Displaying publications 21 - 40 of 852 in total

Abstract:
Sort:
  1. Basher MHA, Ithoi I, Mahmud R, Abdulsalam AM, Foead AI, Dawaki S, et al.
    Acta Trop, 2018 Feb;178:219-228.
    PMID: 29203378 DOI: 10.1016/j.actatropica.2017.11.015
    Acanthamoeba species are ubiquitous free-living protozoa that can be found worldwide. Occasionally, it can become parasitic and the causative agent of acanthamoebic keratitis (AK) and Granulomatous Amoebic Encephalitis (GAE) in man. A total of 160 environmental samples and 225 naturally-infected animal corneal swabs were collected for Acanthamoeba cultivation. Acanthamoeba was found to be high in samples collected from environments (85%, 136/160) compared to infected animal corneas (24.89%, 56/225) by microscopic examination. Analysis of nucleotide sequence of 18S rRNA gene of all the 192 cultivable Acanthamoeba isolates revealed 4 genotypes (T3, T4. T5 and T15) with T4 as the most prevalent (69.27%, 133/192) followed by T5 (20.31%), T15 (9.90%) and T3 (0.52%). Genotype T4 was from the strain of A. castellanii U07401 (44.27%), A. castellanii U07409 (20.83%) and A. polyphagaAY026243 (4.17%), but interestingly, only A. castellanii U07401 was detected in naturally infected corneal samples. In environmental samples, T4 was commonly detected in all samples including dry soil, dust, wet debris, wet soil and water. Among the T4, A. castellanii (U07409) strains were detected high occurrence in dry (45%) followed by aquatic (32.50%) and moist (22.50%) samples but however A. castellanii (U07401) strains were dominant in dry samples of soil and dust (93.10%). Subsequently, genotype T5 of A. lenticulata (U94741) strains were dominant in samples collected from aquatic environments (58.97%). In summary, A. castellanii (U07401) strains were found dominant in both environmental and corneal swab samples. Therefore, these strains are possibly the most virulent and dry soil or dusts are the most possible source of Acanthamoeba infection in cats and dogs corneas.
    Matched MeSH terms: Base Sequence
  2. Hamzah A, Abdulrashid N
    J. Biochem. Mol. Biol. Biophys., 2002 Oct;6(5):365-9.
    PMID: 12385974
    The xylanase gene from Bacillus pumilus PJ19 amplified by polymerase chain reaction (PCR) was cloned into pCRII vector and transformed into Escherichia coli strain INValphaF'. Starting from an ATG as an initiator codon, an open reading frame coding for 202 amino acids was obtained. The recombinant xylanase sequence showed a 96% homology with the xylanase sequence from B. pumilus IPO strain and had an estimated molecular weight of 22,474. Xylanase activity expressed by E. coli INValphaF' harboring the cloned gene was located primarily in the cytoplasmic fraction.
    Matched MeSH terms: Base Sequence
  3. Shirasuka Y, Nakajima K, Asakura T, Yamashita H, Yamamoto A, Hata S, et al.
    Biosci Biotechnol Biochem, 2004 Jun;68(6):1403-7.
    PMID: 15215616
    A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.
    Matched MeSH terms: Base Sequence
  4. Ishak SD, Razali SA, Kamarudin MS, Abol-Munafi AB
    Data Brief, 2020 Aug;31:105916.
    PMID: 32642522 DOI: 10.1016/j.dib.2020.105916
    The enzyme glucose-6-phosphate dehydrogenase (G6PD) catalyses the metabolite glucose-6-phosphate in producing NADPH during the first phase of pentose-phosphate pathway thus provides reducing power to all cells for cellular growth, antioxidant defence, and biosynthetic reactions in all living organism. The deliberate inclusion of starch as carbohydrate source in commercial feed however may affect the G6PD hepatic activity in cultured fish. We designed a set of primers to target G6PD gene in the popular Malaysian aquaculture species, Tor tambroides. For this dataset, the molecular characteristics of obtained T. tambroides G6PD (TtG6PD) nucleotide sequence was analysed using multiple alignments and phylogenetic analyses of the deduced amino acids. The set of primers obtained were then used in a study to evaluate the effect of different dietary carbohydrate inclusion levels on the hepatic TtG6PD mRNA expression of the T. tambroides fingerlings. Four groups of fish were given a dietary treatment of 15%, 20%, 25% and 30% starch at the optimal inclusion level of 23.4% for 10 weeks. The TtG6PD mRNA transcripts were measured using real-time-PCR assays and its expression normalized against β-actin, which acts as the internal control gene. This article provides supportive data in relation between hepatic TtG6PD mRNA gene expression in T. tambroides and how it is influenced by its dietary carbohydrate intake. These data will also assist in further nutritional genomic studies of carbohydrate and energy utilization for all species in the mahseer family.
    Matched MeSH terms: Base Sequence
  5. Loong SK, Tan KK, Zulkifle NI, AbuBakar S
    Data Brief, 2019 Aug;25:104159.
    PMID: 31312701 DOI: 10.1016/j.dib.2019.104159
    Paraburkholderia fungorum is an opportunistic bacteria infrequently associated with human infections. Here, we report the draft genome sequence of P. fungorum strain BF370, recovered from the synovial tissue of a patient in Malaysia. The P. fungorum genome contains a 8,950,957 bp chromosome with a G+C content of 61.8%. Colicin and heavy metal resistant genes were also present in the genome. Conserved sequence indels unique to P. fungorum were observed in the genome. The draft genome was deposited at the European Nucleotide Archive under the sample accession number ERS1776561 and study accession number PRJEB17921.
    Matched MeSH terms: Base Sequence
  6. Tan KK, Tiong V, Tan JY, Wong JE, Teoh BT, Abd-Jamil J, et al.
    Trop Biomed, 2021 Sep 01;38(3):283-288.
    PMID: 34362871 DOI: 10.47665/tb.38.3.069
    Various methods have been developed for rapid and high throughput full genome sequencing of SARS-CoV-2. Here, we described a protocol for targeted multiplex full genome sequencing of SARS-CoV-2 genomic RNA directly extracted from human nasopharyngeal swabs using the Ion Personal Genome Machine (PGM). This protocol involves concomitant amplification of 237 gene fragments encompassing the SARS-CoV-2 genome to increase the abundance and yield of viral specific sequencing reads. Five complete and one near-complete genome sequences of SARS-CoV-2 were generated with a single Ion PGM sequencing run. The sequence coverage analysis revealed two amplicons (positions 13 751-13 965 and 23 941-24 106), which consistently gave low sequencing read coverage in all isolates except 4Apr20-64- Hu. We analyzed the potential primer binding sites within these low covered regions and noted that the 4Apr20-64-Hu possess C at positions 13 730 and 23 929, whereas the other isolates possess T at these positions. The genome nucleotide variations observed suggest that the naturally occurring variations present in the actively circulating SARS-CoV-2 strains affected the performance of the target enrichment panel of the Ion AmpliSeq™ SARS CoV 2 Research Panel. The possible impact of other genome nucleotide variations warrants further investigation, and an improved version of the Ion AmpliSeq™ SARS CoV 2 Research Panel, hence, should be considered.
    Matched MeSH terms: Base Sequence
  7. Misbah S, Hassan H, Yusof MY, Hanifah YA, AbuBakar S
    Singapore Med J, 2005 Sep;46(9):461-4.
    PMID: 16123830
    This study aims to identify Acinetobacter of clinical isolates from the University of Malaya Medical Centre (UMMC), Kuala Lumpur, to the species level by 16S rDNA sequencing.
    Matched MeSH terms: Base Sequence
  8. Calero R, Mirabal M, Bouza J, Guzmán MV, Carrillo H, López Y, et al.
    BMC Immunol, 2013;14 Suppl 1:S9.
    PMID: 23458073 DOI: 10.1186/1471-2172-14-S1-S9
    TB, caused by Mycobacterium tuberculosis (MTB), is one of the major global infectious diseases. For the pandemic control, early diagnosis with sensitive and specific methods is fundamental. With the advent of bioinformatics' tools, the identification of several proteins involved in the pathogenesis of TB (TB) has been possible. In the present work, the MTB genome was explored to look for molecules with possible antigenic properties for their evaluation as part of new generation diagnostic kits based on the release of cytokines. Seven proteins from the MTB proteome and some of their combinations suited the computational test and the results suggested their potential use for the diagnosis of infection in the following population groups: Cuba, Mexico, Malaysia and sub-Saharan Africa. Our predictions were performed using public bioinformatics tools plus three computer programs, developed by our group, to facilitate information retrieval and processing.
    Matched MeSH terms: Base Sequence
  9. Hashimoto K, Watanobe T, Liu CX, Init I, Blair D, Ohnishi S, et al.
    Parasitol Res, 1997;83(3):220-5.
    PMID: 9089716
    For elucidation of the taxonomic status of the Japanese Fasciola species, whole mitochondrial DNA of Fasciola hepatica from Australia, F. gigantica from Malaysia, and Fasciola sp. from Japan was digested with three four-base-cutting endonucleases: HinfI, MspI, and RsaI. The resulting digestion patterns showed that for each enzyme there were some bands specific for each geographical isolate and that the Japanese Fasciola sp. shared more bands with F. gigantica than with F. hepatica. Nucleotide sequences of two regions, the second internal transcribed spacer (ITS2) of the nuclear ribosomal RNA cluster and mitochondrial cytochrome c oxidase subunit I (COI), were also compared among them. The ITS2 sequence was highly conserved among the three isolates. F. gigantica and the Japanese Fasciola sp. were identical, but they differed from the Australian F. hepatica at six sites, one of which was a deletion. The COI sequence was less conserved but implied a similar relationship between the isolates. There seems no reason to regard the Japanese Fasciola sp. as anything other than a strain of F. gigantica.
    Matched MeSH terms: Base Sequence
  10. Iwagami M, Ho LY, Su K, Lai PF, Fukushima M, Nakano M, et al.
    J Helminthol, 2000 Dec;74(4):315-22.
    PMID: 11138020
    The lung fluke, Paragonimus westermani (Kerbert, 1878), is widely distributed in Asia, and exhibits much variation in its biological properties. Previous phylogenetic studies using DNA sequences have demonstrated that samples from north-east Asia form a tight group distinct from samples from south Asia (Philippines, Thailand, Malaysia). Among countries from the latter region, considerable molecular diversity was observed. This was investigated further using additional DNA sequences (partial mitochondrial cytochrome c oxidase subunit 1 (COI) and the second internal transcribed spacer of the nuclear ribosomal gene repeat (ITS2)) from additional samples of P. westermani. Phylogenies inferred from these again found three or four groups within P. westermani, depending on the method of analysis. Populations of P. westermani from north-east Asia use snail hosts of the family Pleuroceridae and differ in other biological properties from populations in south Asia (that use snail hosts of the family Thiaridae). It is considered that the populations we sampled can be divided into two species, one in north-east Asia and the other in south Asia.
    Matched MeSH terms: Base Sequence
  11. Mohd Tap R, Sabaratnam P, Ahmad NA, Abd Razak MF, Hashim R, Ahmad N
    Mycopathologia, 2015 Aug;180(1-2):137-41.
    PMID: 25894509 DOI: 10.1007/s11046-015-9890-5
    An 11-year-old girl presented with multiple blisters on her the right foot complicated with cellulitis. The conventional and molecular identification were performed on the culture. The internal transcribed spacer (ITS) region in rRNA gene of the isolate was amplified by PCR. The sequence of the amplified ITS region matched 99 % with that of Chaetomium globosum in the GenBank. This is the first report describing C. globosum causing cutaneous infection in Malaysia.
    Matched MeSH terms: Base Sequence
  12. Bitrus AA, Zunita Z, Khairani-Bejo S, Othman S, Ahmad Nadzir NA
    Microb Pathog, 2018 Oct;123:323-329.
    PMID: 30053600 DOI: 10.1016/j.micpath.2018.07.033
    This study was designed to screen for SCCmec types and to characterize the attachment site (attB) and universal insertion site (orfX) of SCCmec in a collection of 27 isolates (n = 11) methicillin resistant S. aureus and (n = 16) methicillin susceptible S. aureus isolates in Malaysia. Screening of SCCmec types and characterization of the attachment site was carried out using PCR amplification and Sanger's sequencing method. The result showed that a large proportion of the MRSA isolates carried SCCmec type III 7/11 (63%). Three isolates 3/11 (27%) and 1/11 (9.0%) carried SCCmec type II and IVd respectively. Amplification of the universal insertion site of the SCCmec (orfX) and attachment site (attB) showed that all 16 S. aureus isolates were positive for the orfX gene, while only 7 were positive for the attB gene. Phylogenetic diversity showed that the isolates clustered around strains with features similar to a community acquired MRSA. In conclusion, a high carriage rate of SCCmec type III was observed. The result also showed that all the S. aureus isolates have the orfX structure; however, not all isolates possesses the attB site on the 3' end of the orfX region.
    Matched MeSH terms: Base Sequence
  13. Thottathil, Gincy Paily, Jayasekaran, Kandakumar, Ahmad Sofiman Othman
    Trop Life Sci Res, 2016;27(1):93-114.
    MyJurnal
    Agricultural development in the tropics lags behind development in the
    temperate latitudes due to the lack of advanced technology, and various biotic and abiotic
    factors. To cope with the increasing demand for food and other plant-based products,
    improved crop varieties have to be developed. To breed improved varieties, a better
    understanding of crop genetics is necessary. With the advent of next-generation DNA
    sequencing technologies, many important crop genomes have been sequenced. Primary
    importance has been given to food crops, including cereals, tuber crops, vegetables, and
    fruits. The DNA sequence information is extremely valuable for identifying key genes
    controlling important agronomic traits and for identifying genetic variability among the
    cultivars. However, massive DNA re-sequencing and gene expression studies have to be
    performed to substantially improve our understanding of crop genetics. Application of the
    knowledge obtained from the genomes, transcriptomes, expression studies, and
    epigenetic studies would enable the development of improved varieties and may lead to a
    second green revolution. The applications of next generation DNA sequencing
    technologies in crop improvement, its limitations, future prospects, and the features of
    important crop genome projects are reviewed herein.
    Matched MeSH terms: Base Sequence
  14. Matsumoto T, Sato M, Nishizono A, Ahmed K
    Arch Virol, 2019 Aug;164(8):2179-2182.
    PMID: 31111258 DOI: 10.1007/s00705-019-04286-x
    We identified two novel circoviruses, HK02976 and HK00220, in oral swabs from bats. The size of their full genome was 2,010 nucleotides (nt). The full-genome sequence of our strains shared 96.1% nucleotide sequence identity with each other, and 39.9%-69.5% identity with bat-associated circoviruses (BatACVs)1-9. Based on the species demarcation threshold for viruses of the family Circoviridae, which is 80% genome-wide nucleotide sequence identity, we have tentatively named this group of viruses "bat-associated circovirus 10" (BatACV10).
    Matched MeSH terms: Base Sequence/genetics
  15. Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, et al.
    PLoS One, 2021;16(7):e0254784.
    PMID: 34320003 DOI: 10.1371/journal.pone.0254784
    Rotavirus infection is a dilemma for developing countries, including Malaysia. Although commercial rotavirus vaccines are available, these are not included in Malaysia's national immunization program. A scarcity of data about rotavirus genotype distribution could be partially to blame for this policy decision, because there are no data for rotavirus genotype distribution in Malaysia over the past 20 years. From January 2018 to March 2019, we conducted a study to elucidate the rotavirus burden and genotype distribution in the Kota Kinabalu and Kunak districts of the state of Sabah. Stool specimens were collected from children under 5 years of age, and rotavirus antigen in these samples was detected using commercially available kit. Electropherotypes were determined by polyacrylamide gel electrophoresis of genomic RNA. G and P genotypes were determined by RT-PCR using type specific primers. The nucleotide sequence of the amplicons was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method. Rotavirus was identified in 43 (15.1%) children with watery diarrhea. The male:female ratio (1.9:1) of the rotavirus-infected children clearly showed that it affected predominantly boys, and children 12-23 months of age. The genotypes identified were G3P[8] (74% n = 31), followed by G1P[8] (14% n = 6), G12P[6](7% n = 3), G8P[8](3% n = 1), and GxP[8] (3% n = 1). The predominant rotavirus circulating among the children was the equine-like G3P[8] (59.5% n = 25) with a short electropherotype. Eleven electropherotypes were identified among 34 strains, indicating substantial diversity among the circulating strains. The circulating genotypes were also phylogenetically diverse and related to strains from several different countries. The antigenic epitopes present on VP7 and VP4 of Sabahan G3 and equine-like G3 differed considerably from that of the RotaTeq vaccine strain. Our results also indicate that considerable genetic exchange is occurring in Sabahan strains. Sabah is home to a number of different ethnic groups, some of which culturally are in close contact with animals, which might contribute to the evolution of diverse rotavirus strains. Sabah is also a popular tourist destination, and a large number of tourists from different countries possibly contributes to the diversity of circulating rotavirus genotypes. Considering all these factors which are contributing rotavirus genotype diversity, continuous surveillance of rotavirus strains is of utmost importance to monitor the pre- and post-vaccination efficacy of rotavirus vaccines in Sabah.
    Matched MeSH terms: Base Sequence
  16. Abu-Bakar SB, Razali NM, Naggs F, Wade C, Mohd-Nor SA, Aileen-Tan SH
    Mol Biol Rep, 2014 Mar;41(3):1799-805.
    PMID: 24443224 DOI: 10.1007/s11033-014-3029-5
    A total of 30 specimens belonging to five species, namely; Cryptozona siamensis, Sarika resplendens and Sarika sp. from the family Ariophantidae as well as Quantula striata and Quantula sp. from the family Dyakiidae were collected from the Langkawi Island in Northern Peninsular Malaysia. All specimens were identified through comparisons of shell morphology and amplification of a 500 bp segment of the 16S rRNA mtDNA gene. To assess phylogenetic insights, the sequences were aligned using ClustalW and phylogenetic trees were constructed. The analyses showed two major lineages in both Maximum Parsimony and Neighbour Joining phylogenetic trees. Each putative taxonomic group formed a monophyletic cluster. Our study revealed low species and intraspecies genetic diversities based on the 16S rRNA gene sequences. Thus, this study has provided an insight of land snail diversity in populations of an island highly influenced by anthropogenic activities through complementary use of shell morphological and molecular data.
    Matched MeSH terms: Base Sequence
  17. Cheng-Yee Fish-Low, Chee HY, Ainon Hamzah
    Sains Malaysiana, 2015;44:1625-1633.
    Microbial communities of two oil reservoirs from Malaysia, denoted as Platform Bo and Platform Pe were studied using
    culture-independent approach. Environmental DNA was extracted and the universal amplified ribosomal region (UARR)
    was target amplified for both prokaryotes and eukaryotes. The amplified products were purified and cloned into pTZ57R/T
    vector to construct the 16S/18S rDNA library. Restriction endocucleases HhaI and MspI were used to screen the library.
    From that, 125 and 253 recombinant plasmid representative clones from Platform Bo and Platform Pe, respectively, were
    sent for DNA sequencing. Twenty-six operational taxonomic units (OTUs) consist of 20 genera detected at Platform Bo
    and 17 OTUs consist of 13 genera detected at Platform Pe. Marinobacter and Acinetobacter species co-occurred in both
    platforms whereas the rest are site-specific. Gammaproteobacteria accounted for 86.0% of the microbial community in
    Platform Bo, where OTUs affiliated to Marinobacter, Pseudomonas and Marinobacterium that were the most abundant. The
    major OTUs in the Platform Pe were with affinities to Achromobacter, followed by Stenotrophomonas and Serratia. The
    only archaeal isolates were detected in Platform Pe, which affiliated to Thermocladium. The singletons and doubletons
    accounted for about 50.0% of the OTU abundance in both platforms, which considerably significant despite their rare
    occurrence.
    Matched MeSH terms: Base Sequence
  18. Hafiza A, Noor HH, Noor FA, Azlin I, Ainoon O
    Malays J Pathol, 2010 Dec;32(2):137-41.
    PMID: 21329186 MyJurnal
    Sickle cell disease (SCD) is an inherited red cell disorder, characterized by the tendency of haemoglobin S or sickle haemoglobin to polymerize and assume a characteristic sickle shape. Molecular analysis has been the mainstay of detection method when confirmation is required. Previously a polymerase chain reaction (PCR)-based restriction enzyme analysis was used for this purpose. A simple bidirectional allele-specific amplification, recently described by Waterfall in 2001 was used to detect the GAG --> GTG mutation on codon 6 of the beta globin gene. Two sets of primers for the mutant and the wild type alleles were used in a single PCR reaction to amplify the regions of interest. The resultant PCR products will produce two fragments at 517 and 267 base pair (bp) respectively. This report highlights the investigations for SCD in the family of a 16-year old girl with recurrent painful crisis affecting the lower limbs whereby the family members are asymptomatic for the disease. Her haemoglobin electrophoresis at an alkaline pH showed dense bands at the HbS and HbF regions, while her father and two sisters had bands at HbS, HbF and HbA. The PCR analysis showed that she was homozygous for the mutation by the presence of only one band at 267 bp fragment, while the father and her sisters were heterozygotes, with the presence of two bands at 267 as well as 517 bp fragments. DNA sequencing of the sample confirmed the mutation. In conclusion, this case report highlighted the simple and cheap yet practical method for molecular confirmation of the presence of HbS gene in subjects with homozygous or heterozygous state of the condition.
    Matched MeSH terms: Base Sequence
  19. Wan KL, Chang TL, Ajioka JW
    J. Biochem. Mol. Biol., 2004 Jul 31;37(4):474-9.
    PMID: 15469736
    The expressed sequence tag (EST) effort in Toxoplasma gondii has generated a substantial amount of gene information. To exploit this valuable resource, we chose to study tgd057, a novel gene identified by a large number of ESTs that otherwise show no significant match to known sequences in the database. Northern analysis showed that tgd057 is transcribed in this tachyzoite. The complete cDNA sequence of tgd057 is 1169 bp in length. Sequence analysis revealed that tgd057 possibly adopts two polyadenylation sites, utilizes the fourth in-frame ATG for translation initiation, and codes for a secretory protein. The longest open reading frame for the tgd057 gene was cloned and expressed as a recombinant protein (rd57) in Escherichia coli. Western analysis revealed that serum against rd57 recognized a molecule of ~21 kDa in the tachyzoite protein extract. This suggests that the tgd057 gene is expressed in vivo in the parasite.
    Matched MeSH terms: Base Sequence
  20. Ong SY, Pratap CB, Wan X, Hou S, Abdul Rahman AY, Saito JA, et al.
    J Bacteriol, 2012 Apr;194(8):2115-6.
    PMID: 22461552 DOI: 10.1128/JB.00121-12
    We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.
    Matched MeSH terms: Base Sequence
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links