Displaying publications 21 - 40 of 16708 in total

Abstract:
Sort:
  1. Warrier S, Marimuthu R, Sekhar S, Bhuvanalakshmi G, Arfuso F, Das AK, et al.
    Int J Biochem Cell Biol, 2016 06;75:104-11.
    PMID: 27063405 DOI: 10.1016/j.biocel.2016.04.002
    The extracellular ligand, Wnt, and its receptors are involved in sign al transduction and play an important role in axis formation and neural development. In neurodegenerative disorders such as Alzheimer's disease (AD), a decrease of the intracellular Wnt effector, β-catenin, has been linked to amyloid-β-peptide-induced neurotoxicity. Despite this knowledge, targeting Wnt inhibitors as potential biomarkers has not been explored, and harnessing Wnt activators as therapeutic candidates remains largely not investigated. A wide acting family of Wnt mediators, secreted frizzled-related proteins (sFRPs), has not been probed so far as molecular indicators of disease occurrence and progression of Alzheimer's. Unlike the effect of the Dickkopf (DKK) family of Wnt antagonists on AD, the sFRP molecules have a more pleiotropic impact on the Wnt signaling cascade and probably have a far-reaching involvement in neurodegeneration. The role of sFRPs has been poorly described in AD, and in this review, we analyze the present status of the role of sFRPs on neurodegeneration, their likely involvement, and potential implications in treatment modalities of AD. This information would provide valuable clues for the development of potential therapeutic targets for aberrant neurodegenerative disorders.
    Matched MeSH terms: Animals
  2. Thukral V, Varshney B, Ramly RB, Ponia SS, Mishra SK, Olsen CM, et al.
    Virus Genes, 2018 Apr;54(2):199-214.
    PMID: 29218433 DOI: 10.1007/s11262-017-1526-z
    The infectious salmon anaemia virus (ISAV) is a piscine virus, a member of Orthomyxoviridae family. It encodes at least 10 proteins from eight negative-strand RNA segments. Since ISAV belongs to the same virus family as Influenza A virus, with similarities in protein functions, they may hence be characterised by analogy. Like NS1 protein of Influenza A virus, s8ORF2 of ISAV is implicated in interferon antagonism and RNA-binding functions. In this study, we investigated the role of s8ORF2 in RNAi suppression in a well-established Agrobacterium transient suppression assay in stably silenced transgenic Nicotiana xanthi. In addition, s8ORF2 was identified as a novel interactor with SsMov10, a key molecule responsible for RISC assembly and maturation in the RNAi pathway. This study thus sheds light on a novel route undertaken by viral proteins in promoting viral growth, using the host RNAi machinery.
    Matched MeSH terms: Animals
  3. Norhaida A, Suharni M, Liza Sharmini AT, Tuda J, Rahmah N
    Ann Trop Med Parasitol, 2008 Mar;102(2):151-60.
    PMID: 18318937 DOI: 10.1179/136485908X252250
    Currently, the laboratory diagnosis of toxocariasis, caused by Toxocara canis or T. cati, mainly relies on serological tests. Unfortunately, however, the specificities of most of the commercial tests that are available for the serodiagnosis of this disease are not very high and this may cause problems, especially in tropical countries where co-infections with other helminths are common. In an effort to develop a serological assay with improved specificity for the detection of Toxocara infection, an IgG(4)-ELISA based on a recombinant version (rTES-30USM) of the 30-kDa Toxocara excretory-secretory antigen (TES-30) has recently been developed. To produce the antigen, the TES-30 gene was cloned via assembly PCR, subcloned into a His-tagged prokaryotic expression vector, and purified by affinity chromatography using Ni(2+)-nitrilotriacetic-acid (Ni-NTA) resin. The performance of the ELISA based on the recombinant antigen was then compared with that of commercial kit, based on an IgG-ELISA, for the serodiagnosis of toxocariasis (Toxocara IgG-ELISA; Cypress Diagnostics, Langdorp, Belgium). Both assays were used to test 338 serum samples, including 26 samples from probable cases of toxocariasis. Assuming that all the probable cases were true cases, the assay based on rTES-30USM demonstrated a sensitivity of 92.3% (24/26) and a specificity of 89.6% (103/115) whereas the commercial kit exhibited a sensitivity of 100% (26/26) but a specificity of only 55.7% (64/115). The high sensitivity and specificity exhibited by the new IgG(4)-ELISA should make the assay a good choice for use in tropical countries and any other area where potentially cross-reactive helminthic infections are common.
    Matched MeSH terms: Animals
  4. Moriya S, Tan VP, Yee AK, Parhar IS
    Neurosci Lett, 2019 08 24;708:134330.
    PMID: 31201839 DOI: 10.1016/j.neulet.2019.134330
    In Parkinson's disease (PD), several genes have been identified as the PD-related genes, however, the regulatory mechanisms of these gene expressions have not been fully identified. In this study, we investigated the effect of inflammation, one of the major risk factors in PD on expressions of the PD-related genes. Lipopolysaccharide (LPS) was intraperitoneally administered to mature male zebrafish and gene expressions in the brains were examined by real-time PCR. In the inflammation-related genes, expressions of tnfb, il1b and il6 were increased at 2 days post administration in the 10 μg group, and tnfb expression was also increased at 4 days post administration in the 1 μg and 10 μg group. In the PD-related genes, pink1 expression was significantly decreased at 4 days, atp13a2 expression was significantly increased at 7 days, and uchl1 expression was significantly decreased at 7 days. This suggests that pink1, atp13a2 and uchl1 expressions are regulated by inflammation, and this regulatory mechanism might be involved in the progress of PD.
    Matched MeSH terms: Animals
  5. YAP JAA YEE, AMIZA MAT AMIN
    MyJurnal
    This study aimed to determine the physicochemical properties of undulated surf clam (Paphia undulata) hydrolysate as affected by the degree of hydrolysis (DH). Three levels of DH of undulated surf clam hydrolysate were prepared which were DH 36.57% (without any enzymatic hydrolysis), DH 58.25% (0.5% Alcalase®; 5 min; pH 7.5; 60ºC) and DH 91.26% (1% Alcalase®; 30 min; pH 7.5; 60ºC). After protein hydrolysis, the undulated surf clam hydrolysates were centrifuged, and their supernatants were freeze-dried. This study found that the protein hydrolysate with lower DH (DH 36.57%) gave lower protein content and higher ash and fat contents compared to other samples (DH 58.25% and DH 91.26%). However, the carbohydrate content is similar in all samples (16.56-20.04%). This study also found that foaming properties (29.43-67.50%), emulsifying capacity (11.94-110.52%) and peptide solubility (57.61-94.08%) were affected by the DH. As DH increased, the emulsifying capacity decreased, while peptide solubility increased. While the foaming capacity increased with increasing DH until it reached a maximum value and level off afterwards. For colour parameters, although there were differences between L*, a* and b* values for all three samples, a fluctuating pattern was noted with DH. DH also did not affect the water-holding and oil-holding capacity of undulated surf clam hydrolysate. This study shows that certain physicochemical properties of undulated surf clam hydrolysate can be tailored by adjusting the degree of hydrolysis.
    Matched MeSH terms: Animals
  6. Shah SA, Sohail M, Minhas MU, Nisar-Ur-Rehman, Khan S, Hussain Z, et al.
    Drug Deliv Transl Res, 2019 Apr;9(2):555-577.
    PMID: 29450805 DOI: 10.1007/s13346-018-0486-8
    Cellulose acetate phthalate-based pH-responsive hydrogel was synthesized for fabrication of polymeric matrix tablets for gastro-protective delivery of loxoprofen sodium. Cellulose acetate phthalate (CAP) was cross-linked with methacrylic acid (MAA) using free radical polymerization technique. Fourier transform infrared (FTIR) spectra confirmed the formation of cross-linked structure of CAP-co-poly(methacrylic acid). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) confirmed the thermal stability of polymeric networks, and scanning electron microscopy (SEM) and energy-dispersive X-ray spectrum (EDS) images unveiled that the prepared formulations were porous in nature and thus the developed formulations had shown better diffusibility. Swelling and in vitro drug release was performed at various pHs and maximum swelling and release was obtained at pH 7.4, while swelling and release rate was very low at pH 1.2 which confirmed the pH-responsive behavior of CAP-co-poly(MAA). CAP-co-poly(MAA) copolymer prevents the release of loxoprofen sodium into the stomach due to reduced swelling at gastric pH while showing significant swelling and drug release in the colon. Cytotoxicity studies revealed higher biocompatibility of fabricated hydrogel. Acute oral toxicity studies were performed for the evaluation and preliminary screening of safety profile of the developed hydrogels. Matrix tablets were evaluated for release behavior at simulated body pH. The investigations performed for analysis of hydrogels and fabricated matrix tablets indicated the controlled drug release and gastro-protective drug delivery of CAP-co-poly(MAA) hydrogels and pH-sensitive matrix tablets for targeted delivery of gastro-sensitive/irritative agents. Graphical abstract.
    Matched MeSH terms: Animals
  7. Kim TW, Kim CW, Kwon SG, Hwang JH, Park DH, Kang DG, et al.
    Sains Malaysiana, 2016;45:1097-1103.
    In order to examine differences of meat quality traits depending on pH values post-mortem, the pH range was classified
    according to initial pH (pH45min) and ultimate pH (pH24hr) post-mortem. The differences of meat quality traits depending
    on sex were not changed by a number of amount, except for backfat thickness and fat content. The value of pH45min was
    positively correlated with pHdif, whereas pH24hr was negatively associated with lightness (CIE L*) and protein content. At
    pH45min post-slaughter, collagen content, fat content, shear force, water holding capacity and yellowness (CIE b*) showed
    lower values at the higher pH range of pH>6.7 than those of other ranges, but CIE L* and redness (CIE a*) presented
    the lowest value at the intermediate pH range of pH6.3~6.7. Conversely, at pH24hr post-slaughter, fat and moisture
    contents maintained the highest average values at the higher pH range of pH>6.1, but protein content showed higher
    value at the lower pH range of pH<5.7. Higher pH24hr appeared significantly lower shear force, but higher water holding
    capacity. CIE L*, a*, and b* values showed significantly higher values at the lowest region of pH24hr. Since meat quality
    characteristics seemed to be favored by consumers in rather than at the range of pH5.7~6.1, which showed significant
    differences of meat color, appearance, and meat juiciness, it is suggested that production of pork meat to appropriate
    pH value is performed by pig breeders and control measures taken during pre- and post-slaughters.
    Matched MeSH terms: Animals
  8. Oh L, Hafsi H, Hainaut P, Ariffin H
    Curr Opin Oncol, 2019 03;31(2):84-91.
    PMID: 30585860 DOI: 10.1097/CCO.0000000000000504
    PURPOSE OF REVIEW: Childhood blastomas, unlike adult cancers, originate from developing organs in which molecular and cellular features exhibit differentiation arrest and embryonic characteristics. Conventional cancer therapies, which rely on the generalized cytotoxic effect on rapidly dividing cells, may damage delicate organs in young children, leading to multiple late effects. Deep understanding of the biology of embryonal cancers is crucial in reshaping the cancer treatment paradigm for children.

    RECENT FINDINGS: p53 plays a major physiological role in embryonic development, by controlling cell proliferation, differentiation and responses to cellular stress. Tumor suppressor function of p53 is commonly lost in adult cancers through genetic alterations. However, both somatic and germline p53 mutations are rare in childhood blastomas, suggesting that in these cancers, p53 may be inactivated through other mechanisms than mutation. In this review, we summarize current knowledge about p53 pathway inactivation in childhood blastomas (specifically neuroblastoma, retinoblastoma and Wilms' tumor) through various upstream mechanisms. Laboratory evidence and clinical trials of targeted therapies specific to exploiting p53 upstream regulators are discussed.

    SUMMARY: Despite the low rate of inherent TP53 mutations, p53 pathway inactivation is a common denominator in childhood blastomas. Exploiting p53 and its regulators is likely to translate into more effective targeted therapies with minimal late effects for children. (see Video Abstract, Supplemental Digital Content 1, http://links.lww.com/COON/A23).

    Matched MeSH terms: Animals
  9. Ramli I, Kamarulzaman NH, Shaari K, Ee GC
    Nat Prod Res, 2004 Aug;18(4):289-94.
    PMID: 15214478
    Leaf extracts of Melicope lunu-ankenda were chemically studied and found to contain mixtures of hydrocarbons and squalene, fatty acids and esters. A geranylated coumaric acid was isolated as the major compound. The crude dichloromethane and methanol extracts of the leaves were found to be strongly larvicidal with LC50 values below 20 microg mL(-1). This is a first isolation of p-O-geranylcoumaric acid from this plant.
    Matched MeSH terms: Animals
  10. Tan FHP, Najimudin N, Watanabe N, Shamsuddin S, Azzam G
    Behav Brain Res, 2023 Aug 24;452:114568.
    PMID: 37414223 DOI: 10.1016/j.bbr.2023.114568
    Alzheimer's disease (AD) is the most common neurodegenerative condition in civilizations worldwide. The distinctive occurrence of amyloid-beta (Aβ) accumulation into insoluble fibrils is part of the disease pathophysiology with Aβ42 being the most toxic and aggressive Aβ species. The polyphenol, p-Coumaric acid (pCA), has been known to boost a number of therapeutic benefits. Here, pCA's potential to counteract the negative effects of Aβ42 was investigated. First, pCA was confirmed to reduce Aβ42 fibrillation using an in vitro activity assay. The compound was next examined on Aβ42-exposed PC12 neuronal cells and was found to significantly decrease Aβ42-induced cell mortality. pCA was then examined using an AD Drosophila melanogaster model. Feeding of pCA partially reversed the rough eye phenotype, significantly lengthened AD Drosophila's lifespan, and significantly enhanced the majority of the AD Drosophila's mobility in a sex-dependent manner. The findings of this study suggest that pCA may have therapeutic benefits for AD.
    Matched MeSH terms: Animals
  11. Ai L, Hu W, Zhang RL, Huang DN, Chen SH, Xu B, et al.
    Trop Biomed, 2020 Dec 01;37(4):947-962.
    PMID: 33612748 DOI: 10.47665/tb.37.4.947
    Different miRNAs are involved in the life cycles of Schistosoma japonicum. The aim of this study was to examine the expression profile of miRNAs in individual S. japonicum of different sex before and after pairing (18 and 24 dpi). The majority of differential expressed miRNAs were highly abundant at 14 dpi, except for sja-miR-125b and sja-miR-3505, in both male and female. Moreover, it was estimated that sja-miR-125b and sja-miR-3505 might be related to laying eggs. sja-miR-2a-5p and sja-miR-3484-5p were expressed at 14 dpi in males and were significantly clustered in DNA topoisomerase III, Rap guanine nucleotide exchange factor 1 and L-serine/L-threonine ammonia-lyase. Target genes of sja-miR-2d-5p, sja-miR-31- 5p and sja-miR-125a, which were expressed at 14 dpi in males but particularly females, were clustered in kelch-like protein 12, fructose-bisphosphate aldolase, class I, and heat shock protein 90 kDa beta. Predicted target genes of sja-miR-3483-3p (expressed at 28 dpi in females but not in males) were clustered in 26S proteasome regulatory subunit N1, ATPdependent RNA helicase DDX17. Predicted target genes of sja-miR-219-5p, which were differentially expressed at 28 dpi in females but particularly males, were clustered in DNA excision repair protein ERCC-6, protein phosphatase 1D, and ATPase family AAA domaincontaining protein 3A/B. Moreover, at 28 dpi, eight miRNAs were significantly up-regulated in females compared to males. The predicted target genes of these miRNAs were significantly clustered in heat shock protein 90 kDa beta, 26S proteasome regulatory subunit N1, and protein arginine N-methyltransferase 1. To sum up, differentially expressed miRNAs may have an essential role and provide necessary information on clarifying this trematode's growth, development, maturation, and infection ability to mammalian hosts in its complex life cycle, and may be helpful for developing new drug targets and vaccine candidates for schistosomiasis.
    Matched MeSH terms: Animals
  12. Mehta M, Chellappan DK, Wich PR, Hansbro NG, Hansbro PM, Dua K
    Future Med Chem, 2020 06;12(11):987-990.
    PMID: 32270706 DOI: 10.4155/fmc-2020-0066
    Matched MeSH terms: Animals
  13. Yang B, Wang Q, Li Y, Li L, Zhang Y, Leong Bin Abdullah MFI, et al.
    PLoS One, 2023;18(4):e0282488.
    PMID: 37099528 DOI: 10.1371/journal.pone.0282488
    OBJECTIVE: The present study opted for the adrenal phaeochromocytoma (PC12) cell line to frame a neuronal injury model induced by alcohol exposure in vitro, aiming to probe whether TAp73 and miR-96-5p are involved in the neuronal injury process induced by alcohol and elucidate the regulatory relationship between miR-96-5p and TAp73.

    METHODS: Immunofluorescence staining was used to observe the structural features of PC12 cells after culturing in medium with nerve growth factor (NGF). After different doses and different durations of alcohol treatment, CCK-8 assay was performed to detect the viability of PC12 cells, flow cytometry assay was carried out to detect the apoptosis rate of PC12 cells, dual-luciferase reporter assay was used to definitude the regulatory relationship between miR-96-5p and Tp73, and western blot was used to detect the protein expression of TAp73.

    RESULTS: The result of immunofluorescence staining demonstrated that PC12 cells abundantly expressed Map2, CCK-8 assay illustrated alcohol exposure significantly downregulated the cell viability of PC12 cells, Treatment with miR-96-5p inhibitor induced apoptosis and upregulated the expression of TAp73 in PC12 cells. Contrastingly, miR-96-5p mimic reversed the above effects and downregulation of TAp73 inhibited the apoptosis of PC12 cells.

    CONCLUSION: The present study demonstrated that miR-96-5p participates in alcohol-induced apoptosis in PC12 cells via negatively regulating TAp73.

    Matched MeSH terms: Animals
  14. Othman N, Nagoor NH
    Int J Oncol, 2017 Dec;51(6):1757-1764.
    PMID: 29075783 DOI: 10.3892/ijo.2017.4174
    Lung cancer remains a major health problem with a low 5-year survival rate of patients. Recent studies have shown that dysregulation of microRNAs (miRNAs) are prevalent in lung cancer and these aberrations play a significant role in the progression of tumour progression. In the present study, bioinformatics analyses was employed to predict potential miR-608 targets, which are associated with signaling pathways involved in cancer. Luciferase reporter assay identified AKT2 as a novel target of miR-608, and suppression of its protein levels was validated through western blot analysis. Zebrafish embryos were microinjected with cells transfected with miR-608 to elucidate the role of miR-608 in vivo, and immunostained with antibodies to detect activated caspase-3. We present the first evidence that miR-608 behaves as a tumour suppressor in A549 and SK-LU-1 cells through the regulation of AKT2, suggesting that selective targeting of AKT2 via miR-608 may be developed as a potential therapeutic strategy for miRNA-based non-small cell lung cancer (NSCLC) therapy.
    Matched MeSH terms: Animals
  15. Angelopoulou E, Paudel YN, Piperi C
    Pharmacol Res, 2019 12;150:104515.
    PMID: 31707035 DOI: 10.1016/j.phrs.2019.104515
    Parkinson's disease (PD) is a multifactorial disorder, attributed to a complex interplay between genetic and epigenetic factors. Although the exact etiology of the disease remains elusive, dysregulation of signaling pathways implicated in cell survival, apoptosis, protein aggregation, mitochondrial dysfunction, autophagy, oxidative damage and neuroinflammation, contributes to its pathogenesis. MicroRNAs (miRs) are endogenous short non-coding RNA molecules that negatively regulate gene expression at a post-transcriptional level. MiR-124 is one of the most abundantly expressed miRs in the brain that participates in neurogenesis, synapse morphology, neurotransmission, inflammation, autophagy and mitochondrial function. Accumulating pre-clinical evidence shows that miR-124 may act through calpain 1/p25/cyclin-dependent kinases 5 (CDK5), nuclear factor-kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), Bcl-2-interacting mediator of cell death (Bim), 5' adenosine monophosphate-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK)-mediated pathways to regulate cell survival, apoptosis, autophagy, mitochondrial dysfunction, oxidative damage and neuroinflammation in PD. Moreover, clinical evidence indicates that reduced plasma miR-124 levels may serve as a potential diagnostic biomarker in PD. This review provides an update of the pathogenic implication of miR-124 activity in PD and discusses its targeting potential for the development of future therapeutic strategies.
    Matched MeSH terms: Animals
  16. Zhang Y, Wu Q, Fang S, Li S, Zheng H, Zhang Y, et al.
    BMC Genomics, 2020 Aug 14;21(1):559.
    PMID: 32795331 DOI: 10.1186/s12864-020-06965-5
    BACKGROUND: Mud crab, Scylla paramamosain, a euryhaline crustacean species, mainly inhabits the Indo-Western Pacific region. Wild mud crab spawn in high-salt condition and the salinity reduced with the growth of the hatching larvae. When the larvae grow up to megalopa, they migrate back to estuaries and coasts in virtue of the flood tide, settle and recruit adult habitats and metamorphose into the crablet stage. Adult crab can even survive in a wide salinity of 0-35 ppt. To investigate the mRNA profile after salinity stress, S. paramamosain megalopa were exposed to different salinity seawater (low, 14 ppt; control, 25 ppt; high, 39 ppt).

    RESULTS: Firstly, from the expression profiles of Na+/K+/2Cl- cotransporter, chloride channel protein 2, and ABC transporter, it turned out that the 24 h might be the most influenced duration in the short-term stress. We collected megalopa under different salinity for 24 h and then submitted to mRNA profiling. Totally, 57.87 Gb Clean Data were obtained. The comparative genomic analysis detected 342 differentially expressed genes (DEGs). The most significantly DEGs include gamma-butyrobetaine dioxygenase-like, facilitated trehalose transporter Tret1, sodium/potassium-transporting ATPase subunit alpha, rhodanese 1-like protein, etc. And the significantly enriched pathways were lysine degradation, choline metabolism in cancer, phospholipase D signaling pathway, Fc gamma R-mediated phagocytosis, and sphingolipid signaling pathway. The results indicate that in the short-term salinity stress, the megalopa might regulate some mechanism such as metabolism, immunity responses, osmoregulation to adapt to the alteration of the environment.

    CONCLUSIONS: This study represents the first genome-wide transcriptome analysis of S. paramamosain megalopa for studying its stress adaption mechanisms under different salinity. The results reveal numbers of genes modified by salinity stress and some important pathways, which will provide valuable resources for discovering the molecular basis of salinity stress adaptation of S. paramamosain larvae and further boost the understanding of the potential molecular mechanisms of salinity stress adaptation for crustacean species.

    Matched MeSH terms: Animals
  17. Guo L, Liu X, Zhao C, Hu Z, Xu X, Cheng KK, et al.
    Anal Chem, 2022 Oct 25;94(42):14522-14529.
    PMID: 36223650 DOI: 10.1021/acs.analchem.2c01456
    Spatial segmentation is a critical procedure in mass spectrometry imaging (MSI)-based biochemical analysis. However, the commonly used unsupervised MSI segmentation methods may lead to inappropriate segmentation results as the MSI data is characterized by high dimensionality and low signal-to-noise ratio. This process can be improved by the incorporation of precise prior knowledge, which is hard to obtain in most cases. In this study, we show that the incorporation of partial or coarse prior knowledge from different sources such as reference images or biological knowledge may also help to improve MSI segmentation results. Here, we propose a novel interactive segmentation strategy for MSI data called iSegMSI, which incorporates prior information in the form of scribble-regularization of the unsupervised model to fine-tune the segmentation results. By using two typical MSI data sets (including a whole-body mouse fetus and human thyroid cancer), the present results demonstrate the effectiveness of the iSegMSI strategy in improving the MSI segmentations. Specifically, the method can be used to subdivide a region into several subregions specified by the user-defined scribbles or to merge several subregions into a single region. Additionally, these fine-tuned results are highly tolerant to the imprecision of the scribbles. Our results suggest that the proposed iSegMSI method may be an effective preprocessing strategy to facilitate the analysis of MSI data.
    Matched MeSH terms: Animals
  18. Wong CED, Hua K, Monis S, Saxena V, Norazit A, Noor SM, et al.
    J Neurochem, 2021 02;156(4):481-498.
    PMID: 32583440 DOI: 10.1111/jnc.15108
    Glial cell line-derived neurotrophic factor (GDNF) has been reported to enhance dopaminergic neuron survival and differentiation in vitro and in vivo, although those results are still being debated. Glial cell line-derived neurotrophic factor (gdnf) is highly conserved in zebrafish and plays a role in enteric nervous system function. However, little is known about gdnf function in the teleost brain. Here, we employed clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 to impede gdnf function in the maintenance of dopaminergic neuron development. Genotyping of gdnf crispants revealed successful deletions of the coding region with various mutant band sizes and down-regulation of gdnf transcripts at 1, 3 and 7 day(s) post fertilization. Notably, ~20% reduction in ventral diencephalic dopaminergic neuron numbers in clusters 8 and 13 was observed in the gdnf-deficient crispants. In addition, gdnf depletion caused a modest reduction in dopaminergic neurogenesis as determined by 5-ethynyl-2'-deoxyuridine pulse chase assay. These deleterious effects could be partly attributed to deregulation of dopaminergic neuron fate specification-related transcription factors (otp,lmx1b,shha,and ngn1) in both crispants and established homozygous mutants with whole mount in-situ hybridization (WISH) on gdnf mutants showing reduced otpb and lmx1b.1 expression in the ventral diencephalon. Interestingly, locomotor function of crispants was only impacted at 7 dpf, but not earlier. Lastly, as expected, gdnf deficiency heightened crispants vulnerability to 1-methyl-4-phenylpyridinium toxic insult. Our results suggest conservation of teleost gdnf brain function with mammals and revealed the interactions between gdnf and transcription factors in dopaminergic neuron differentiation.
    Matched MeSH terms: Animals; Animals, Genetically Modified
  19. Bringmann G, Dreyer M, Kopff H, Rischer H, Wohlfarth M, Hadi HA, et al.
    J Nat Prod, 2005 May;68(5):686-90.
    PMID: 15921410
    Three new fully dehydrogenated naphthylisoquinoline alkaloids, the 7,1'-coupled ent-dioncophylleine A (3a), the likewise 7,1'-coupled 5'-O-demethyl-ent-dioncophylleine A (4), and the 7,8'-linked dioncophylleine D (5), have been isolated from the leaves of the recently described Malaysian highland liana Ancistrocladusbenomensis. All of them lack an oxygen function at C-6; this so-called Dioncophyllaceae-type structural subclass had previously been found only in naphthylisoquinoline alkaloids from West and Central African plants. Moreover, compounds 3a and 4 are the first fully dehydrogenated, i.e., only axially chiral, naphthylisoquinoline alkaloids of this type that are optically active; compound 5, by contrast, is fully racemic, due to its configurationally unstable biaryl axis. The structural elucidation was achieved by spectroscopic and chiroptical methods. Biological activities of these alkaloids against different protozoan parasites are described.
    Matched MeSH terms: Animals
  20. Leong RZL, Lim LH, Chew YL, Teo SS
    Anim Biotechnol, 2023 Dec;34(9):4474-4487.
    PMID: 36576030 DOI: 10.1080/10495398.2022.2158094
    Sea cucumber is a bioremediator as it can composite organic matter and excrete inorganic matter. Sea cucumber has the potential to serve as a bioindicator in marine habitat as they provide an integrated insight into the status of their environment over long periods. Sea cucumbers are sensitive to the organic concentration in the marine environment and can effectively provide an early warning system for any organic contamination that can negatively impact the ecosystem. The availability of a reference transcriptome for sea cucumber would constitute an essential tool for identifying genes involved in crucial steps of the defence pathway. De novo assembly of RNA-seq data enables researchers to study the transcriptomes without needing a genome sequence. In this study, sea cucumbers fed with Kappaphycus alvarezii powder were treated with 0.20 mg/L copper concentration comprehensive transcriptome data containing 75,149 Unigenes, with a total length of 20,460,032 bp. A total of 8820 genes were predicted from the unigenes, annotated, and functionally categorized into 25 functional groups with approximately 20% cluster in signal transduction mechanism. The reference transcriptome presented and validated in this study is meaningful for identifying a wide range of gene(s) related to the bioindication of sea cucumber in a high copper environment.
    Matched MeSH terms: Animals
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links