Displaying publications 21 - 40 of 228 in total

Abstract:
Sort:
  1. Baskaran A, Chua KH, Sabaratnam V, Ravishankar Ram M, Kuppusamy UR
    BMC Complement Altern Med, 2017 Jan 13;17(1):40.
    PMID: 28086773 DOI: 10.1186/s12906-016-1546-6
    Pleurotus giganteus (Berk. Karunarathna and K.D. Hyde), has been used as a culinary mushroom and is known to have medicinal properties but its potential as an anti-inflammatory agent to mitigate inflammation triggered diseases is untapped. In this study, the molecular mechanism underlying the protective effect of ethanol extract of P. giganteus (EPG) against lipopolysaccharide (LPS) and combination of LPS and hydrogen peroxide (H2O2)-induced inflammation on RAW 264.7 macrophages was investigated.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  2. BenSaad LA, Kim KH, Quah CC, Kim WR, Shahimi M
    BMC Complement Altern Med, 2017 Jan 14;17(1):47.
    PMID: 28088220 DOI: 10.1186/s12906-017-1555-0
    Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  3. Janbaz KH, Arif J, Saqib F, Imran I, Ashraf M, Zia-Ul-Haq M, et al.
    BMC Complement Altern Med, 2014 Feb 22;14:71.
    PMID: 24559094 DOI: 10.1186/1472-6882-14-71
    BACKGROUND: Isodon rugosus is used in folk Pakistan traditional practices to cure ailments related to gastrointestinal, respiratory and cardiovascular problems. Present study was undertaken to validate these folkloric uses.

    METHODS: A crude methanol extract of the aerial parts of Isodon rugosus (Ir.Cr.) was used for both in vitro and in vivo experiments. The plant extract was tested on isolated rabbit jejunum preparations for possible presence of spasmolytic activity. Moreover, isolated rabbit tracheal and aorta preparations were used to ascertain the relaxant effects of the extract. Acetylcholinesterase and butyrylcholinesterase inhibitory activities of Ir.Cr were also determined as well as its antioxidant activity. The in vivo antiemetic activity of the extract was evaluated by using the chick emesis model, while the analgesic and antipyretic activities were conducted on albino mice.

    RESULTS: The application of the crude extract of I. rugosus to isolated rabbit jejunum preparations exhibited relaxant effect (0.01-0.3 mg/ml). The Ir.Cr also relaxed K+(80 m M)-induced spastic contractions in isolated rabbit jejunum preparations and shifted the Ca+2 concentration response curves towards right (0.01-0.3 mg/ml). Similarly, the extract, when applied to the isolated rabbit tracheal preparations relaxed the carbachol (1 μM)--as well as K+ (80 mM)-induced contractions in a concentration range of 0.01-1.0 mg/ml. Moreover, it also relaxed (0.01-3.0 mg/ml) the phenylephrine (1 μM)- and K+ (80 mM)-induced contractions in isolated rabbit aorta preparations. The Ir.Cr (80 mg/kg) demonstrated antipyretic activity on pyrogen-induced pyrexia in rabbits as compared to aspirin as standard drug. The Ir.Cr also exhibited anti-oxidant as well as inhibitory effect on acetyl- and butyryl-cholinesterase and lipoxygenase (0.5 mg/ml).

    CONCLUSIONS: The observed relaxant effect on isolated rabbit jejunum, trachea and aorta preparations caused by Ir.Cr is possibly to be mediated through Ca+2 channel blockade and therefore may provided scientific basis to validate the folkloric uses of the plant in the management of gastrointestinal, respiratory and cardiovascular ailments. The observed antioxidant activity as well as the lipoxygenase inhibitory activity may validate its traditional use in pain and inflammations.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  4. Assiry AA, Karobari MI, Bhavikatti SK, Marya A
    Biomed Res Int, 2021;2021:5510174.
    PMID: 34195261 DOI: 10.1155/2021/5510174
    Introduction: Illicium verum commonly known as star anise has been widely used in many Asian countries for pharmaceutical treatment for many diseases. The aim of the present study was to investigate the anti-inflammatory, astringent, and antimicrobial properties of an Illicium verum mouthwash.

    Methods: The present double blinded randomized clinical trial was conducted on fifty subjects, divided into groups A and B. Illicium verum mouthwash (group A) and placebo (group B) were provided to subjects for 21 days; after 14 days, washout period mouthwashes were switched as per crossover design between groups for 21 days. The gingival index (GI), papillary bleeding index (PBI), and oral microbial count were recorded at each stage of study.

    Results: The significant intragroup difference was observed, before crossover in group A and after crossover in group B for GI, PBI, and oral microbial count at different stages of study. On comparing both group A and group B at the first and second follow-up for GI, PBI, and oral microbial count, a statistically significant difference (p < 0.05) was observed. A statistically highly significant mean intergroup and intragroup difference was seen for all the clinical parameters at different stages of study.

    Conclusion: The study revealed that the Illicium verum/star anise has potent antibacterial, anti-inflammatory, and astringent properties.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  5. Zakaria ZA, Hussain MK, Mohamad AS, Abdullah FC, Sulaiman MR
    Biol Res Nurs, 2012 Jan;14(1):90-7.
    PMID: 21278166 DOI: 10.1177/1099800410395378
    Ficus deltoidea (Family Moraceae) leaves have been used traditionally by the Malays to treat ailments such as wounds, sores, and rheumatism. The aim of the present study was to determine the anti-inflammatory activity of the aqueous extract of F. deltoidea leaf (FDA) using acute and chronic inflammatory models. FDA, in the doses of 30, 100, and 300 mg/kg, was administered intraperitoneally in rats (n = 6) before the animals were subjected to the carrageenan-induced paw edema test, cotton pellet-induced granuloma test, and formalin test. The first two tests represent acute and chronic models of inflammation, respectively. The first and second phases of the formalin test represent neurogenic pain and inflammatory-mediated pain, respectively; thus, only the second phase was measured in the present study. Results showed that FDA exerted significant (p < .05) anti-inflammatory activity in all assays, with dose-response effects seen in the paw edema and formalin tests. In conclusion, the leaf of F. deltoidea possesses anti-inflammatory activity against acute and chronic inflammatory responses and against pain-associated inflammatory response. These findings justify the traditional uses of F. deltoidea leaves for treatment of inflammatory-mediated ailments.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  6. Venugopalan SK, T S S, V N, S M M, S R
    Biomed Pharmacother, 2016 Oct;83:1485-1492.
    PMID: 27619103 DOI: 10.1016/j.biopha.2016.08.068
    Thymus mitochondria play a crucial role in immune function. This study identifies the novel protective role of N-Acetylglucosamine (NAG) in dexamethasone (DEX) induced mitochondrial perturbations in mice thymus. Mice were induced with DEX (5mg/kg) and treated with NAG i.p. (266μg/kg, 400μg/kg and 800μg/kg) for 14 days, Withanolide A (800μg/kg) has been used as positive control. Dose dependent treatment of NAG against DEX significantly restored the mitochondrial enzyme levels (ICDH, KDH, SDH and MDH) and elevated the mitochondrial glutathione antioxidants defense (GSH, SOD, GPX and GST) thus improving the ATP status which was confirmed by ultrastructural alterations in mitochondria and nucleus using TEM studies. Further histopathological studies also revealed that NAG attenuate DEX induced thymotoxicity. Finally, the study concludes that dose dependent treatment of NAG supports a potential role in preventing DEX induced thymotoxicity and NAG acts as a beneficial pharmacological intervention in the DEX induced thymic repercussions.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  7. El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, et al.
    Biomed Pharmacother, 2023 Sep;165:115159.
    PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159
    Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  8. Vo TS, Ngo DH
    Biomolecules, 2019 02 21;9(2).
    PMID: 30795643 DOI: 10.3390/biom9020076
    Rhodomyrtus tomentosa (Aiton) Hassk. is a flowering plant belonging to the family Myrtaceae, native to southern and southeastern Asia. It has been used in traditional Vietnamese, Chinese, and Malaysian medicine for a long time for the treatment of diarrhea, dysentery, gynecopathy, stomachache, and wound healing. Moreover, R. tomentosa is used to make various food products such as wine, tea, and jam. Notably, R. tomentosa has been known to contain structurally diverse and biologically active metabolites, thus serving as a potential resource for exploring novel functional agents. Up to now, numerous phenolic and terpenoid compounds from the leaves, root, or fruits of R. tomentosa have been identified, and their biological activities such as antioxidant, antibacterial, anti-inflammatory, and anticancer have been evidenced. In this contribution, an overview of R. tomentosa and its health beneficial properties was focused on and emphasized.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  9. Khodzori FA, Mazlan NB, Chong WS, Ong KH, Palaniveloo K, Shah MD
    Biomolecules, 2023 Mar 06;13(3).
    PMID: 36979419 DOI: 10.3390/biom13030484
    Sponges are aquatic, spineless organisms that belong to the phylum Porifera. They come in three primary classes: Hexactinellidae, Demospongiae, and Calcarea. The Demospongiae class is the most dominant, making up over 90% of sponge species. One of the most widely studied genera within the Demospongiae class is Xestospongia, which is found across Southeast Asian waters. This genus is of particular interest due to the production of numerous primary and secondary metabolites with a wide range of biological potentials. In the current review, the antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antiparasitic, and cytotoxic properties of metabolites from several varieties of Southeast Asian Xestospongia spp. were discussed. A total of 40 metabolites of various natures, including alkaloids, fatty acids, steroids, and quinones, were highlighted in X. bergquistia, X. testudinaria, X. muta, X. exigua, X. ashmorica and X. vansoesti. The review aimed to display the bioactivity of Xestospongia metabolites and their potential for use in the pharmaceutical sector. Further research is needed to fully understand their bioactivities.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  10. Shaari K, Suppaiah V, Wai LK, Stanslas J, Tejo BA, Israf DA, et al.
    Bioorg Med Chem, 2011 Nov 1;19(21):6340-7.
    PMID: 21958738 DOI: 10.1016/j.bmc.2011.09.001
    A bioassay-guided investigation of Melicope ptelefolia Champ ex Benth (Rutaceae) resulted in the identification of an acyphloroglucinol, 2,4,6-trihydroxy-3-geranylacetophenone or tHGA, as the active principle inhibiting soybean 15-LOX. The anti-inflammatory action was also demonstrated on human leukocytes, where the compound showed prominent inhibitory activity against human PBML 5-LOX, with an IC(50) value of 0.42 μM, very close to the effect produced by the commonly used standard, NDGA. The compound concentration-dependently inhibited 5-LOX product synthesis, specifically inhibiting cysteinyl leukotriene LTC(4) with an IC(50) value of 1.80 μM, and showed no cell toxicity effects. The anti-inflammatory action does not seem to proceed via redox or metal chelating mechanism since the compound tested negative for these bioactivities. Further tests on cyclooxygenases indicated that the compound acts via a dual LOX/COX inhibitory mechanism, with greater selectivity for 5-LOX and COX-2 (IC(50) value of 0.40 μM). The molecular features that govern the 5-LOX inhibitory activity was thus explored using in silico docking experiments. The residues Ile 553 and Hie 252 were the most important residues in the interaction, each contributing significant energy values of -13.45 (electrostatic) and -5.40 kcal/mol (electrostatic and Van der Waals), respectively. The hydroxyl group of the phloroglucinol core of the compound forms a 2.56Å hydrogen bond with the side chain of the carboxylate group of Ile 553. Both Ile 553 and Hie 252 are crucial amino acid residues which chelate with the metal ion in the active site. Distorting the geometry of these ligands could be the reason for the inhibition activity shown by tHGA. The molecular simulation studies supported the bioassay results and served as a good model for understanding the way tHGA binds in the active site of human 5-LOX enzyme.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  11. Tan BH, Ahemad N, Pan Y, Palanisamy UD, Othman I, Yiap BC, et al.
    Biopharm Drug Dispos, 2018 Apr;39(4):205-217.
    PMID: 29488228 DOI: 10.1002/bdd.2127
    Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC50 value of 32.23 μM and Ki value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC50 of 6.08 μM and Ki of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/Ki ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  12. Isa NM, Abdelwahab SI, Mohan S, Abdul AB, Sukari MA, Taha MM, et al.
    Braz. J. Med. Biol. Res., 2012 Jun;45(6):524-30.
    PMID: 22358425
    The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC50, yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µM and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µM. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  13. Giribabu N, Karim K, Kilari EK, Kassim NM, Salleh N
    Can J Diabetes, 2018 Apr;42(2):138-149.
    PMID: 28673757 DOI: 10.1016/j.jcjd.2017.04.005
    OBJECTIVES: Consumption of Vitis vinifera seed has been reported to ameliorate liver pathology in diabetes mellitus; however, the mechanisms underlying its effects remain unknown. In this study, the anti-inflammatory, anti-apoptotic and pro-proliferative effects of the ethanolic seed extract of V. vinifera (VVSEE) in the liver in cases of diabetes were identified.

    METHODS: Adult male rats with streptozotocin-nicotinamide-induced diabetes were given 50, 100 or 200 mg/kg body weight VVSEE orally for 28 days. At the end of the treatment, body weights were determined, and the blood was collected for analyses of fasting blood glucose, insulin and liver enzyme levels. Following sacrifice, livers were harvested and their wet weights and glycogen contents were measured. Histologic appearances of the livers were observed under light microscopy, and the expression and distribution of inflammatory, apoptosis and proliferative markers in the livers were identified by molecular biologic techniques.

    RESULTS: Treatment of rats with diabetes by VVSEE attenuates decreased body weight, liver weight and liver glycogen content. Additionally, increases in fasting blood glucose levels and liver enzyme levels and decreases in serum insulin levels were ameliorated. Lesser histopathologic changes were also observed: decreased inflammation and apoptosis, as indicated by decreased levels of inflammatory markers (TNF-α, NF-Kβ, IKK-β, IL-6, IL-1β) and apoptosis markers (caspase-3, caspase-9 and Bax). VVSEE treatment induces increase in hepatocyte regeneration, as indicated by increased PCNA and Ki-67 distribution in the livers of rats with diabetes. Several molecules identified in VVSEE via gas chromatography mass spectrometry might contribute to these effects.

    CONCLUSIONS: The anti-inflammatory, anti-apoptotic and pro-proliferative effects of VVSEE could account for its hepatoprotective actions in diabetes.

    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  14. Zakaria ZA, Raden Mohd Nor RN, Hanan Kumar G, Abdul Ghani ZD, Sulaiman MR, Rathna Devi G, et al.
    Can J Physiol Pharmacol, 2006 Dec;84(12):1291-9.
    PMID: 17487238
    The present study was carried out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of the aqueous extract of Melastoma malabathricum leaves in experimental animals. The antinociceptive activity was measured using abdominal constriction, hot-plate, and formalin tests, whereas the anti-inflammatory and antipyretic activities were measured using carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, which was obtained after soaking the air-dried leaves in distilled water for 72 h and then preparing in concentrations of 10%, 50%, and 100% (v/v), was administered subcutaneously 30 min prior to subjection to the above mentioned assays. At all concentrations tested, the extract was found to exhibit significant (P < 0.05) antinociceptive, anti-inflammatory, and antipyretic activities in a concentration-independent manner. Our findings that the aqueous extract of M. malabathricum possesses antinociceptive, anti-inflammatory, and antipyretic activities supports previous claims on its traditional uses to treat various ailments.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  15. Ali SS, Noordin L, Bakar RA, Zainalabidin S, Jubri Z, Wan Ahmad WAN
    Cardiovasc Toxicol, 2021 08;21(8):605-618.
    PMID: 34114196 DOI: 10.1007/s12012-021-09666-x
    Clinically, timely reperfusion strategies to re-establish oxygenated blood flow in ischemic heart diseases seem to salvage viable myocardium effectively. Despite the remarkable improvement in cardiac function, reperfusion therapy could paradoxically trigger hypoxic cellular injury and dysfunction. Experimental laboratory models have been developed over the years to explain better the pathophysiology of cardiac ischemia-reperfusion injury, including the in vitro hypoxia-reoxygenation cardiac injury model. Furthermore, the use of nutritional myocardial conditioning techniques have been successful. The cardioprotective potential of flavonoids have been greatly linked to its anti-oxidant, anti-apoptotic and anti-inflammatory properties. While several studies have reviewed the cardioprotective properties of flavonoids, there is a scarce evidence of their function in the hypoxia-reoxygenation injury cell culture model. Hence, the aim of this review was to lay out and summarize our current understanding of flavonoids' function in mitigating hypoxia-reoxygenation cardiac injury based on evidence from the last five years. We also discussed the possible mechanisms of flavonoids in modulating the cardioprotective effects as such information would provide invaluable insight on future therapeutic application of flavonoids.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  16. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
  17. Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al.
    Chem Biol Drug Des, 2014 Feb;83(2):198-206.
    PMID: 24433224 DOI: 10.1111/cbdd.12226
    Inhibitory effects on neutrophils' chemotaxis, phagocytosis and production of reactive oxygen species (ROS) are among the important targets in developing anti-inflammatory agents and immunosuppressants. Eight series of chalcone derivatives including five newly synthesized series were assessed for their inhibitory effects on chemotaxis, phagocytosis and ROS production in human polymorphonuclear neutrophils (PMNs). Inhibition of PMNs' chemotaxis and phagocytosis abilities were investigated using the Boyden chamber technique and the Phagotest kit, respectively, while ROS production was evaluated using luminol- and lucigenin-based chemiluminescence assay. The new derivatives (4d and 8d), which contain 4-methylaminoethanol functional group were active in all the assays performed. It was also observed that some of the compounds were active in inhibiting chemotaxis while others suppressed phagocytosis and ROS production. The information obtained gave new insight into chalcone derivatives with the potential to be developed as immunomodulators.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  18. Tew XN, Xin Lau NJ, Chellappan DK, Madheswaran T, Zeeshan F, Tambuwala MM, et al.
    Chem Biol Interact, 2020 Feb 01;317:108947.
    PMID: 31968208 DOI: 10.1016/j.cbi.2020.108947
    Inflammatory responses play a remarkable role in the mechanisms of acute and chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, pulmonary fibrosis and lung cancer. Currently, there is a resurgence in the use of drugs from natural sources for various ailments as potent therapeutics. Berberine, an alkaloid prominent in the Chinese traditional system of medicine has been reported to exert therapeutic properties in various diseases. Nevertheless, the number of studies focusing on the curative potential of berberine in inflammatory diseases involving the respiratory system is limited. In this review, we have attempted to discuss the reported anti-inflammatory properties of berberine that function through several pathways such as, the NF-κB, ERK1/2 and p38 MAPK pathways which affect several pro-inflammatory cytokines in the pathophysiological processes involved in chronic respiratory diseases. This review would serve to provide valuable information to researchers who work in this field and a new direction in the field of drug discovery with respect to respiratory diseases.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  19. Dua K, Malyla V, Singhvi G, Wadhwa R, Krishna RV, Shukla SD, et al.
    Chem Biol Interact, 2019 Feb 01;299:168-178.
    PMID: 30553721 DOI: 10.1016/j.cbi.2018.12.009
    Oxidative stress is intensely involved in enhancing the severity of various chronic respiratory diseases (CRDs) including asthma, chronic obstructive pulmonary disease (COPD), infections and lung cancer. Even though there are various existing anti-inflammatory therapies, which are not enough to control the inflammation caused due to various contributing factors such as anti-inflammatory genes and antioxidant enzymes. This leads to an urgent need of novel drug delivery systems to combat the oxidative stress. This review gives a brief insight into the biological factors involved in causing oxidative stress, one of the emerging hallmark feature in CRDs and particularly, highlighting recent trends in various novel drug delivery carriers including microparticles, microemulsions, microspheres, nanoparticles, liposomes, dendrimers, solid lipid nanocarriers etc which can help in combating the oxidative stress in CRDs and ultimately reducing the disease burden and improving the quality of life with CRDs patients. These carriers improve the pharmacokinetics and bioavailability to the target site. However, there is an urgent need for translational studies to validate the drug delivery carriers for clinical administration in the pulmonary clinic.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology
  20. Umar MI, Asmawi MZ, Sadikun A, Majid AM, Al-Suede FS, Hassan LE, et al.
    Clinics (Sao Paulo), 2014 Feb;69(2):134-44.
    PMID: 24519205 DOI: 10.6061/clinics/2014(02)10
    The present study aimed to investigate the mechanisms underlying the anti-inflammatory and anti-angiogenic effects of ethyl-p-methoxycinnamate isolated from Kaempferia galanga.
    Matched MeSH terms: Anti-Inflammatory Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links