Acarbose inhibits intestinal alpha-glucosidases resulting in diminished and delayed postprandial hyperglycaemia (PPH). Studies on effects of acarbose on postprandial lipaemia (PPL) have been inconclusive. Little is known about the effects of acarbose on PPH and PPL following intake of a polysaccharide diet. We studied 30 type 2 diabetic patients on dietary and/or oral hypoglycaemic agent(s). Thirty patients were recruited for food A (nasi lemak), 28 for food B (mee goreng) and 28 for food C (roti telur), which represent the typical diets of the three main races in Malaysia. Serial blood samples were taken at 15 min before and up to 240 min after each food intake, without acarbose. Subsequently, three doses of 50 mg acarbose were given orally and the same procedure was repeated the following day. There were significantly lower mean increments in plasma glucose levels after compared to before acarbose treatment 30, 45 and 60 min for food A and at 30, 45, 60, 120, 180 and 240 min for food C, but no significant difference was noted for food B. There was a significantly lower mean fasting glucose level after compared with before acarbose treatment following intake of food A and C but not food B. Short-term treatment with acarbose caused significant diminished and delayed PPH response with food A and C but not with food B. Acarbose was more effective in reducing PPH response in polysaccharide foods with a higher and earlier postprandial glucose peak than in those with a lower and lagged peak. There were no significant differences in the mean fasting or postprandial triglyceride levels before and after acarbose treatment, following intake of all three foods for up to 4 hours. Depending on the food absorption pattern, overnight low dose treatment with acarbose leads to diminished fasting and peak plasma glucose levels, and delayed PPH but insignificant reduction in postprandial lipaemia in poorly controlled type 2 diabetics following intake of racially different Malaysian food.
In the present study, a 50% ethanolic extract of Orthosiphon stamineus was tested for its α-glucosidase inhibitory activity. In vivo assays of the extract (containing 1.02%, 3.76%, and 3.03% of 3'hydroxy-5,6,7,4'-tetramethoxyflavone, sinensetin, and eupatorin, resp.) showed that it possessed an inhibitory activity against α-glucosidase in normal rats loaded with starch and sucrose. The results showed that 1000 mg/kg of the 50% ethanolic extract of O. stamineus significantly (P < 0.05) decreased the plasma glucose levels of the experimental animals in a manner resembling the effect of acarbose. In streptozotocin-induced diabetic rats, only the group treated with 1000 mg/kg of the extract showed significantly (P < 0.05) lower plasma glucose levels after starch loading. Hence, α-glucosidase inhibition might be one of the mechanisms by which O. stamineus extract exerts its antidiabetic effect. Furthermore, our findings indicated that the 50% ethanolic extract of O. stamineus can be considered as a potential agent for the management of diabetes mellitus.
A series of thiazole derivatives 1-21 were prepared, characterized by EI-MS and (1)H NMR and evaluated for α-glucosidase inhibitory potential. All twenty one derivatives showed good α-glucosidase inhibitory activity with IC50 value ranging between 18.23±0.03 and 424.41±0.94μM when compared with the standard acarbose (IC50, 38.25±0.12μM). Compound (8) (IC50, 18.23±0.03μM) and compound (7) (IC50=36.75±0.05μM) exhibited outstanding inhibitory potential much better than the standard acarbose (IC50, 38.25±0.12μM). All other analogs also showed good to moderate enzyme inhibition. Molecular docking studies were carried out in order to find the binding affinity of thiazole derivatives with enzyme. Studies showed these thiazole analogs as a new class of α-glucosidase inhibitors.
The prevalence of diabetes is increasing worldwide. The World Health Organisation has estimated that there will be around 300 million diabetics by 2025. The largest increase will occur in Asia. The prevalence of type 2 diabetes is increasing due to a combination of factors: increasing lifespan, sedentary lifestyle, excessive intake of high energy foods, increasing prevalence of overweight/obese people. The Finnish Diabetes Prevention Study Group has clearly shown that changes in the lifestyle of both overweight men and women with impaired glucose tolerance can reduce the incidence of type 2 diabetes by 58%. This finding was confirmed by the Diabetes Prevention Programme which found that lifestyle intervention in individuals with impaired fasting glucose or impaired glucose tolerance reduced the risk of developing type 2 diabetes by 58%, whereas treatment with metformin reduced the risk of type 2 diabetes by only 31%. Both acarbose and troglitazone have also been shown to reduce the progression to diabetes in individuals who are at high risk of developing type 2 diabetes. Since the cure for diabetes remains some way off our concerted efforts should be directed at prevention of diabetes in order to curb the increasing prevalence of diabetes worldwide. Lifestyle changes are more beneficial than long term drug therapy in the prevention of diabetes and should be actively promoted.
Edible seaweeds are valuable because of their organoleptic properties and complex polysaccharide content. A study was conducted to investigate the potential of dried edible seaweed extracts, its potential phenolic compounds and alginates for α-amylase inhibitory effects. The kinetics of inhibition was assessed in comparison with acarbose. The methanol extract of Laminaria digitata and the acetone extract of Undaria pinnatifida showed inhibitory activity against α-amylase, IC50 0.74 ± 0.02 mg/ml and 0.81 ± 0.03 mg/ml, respectively; both showed mixed-type inhibition. Phenolic compound, 2,5-dihydroxybenzoic acid was found to be a potent inhibitor of α-amylase with an IC50 value of 0.046 ± 0.004 mg/ml. Alginates found in brown seaweeds appeared to be potent inhibitors of α-amylase activity with an IC50 of (0.075 ± 0.010-0.103 ± 0.017) mg/ml, also a mixed-type inhibition. Overall, the findings provide information that crude extracts of brown edible seaweeds, phenolic compounds and alginates are potent α-amylase inhibitors, thereby potentially retarding glucose liberation from starches and alleviation of postprandial hyperglycaemia.
Acanthamoeba keratitis is a sight-endangering eye infection, and causative organism Acanthamoeba presents a significant concern to public health, given escalation of contact lens wearers. Contemporary therapy is burdensome, necessitating prompt diagnosis and aggressive treatment. None of the contact lens disinfectants (local and international) can eradicate Acanthamoeba effectively. Using a range of compounds targeting cellulose, ion channels, and biochemical pathways, we employed bioassay-guided testing to determine their anti-amoebic effects. The results indicated that acarbose, indaziflam, terbuthylazine, glimepiride, inositol, vildagliptin and repaglinide showed anti-amoebic effects. Compounds showed minimal toxicity on human cells. Therefore, effects of the evaluated compounds after conjugation with nanoparticles should certainly be the subject of future studies and will likely lead to promising leads for potential applications.
The aim of the study was to isolate digestive enzymes inhibitors from Mimosa pudica through a bioassay-guided fractionation approach. Repeated silica gel and sephadex LH 20 column chromatographies of bioactive fractions afforded stigmasterol, quercetin and avicularin as digestive enzymes inhibitors whose IC50 values as compared to acarbose (351.02 ± 1.46 μg mL-1) were found to be as 91.08 ± 1.54, 75.16 ± 0.92 and 481.7 ± 0.703 μg mL-1, respectively. In conclusion, M. pudica could be a good and safe source of digestive enzymes inhibitors for the management of diabetes in future.
The current study describes the discovery of novel inhibitors of α-glucosidase and α-amylase enzymes. For that purpose, new hybrid analogs of N-hydrazinecarbothioamide substituted indazoles 4-18 were synthesized and fully characterized by EI-MS, FAB-MS, HRFAB-MS, 1H-, and 13C NMR spectroscopic techniques. Stereochemistry of the imine double bond was established by NOESY measurements. All derivatives 4-18 with their intermediates 1-3, were evaluated for in vitro α-glucosidase and α-amylase enzyme inhibition. It is worth mentioning that all synthetic compounds showed good inhibition potential in the range of 1.54 ± 0.02-4.89 ± 0.02 µM for α-glucosidase and for α-amylase 1.42 ± 0.04-4.5 ± 0.18 µM in comparison with the standard acarbose (IC50 value of 1.36 ± 0.01 µM). In silico studies were carried out to rationalize the mode of binding interaction of ligands with the active site of enzymes. Moreover, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition.
A variety of dihydroquinazolin-4(1H)-one derivatives (1-37) were synthesized via "one-pot" three-component reaction scheme by treating aniline and different aromatic aldehydes with isatoic anhydride in the presence of acetic acid. Chemical structures of compounds were deduced by different spectroscopic techniques including EI-MS, HREI-MS, 1H-, and 13C-NMR. Compounds were subjected to α-amylase and α-glucosidase inhibitory activities. A number of derivatives exhibited significant to moderate inhibition potential against α-amylase (IC50 = 23.33 ± 0.02-88.65 ± 0.23 μM) and α-glucosidase (IC50 = 25.01 ± 0.12-89.99 ± 0.09 μM) enzymes, respectively. Results were compared with the standard acarbose (IC50 = 17.08 ± 0.07 μM for α-amylase and IC50 = 17.67 ± 0.09 μM for α-glucosidase). Structure-activity relationship (SAR) was rationalized by analyzing the substituents effects on inhibitory potential. Kinetic studies were implemented to find the mode of inhibition by compounds which revealed competitive inhibition for α-amylase and non-competitive inhibition for α-glucosidase. However, in silico study identified several important binding interactions of ligands (synthetic analogues) with the active site of both enzymes.
The use of antidiabetic agents which control glycemic levels in the blood and simultaneously inhibit oxidative stress is an important strategy in the prevention of Diabetes Mellitus and its complications. In our previous study, malabaricone C (3) and its dimer, giganteone A (5) exhibited significant DPPH free radical scavenging activities which were lower than the activity of the positive control, ascorbic acid. These compounds were evaluated for their α-glucosidase inhibitory activities at different concentrations (0.02-2.5 mM) in the present study. Compounds 3 (IC50 59.61 µM) and 5 (IC50 39.52 µM) were identified as active alpha-glucosidase inhibitors, each respectively being 24 and 37 folds more potent than the standard inhibitor, acarbose. Based on the molecular docking studies, compounds 3 and 5 docked into the active site of the α-glucosidase enzyme, forming mainly hydrogen bonds in the active site.
In the present work, aqueous ethanolic (60% ethanol) extracts from selected Malaysian herbs
including Murraya koenigii L. Spreng, Lawsonia inermis L., Cosmos caudatus Kunth, Piper
betle L., and P. sarmentosum Roxb. were evaluated for their ergogenic, anti-diabetic and
antioxidant potentials. Results showed that the analysed herbs had ergogenic property and
were able to activate 5'AMP-activated protein kinase (AMPK) in a concentration dependant
manner. The highest AMPK activation was exhibited by M. koenigii extract which showed no
significant (p > 0.05) difference with green tea (positive control). For anti-diabetic potential,
the highest α-glucosidase inhibition was exhibited by M. koenigii extract with IC50 of 43.35
± 7.5 µg/mL, which was higher than acarbose (positive control). The determinations of free
radical scavenging activity and total phenolics content (TPC) indicated that the analysed herbs
had good antioxidant activity. However, C. caudatus extract showed superior antioxidant
activity with IC50 against free radical and TPC of 21.12 ± 3.20 µg/mL and 221.61 ± 7.49 mg
GAE/g, respectively. RP-HPLC analysis established the presence of flavonoids in the herbs
wherein L. inermis contained the highest flavonoid (catechin, epicatechin, naringin and rutin)
content (668.87 mg/kg of extract). Correlations between the analyses were conducted, and
revealed incoherent trends. Overall, M. koenigii was noted to be the most potent herb for
enhancement of AMPK activity and α-glucosidase inhibition but exhibited moderate antioxidant activity. These results revealed that the selected herbs could be potential sources of
natural ergogenic and anti-diabetic/antioxidant agents due to their rich profile of phenolics.
Further analysis in vivo should be carried out to further elucidate the mechanism of actions of
these herbs as ergogenic aids and anti-diabetic/antioxidant agents.
The current study aimed to determine the best dose of methanol extract of Ocimum tenuiflorum L. leaves extract, and it is a fraction to blood-glucose-lowering in diabetic rats, and evaluated the α-amylase, α-glucosidase inhibitors and insulin level of diabetic rats used to achieve greater control over hyperglycemia. The result of the antihyperglycaemic of oral administration of a different dose of methanol extract in streptozotocin-induced rats showed that the highest dose of methanol extract significantly reduced the blood glucose level compared to another dose. Also, the result of repeated administration of methanol fractions indicates that ethyl acetate-butanol fraction exhibited a stronger antihyperglycemic effect than chloroform and ethanol-water fractions. Moreover, the result showed that effect of methanol extract and its fraction on α-glucosidase and α-amylase enzymes activities and its insulin level by in vitro study, ethyl acetate-butanol fraction could control with low concentration compared to other fractions and acarbose that used as a positive control. From the result of insulin level, methanol extract and fraction did not show any significant. These findings indicated that the active crude extract (methanol) and its active fractions (ethyl acetate/butanol) could exert significant glucose-lowering effect due to the presence of polyphenolics active constituents. In conclusion, isolation of the active components of Ocimum tenuiflorum L. may pave the way to the development of new agents for the treatment of diabetes and its complications.
This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid-liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.