Displaying publications 21 - 40 of 250 in total

Abstract:
Sort:
  1. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, et al.
    Mater Sci Eng C Mater Biol Appl, 2014 Mar 1;36:336-44.
    PMID: 24433920 DOI: 10.1016/j.msec.2013.12.022
    Biodegradable metals such as magnesium, iron and their alloys have been known as potential materials for temporary medical implants. However, most of the studies on biodegradable metals have been focusing on optimizing their mechanical properties and degradation behavior with no emphasis on improving their bioactivity behavior. We therefore investigated the possibility of improving iron biodegradation rate and bioactivity by incorporating various bioactive bioceramics. The iron-based bioceramic (hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate) composites were prepared by mechanical mixing and sintering process. Degradation studies indicated that the addition of bioceramics lowered the corrosion potential of the composites and slightly increased their corrosion rate compared to that of pure iron. In vitro cytotoxicity results showed an increase of cellular activity when rat smooth muscle cells interacted with the degrading composites compared to pure iron. X-ray radiogram analysis showed a consistent degradation progress with that found in vivo and positive tissue response up to 70 days implantation in sheep animal model. Therefore, the iron-based bioceramic composites have the potential to be used for biodegradable bone implant applications.
    Matched MeSH terms: Bone and Bones/drug effects*
  2. Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A
    J Mech Behav Biomed Mater, 2023 Oct;146:106099.
    PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099
    Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
    Matched MeSH terms: Bone and Bones*
  3. Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, et al.
    ACS Biomater Sci Eng, 2020 05 11;6(5):2985-2994.
    PMID: 33463293 DOI: 10.1021/acsbiomaterials.9b01789
    Hypoxia, the result of disrupted vasculature, can be categorized in the main limiting factors for fracture healing. A lack of oxygen can cause cell apoptosis, tissue necrosis, and late tissue healing. Remedying hypoxia by supplying additional oxygen will majorly accelerate bone healing. In this study, biphasic calcium phosphate (BCP) scaffolds were fabricated by robocasting, an additive manufacturing technique. Then, calcium peroxide (CPO) particles, as an oxygen-releasing agent, were coated on the BCP scaffolds. Segmental radial defects with the size of 15 mm were created in rabbits. Uncoated and CPO-coated BCP scaffolds were implanted in the defects. The empty (control) group received no implantation. Repairing of the bone was investigated via X-ray, histological analysis, and biomechanical tests at 3 and 6 months postoperatively, with immunohistochemical examinations at 6 months after operation. According to the radiological observations, formation of new bone was augmented at the interface between the implant and host bone and internal pores of CPO-coated BCP scaffolds compared to uncoated scaffolds. Histomorphometry analysis represented that the amount of newly formed bone in the CPO-coated scaffold was nearly two times higher than the uncoated one. Immunofluorescence staining revealed that osteogenic markers, osteonectin and octeocalcin, were overexpressed in the defects treated with the coated scaffolds at 6 months of postsurgery, demonstrating higher osteogenic differentiation and bone mineralization compared to the uncoated scaffold group. Furthermore, the coated scaffolds had superior biomechanical properties as in the case of 3 months after surgery, the maximal flexural force of the coated scaffolds reached to 134 N, while it was 92 N for uncoated scaffolds. The results could assure a boosted ability of bone repair for CPO-coated BCP scaffolds implanted in the segmental defect of rabbit radius because of oxygen-releasing coating, and this system of oxygen-generating coating/scaffold might be a potential for accelerated repairing of bone defects.
    Matched MeSH terms: Bone and Bones
  4. Tong M
    Pediatr Dermatol, 1995 Jun;12(2):134-7.
    PMID: 7659639
    Fraternal twins of Malay descent had the Rothmund-Thomson syndrome. This is a rare, autosomal recessive disorder characterized by photosensitivity, poikiloderma, short stature, skeletal defects, and juvenile cataracts. This is the first case report of the syndrome from southeast Asia.
    Matched MeSH terms: Bone and Bones/abnormalities
  5. Tin-Oo, M.M., Gopalakrishnan, V., Samsuddin, A.R., Al Salihi, K.A., Shamsuria, O.
    MyJurnal
    Use of synthetic hydroxyapatite (HA) in biomedical applications is well warranted. It has shown to have an excellent biocompatibility in human tooth and bones. Additionally it has been documented to possess antibacterial potentials. The present study was conducted to assess the presence of any such potential in locally produced (HA) using Streptococcus mutans, a common pathogen in the oral cavity. The study was carried out using 50, 100, 150, 200, 300, 400 and 800 mg/ml concentration of HA. The antibacterial property of HA was assessed using Miles and Misra method. Our studies showed that bacterial growth inhibitions of S. mutans occurred from 50 mg/ml, and complete inhibition was perceived at concentrations at 200mg/ml of HA. The antibacterial property HA should be used to good advantage as a bioactive biomaterial in dental and maxillofacial applications.
    Matched MeSH terms: Bone and Bones
  6. Thent ZC, Froemming GRA, Muid S
    Life Sci, 2018 Apr 01;198:1-7.
    PMID: 29432759 DOI: 10.1016/j.lfs.2018.02.013
    Bisphenol A (BPA) (2,2,-bis (hydroxyphenyl) propane), a well-known endocrine disruptor (ED), is the exogenous chemical that mimic the natural endogenous hormone like oestrogen. Due to its extensive exposure to humans, BPA is considered to be a major toxicological agent for general population. Environmental exposure of BPA results in adverse health outcomes including bone loss. BPA disturbs the bone health by decreasing the plasma calcium level and inhibiting the calcitonin secretion. BPA also stimulated differentiation and induced apoptosis in human osteoblasts and osteoclasts. However, little is known about the underlying mechanisms of the untoward effect of BPA against bone metabolism. The present review gives an overview on the possible mechanisms of BPA towards bone loss. The previous literature shows that BPA exerts its toxic effect on bone cells by binding to the oestrogen related receptor-gamma (ERγ), reducing the bone morphogenic protein-2 (BMP-2) and alkaline phosphatase (ALP) activities. BPA interrupts the bone metabolism via RANKL, apoptosis and Wnt/β-catenin signaling pathways. It is, however, still debated on the exact underlying mechanism of BPA against bone health. We summarised the molecular evidences with possible mechanisms of BPA, an old environmental culprit, in bone loss and enlightened the underlying understanding of adverse action of BPA in the society.
    Matched MeSH terms: Bone and Bones/drug effects*; Bone and Bones/metabolism; Bone and Bones/pathology
  7. Tan, S.L., Selvaratnam, L., Ahmad, T.S.
    JUMMEC, 2015;18(2):1-14.
    MyJurnal
    Tendon is a dense connective tissue that connects muscle to bone. Tendon can adapt to mechanical forces passing across it, through a reciprocal relationship between its cellular components (tenocytes and tenoblasts) and the extracellular matrix (ECM). In early development, the formation of scleraxis-expressing tendon progenitor population in the sclerotome is induced by a fibroblast growth factor signal secreted by the myotome. Tendon injury has been defined as a loss of cells or ECM caused by trauma. It represents a failure of cells and matrix adaptation to mechanical loading. Injury initiates attempts of tendon to repair itself, which has been defined as replacement of damaged or lost cells and ECM by new cells or new matrices. Tendon healing generally consists of four different phases: the inflammatory, proliferation, differentiation and remodelling phases. Clinically, tendons are repaired with a variety of surgical techniques, which show various degrees of success. In order to improve the conventional tendon repair methods, current tendon tissue engineering aims to investigate a repair method which can restore tissue defects with living cells, or cell based therapy. Advances in tissue engineering techniques would potentially yield to a cell-based product that could regenerate functional tendon tissue.
    Matched MeSH terms: Bone and Bones
  8. Tan W, Wazir N, Chiu C, Ko M
    Malays Orthop J, 2012 Nov;6(3):40-1.
    PMID: 25279055 MyJurnal DOI: 10.5704/MOJ.1207.003
    We report a case of a human bite that was initially inadequately treated and progressed to chronic osteomyelitis, finally resulting in digital amputation. Human bites are seemingly innocuous, but if neglected, may lead to subsequent infection and morbidity. Persistence of symptoms should alert the practitioner to the possibility of infection extending to the soft tissue or bone. Bacteriological studies commonly yield mixed aerobic and anaerobic flora. Early debridement and antibiotic treatment may prevent development of severe soft tissue or bone infection.
    Matched MeSH terms: Bone and Bones
  9. Tan VP, Macdonald HM, McKay HA
    J. Bone Miner. Res., 2015 Mar;30(3):585-6.
    PMID: 25381875 DOI: 10.1002/jbmr.2399
    Matched MeSH terms: Bone and Bones/physiology*
  10. Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, et al.
    J. Bone Miner. Res., 2014 Oct;29(10):2161-81.
    PMID: 24737388 DOI: 10.1002/jbmr.2254
    A preponderance of evidence from systematic reviews supports the effectiveness of weight-bearing exercises on bone mass accrual, especially during the growing years. However, only one systematic review (limited to randomized controlled trials) examined the role of physical activity (PA) on bone strength. Thus, our systematic review extended the scope of the previous review by including all PA intervention and observational studies, including organized sports participation studies, with child or adolescent bone strength as the main outcome. We also sought to discern the skeletal elements (eg, mass, structure, density) that accompanied significant bone strength changes. Our electronic-database, forward, and reference searches yielded 14 intervention and 23 observational studies that met our inclusion criteria. We used the Effective Public Health Practice Project (EPHPP) tool to assess the quality of studies. Due to heterogeneity across studies, we adopted a narrative synthesis for our analysis and found that bone strength adaptations to PA were related to maturity level, sex, and study quality. Three (of five) weight-bearing PA intervention studies with a strong rating reported significantly greater gains in bone strength for the intervention group (3% to 4%) compared with only three significant (of nine) moderate intervention studies. Changes in bone structure (eg, bone cross-sectional area, cortical thickness, alone or in combination) rather than bone mass most often accompanied significant bone strength outcomes. Prepuberty and peripuberty may be the most opportune time for boys and girls to enhance bone strength through PA, although this finding is tempered by the few available studies in more mature groups. Despite the central role that muscle plays in bones' response to loading, few studies discerned the specific contribution of muscle function (or surrogates) to bone strength. Although not the focus of the current review, this seems an important consideration for future studies.
    Matched MeSH terms: Bone and Bones/physiology*
  11. Tan TH, Lee BN
    World J Nucl Med, 2014 Sep;13(3):190-2.
    PMID: 25538491 DOI: 10.4103/1450-1147.144820
    We described a case of 51-year-old female patient presented with a right calf necrotising fasciitis (NF) where osteomyelitis (OM) was suspected. (99m)Tc-hydroxymethane diphosphonate three-phase bone scintigraphy and (99m)Tc-besilosomab scan failed to demonstrate classical features of OM. The final diagnosis was only made by isolating Acinetobacter sp. in both intra-operative bone and tissue cultures from below-knee amputation. As conclusions, the detection of lower limb OM by (99m)Tc-besilosomab scan is not easy when there is concurrence overlying NF. The unusual three-phase bone scan finding of pericortical accumulation of tracer as an early sign of OM is highlighted in this case.
    Matched MeSH terms: Bone and Bones
  12. Tan ML, Abrams SA, Osborn DA
    Cochrane Database Syst Rev, 2020 Dec 11;12(12):CD013046.
    PMID: 33305822 DOI: 10.1002/14651858.CD013046.pub2
    BACKGROUND: Vitamin D deficiency is common worldwide, contributing to nutritional rickets and osteomalacia which have a major impact on health, growth, and development of infants, children and adolescents. Vitamin D levels are low in breast milk and exclusively breastfed infants are at risk of vitamin D insufficiency or deficiency.

    OBJECTIVES: To determine the effect of vitamin D supplementation given to infants, or lactating mothers, on vitamin D deficiency, bone density and growth in healthy term breastfed infants.

    SEARCH METHODS: We used the standard search strategy of Cochrane Neonatal to 29 May 2020 supplemented by searches of clinical trials databases, conference proceedings, and citations.

    SELECTION CRITERIA: Randomised controlled trials (RCTs) and quasi-RCTs in breastfeeding mother-infant pairs comparing vitamin D supplementation given to infants or lactating mothers compared to placebo or no intervention, or sunlight, or that compare vitamin D supplementation of infants to supplementation of mothers.

    DATA COLLECTION AND ANALYSIS: Two review authors assessed trial eligibility and risk of bias and independently extracted data. We used the GRADE approach to assess the certainty of evidence.

    MAIN RESULTS: We included 19 studies with 2837 mother-infant pairs assessing vitamin D given to infants (nine studies), to lactating mothers (eight studies), and to infants versus lactating mothers (six studies). No studies compared vitamin D given to infants versus periods of infant sun exposure. Vitamin D supplementation given to infants: vitamin D at 400 IU/day may increase 25-OH vitamin D levels (MD 22.63 nmol/L, 95% CI 17.05 to 28.21; participants = 334; studies = 6; low-certainty) and may reduce the incidence of vitamin D insufficiency (25-OH vitamin D < 50 nmol/L) (RR 0.57, 95% CI 0.41 to 0.80; participants = 274; studies = 4; low-certainty). However, there was insufficient evidence to determine if vitamin D given to the infant reduces the risk of vitamin D deficiency (25-OH vitamin D < 30 nmol/L) up till six months of age (RR 0.41, 95% CI 0.16 to 1.05; participants = 122; studies = 2), affects bone mineral content (BMC), or the incidence of biochemical or radiological rickets (all very-low certainty). We are uncertain about adverse effects including hypercalcaemia. There were no studies of higher doses of infant vitamin D (> 400 IU/day) compared to placebo. Vitamin D supplementation given to lactating mothers: vitamin D supplementation given to lactating mothers may increase infant 25-OH vitamin D levels (MD 24.60 nmol/L, 95% CI 21.59 to 27.60; participants = 597; studies = 7; low-certainty), may reduce the incidences of vitamin D insufficiency (RR 0.47, 95% CI 0.39 to 0.57; participants = 512; studies = 5; low-certainty), vitamin D deficiency (RR 0.15, 95% CI 0.09 to 0.24; participants = 512; studies = 5; low-certainty) and biochemical rickets (RR 0.06, 95% CI 0.01 to 0.44; participants = 229; studies = 2; low-certainty). The two studies that reported biochemical rickets used maternal dosages of oral D3 60,000 IU/day for 10 days and oral D3 60,000 IU postpartum and at 6, 10, and 14 weeks. However, infant BMC was not reported and there was insufficient evidence to determine if maternal supplementation has an effect on radiological rickets (RR 0.76, 95% CI 0.18 to 3.31; participants = 536; studies = 3; very low-certainty). All studies of maternal supplementation enrolled populations at high risk of vitamin D deficiency. We are uncertain of the effects of maternal supplementation on infant growth and adverse effects including hypercalcaemia. Vitamin D supplementation given to infants compared with supplementation given to lactating mothers: infant vitamin D supplementation compared to lactating mother supplementation may increase infant 25-OH vitamin D levels (MD 14.35 nmol/L, 95% CI 9.64 to 19.06; participants = 269; studies = 4; low-certainty). Infant vitamin D supplementation may reduce the incidence of vitamin D insufficiency (RR 0.61, 95% CI 0.40 to 0.94; participants = 334; studies = 4) and may reduce vitamin D deficiency (RR 0.35, 95% CI 0.17 to 0.72; participants = 334; studies = 4) but the evidence is very uncertain. Infant BMC and radiological rickets were not reported and there was insufficient evidence to determine if maternal supplementation has an effect on infant biochemical rickets. All studies enrolled patient populations at high risk of vitamin D deficiency. Studies compared an infant dose of vitamin D 400 IU/day with varying maternal vitamin D doses from 400 IU/day to > 4000 IU/day. We are uncertain about adverse effects including hypercalcaemia.

    AUTHORS' CONCLUSIONS: For breastfed infants, vitamin D supplementation 400 IU/day for up to six months increases 25-OH vitamin D levels and reduces vitamin D insufficiency, but there was insufficient evidence to assess its effect on vitamin D deficiency and bone health. For higher-risk infants who are breastfeeding, maternal vitamin D supplementation reduces vitamin D insufficiency and vitamin D deficiency, but there was insufficient evidence to determine an effect on bone health. In populations at higher risk of vitamin D deficiency, vitamin D supplementation of infants led to greater increases in infant 25-OH vitamin D levels, reductions in vitamin D insufficiency and vitamin D deficiency compared to supplementation of lactating mothers. However, the evidence is very uncertain for markers of bone health. Maternal higher dose supplementation (≥ 4000 IU/day) produced similar infant 25-OH vitamin D levels as infant supplementation of 400 IU/day. The certainty of evidence was graded as low to very low for all outcomes.

    Matched MeSH terms: Bone and Bones/physiology*
  13. Tan KM, Saw S, Sethi SK
    J Clin Lab Anal, 2013 Jul;27(4):301-4.
    PMID: 23852789 DOI: 10.1002/jcla.21602
    BACKGROUND: In this study, we aimed to determine the normal ranges of 25-hydroxy-vitamin D(3) (25-OHD(3)), parathyroid hormone (PTH), and the markers of bone turnover, procollagen type 1 N propeptide (P1NP) and C-terminal cross-linked telopeptide of type 1 collagen (CTX), in normal healthy women in Singapore, and to explore the relationship between vitamin D, PTH, and these markers of bone turnover in the women.

    METHODS: One hundred and ninety-seven healthy women, aged 25 to 60, were selected from a hospital staff health screening program; 68% were Chinese, 18% Malay, and 14% Indian. P1NP, CTX, and 25-OHD(3) were measured using the Roche Cobas® electrochemiluminescence immunoassay. Serum PTH was measured using the Siemens ADVIA Centaur® immunoassay.

    RESULTS: Sixty-five percent had 25-OHD(3) concentrations <50 nmol/l. Vitamin D insufficiency (25-OHD(3) < 50 nmol/l) was more prevalent in Malays (89%) and Indians (82%) compared to Chinese (56%). There was no correlation between vitamin D and age. PTH positively correlated with age, and Malays and Indians had higher PTH concentrations than Chinese. There was an inverse correlation between PTH and 25-OHD(3), but no threshold of 25-OHD(3) concentrations at which PTH plateaued. The bone turnover markers P1NP and CTX inversely correlated with age but were not different between ethnic groups. CTX and P1NP exhibited good correlation, however, there was no significant correlation between 25-OHD(3) or PTH concentrations and the bone turnover markers P1NP and CTX.

    CONCLUSIONS: Healthy women in Singapore have a high prevalence of vitamin D insufficiency. Vitamin D insufficiency was more prevalent in Malays and Indians compared to Chinese.

    Matched MeSH terms: Bone and Bones/metabolism*
  14. Taiyeb Ali, T.B.
    Ann Dent, 1997;4(1):-.
    MyJurnal
    Endoseous Implant insertion for the replacement of missing teeth is the state of the art at present times. An understanding of the biology of the perimplant tissues is imperative for the overall success in the dental rehabilitation of a patient with fixture supported prosthesis. The dental implant tissue interface comprises bone, both cortical and cancellous bone; supracrestal connective tissue and the epithelial attachment. A comprehensive review of the response of bone during the postoperative or healing phase, the loading or remodelling phase and during the steady phase is described.
    Matched MeSH terms: Bone and Bones
  15. Syahrom A, Abdul Kadir MR, Abdullah J, Öchsner A
    Med Biol Eng Comput, 2011 Dec;49(12):1393-403.
    PMID: 21947767 DOI: 10.1007/s11517-011-0833-0
    The relationship between microarchitecture to the failure mechanism and mechanical properties can be assessed through experimental and computational methods. In this study, both methods were utilised using bovine cadavers. Twenty four samples of cancellous bone were extracted from fresh bovine and the samples were cleaned from excessive marrow. Uniaxial compression testing was performed with displacement control. After mechanical testing, each specimen was ashed in a furnace. Four of the samples were exemplarily scanned using micro-computed tomography (μCT) and three dimensional models of the cancellous bones were reconstructed for finite element simulation. The mechanical properties and the failure modes obtained from numerical simulations were then compared to the experiments. Correlations between microarchitectural parameters to the mechanical properties and failure modes were then made. The Young's modulus correlates well with the bone volume fraction with R² = 0.615 and P value 0.013. Three different types of failure modes of cancellous bone were observed: oblique fracture (21.7%), perpendicular global fracture (47.8%), and scattered localised fracture (30.4%). However, no correlations were found between the failure modes to the morphological parameters. The percentage of error between computer predictions and the actual experimental test was from 6 to 12%. These mechanical properties and information on failure modes can be used for the development of synthetic cancellous bone.
    Matched MeSH terms: Bone and Bones/physiopathology*
  16. Sulaiman SZS, Tan WM, Radzi R, Shafie INF, Ajat M, Mansor R, et al.
    J Orthop Surg Res, 2021 Nov 08;16(1):663.
    PMID: 34749769 DOI: 10.1186/s13018-021-02781-z
    BACKGROUND: Osteoarthritis (OA) is a multifaceted condition that affects both the subchondral bones and the articular cartilage. Animal models are widely used as an effective supplement and simulation for human OA studies in investigating disease mechanisms and pathophysiology. This study is aimed to evaluate the temporal changes of bone and cartilage in surgically and chemically induced osteoarthritis using micro-computed tomography and histology.

    METHODS: Thirty rabbits underwent either anterior cruciate ligament transection (ACLT) procedure or injected intraarticularly with monosodium iodoacetate (MIA, 8 mg) at the right knee joint. The subchondral bones were scanned via micro-CT, and articular cartilage was assessed histologically at 4-, 8- and 12-week post-induction.

    RESULTS: Based on bone micro-architecture parameters, the surgically induced group revealed bone remodelling processes, indicated by increase bone volume, thickening of trabeculae, reduced trabecular separation and reduced porosity. On the other hand, the chemically induced group showed active bone resorption processes depicted by decrease bone volume, thinning of trabeculae, increased separation of trabecular and increased porosity consistently until week 12. Histologically, the chemically induced group showed more severe articular cartilage damage compared to the surgically induced group.

    CONCLUSIONS: It can be concluded that in the ACLT group, subchondral bone remodelling precedes articular cartilage damage and vice versa in the MIA group. The findings revealed distinct pathogenic pathways for both induction methods, providing insight into tailored therapeutic strategies, as well as disease progression and treatment outcomes monitoring.

    Matched MeSH terms: Bone and Bones
  17. Subramaniam R, Vijakumaran U, Shanmuganantha L, Law JX, Alias E, Ng MH
    Int J Mol Sci, 2023 Jul 11;24(14).
    PMID: 37511090 DOI: 10.3390/ijms241411330
    MicroRNAs are short, single-stranded ribonucleic acids expressed endogenously in the body to regulate gene expression at the post-translational level, with exogenous microRNA offering an attractive approach to therapy. Among the myriad microRNA candidates involved in controlling bone homeostasis and remodeling, microRNA 21 (miR21) is the most abundant. This paper discusses the studies conducted on the role and mechanism of human miR21 (hsa-miR21) in the regulation of bones and the various pathways mediated by miR21, and explores the feasibility of employing exogenous miR21 as a strategy for promoting osteogenesis. From the literature review, it was clear that miR21 plays a dual role in bone metabolism by regulating both bone formation and bone resorption. There is substantial evidence to date from both in vitro and in vivo studies that exogenous miR21 can successfully accelerate new bone synthesis in the context of bone loss due to injury or osteoporosis. This supports the exploration of applications of exogenous miR21 in bone regenerative therapy in the future.
    Matched MeSH terms: Bone and Bones/metabolism
  18. Sri Asliza, M.A., Zaheruddin, K., Shahrizal, H.
    MyJurnal
    In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
    Matched MeSH terms: Bone and Bones
  19. Sopyan I
    Med J Malaysia, 2008 Jul;63 Suppl A:14-5.
    PMID: 19024961
    Porous calcium phosphate ceramics have found enormous use in biomedical applications including bone tissue regeneration, cell proliferation, and drug delivery. In bone tissue engineering it has been applied as filling material for bone defects and augmentation, artificial bone graft material, and prosthesis revision surgery. Their high surface area leads to excellent osteoconductivity and resorbability providing fast bone ingrowths. Porous calcium phosphate can be produced by a variety of methods. This paper discusses briefly fundamental aspects of porous calcium phosphate for biomedical applications as well as various techniques used to prepare porous calcium phosphate.
    Matched MeSH terms: Bone and Bones/physiology*
  20. Sivanaesan L, Kwan TK, Perumal R
    Biochem. Int., 1991 Oct;25(3):561-70.
    PMID: 1666829
    Calmodulin, an activator protein in most calcium-dependent processes, was isolated to apparent homogeneity from the femurs of 1-day old chicks using phenyl-Sepharose and high performance liquid chromatography. The purified calmodulin was found to produce a 6-fold increase in the activity of alkaline phosphatase isolated from the same source. A Ca2+ concentration of 10(-5) M was required for the activation. Purification of alkaline phosphatase involved acetone precipitation, DEAE-Sephacel and Sephadex G-200 column chromatography. The enzyme was purified to 540-fold and had a specific activity of 10.75 U/mg protein.
    Matched MeSH terms: Bone and Bones/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links