectric properties between infected and uninfected cells were exploited by plotting a unique DEP spectrum for each set of cells. We observed that the crossover frequency decreased from 220 kHz for the normal WRL-68 cells to 140 kHz after infection with the dengue virus in a medium conductivity of 100 μS/cm. We conclude that the change in the DEP crossover frequency between dengue-infected cells and their healthy counterparts should allow direct characterization of these cell types by exploiting their electrophysiological properties.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links