Displaying publications 21 - 40 of 70 in total

Abstract:
Sort:
  1. Nor Aishah Saidina Amin, Soon, Ee Peng
    MyJurnal
    Thermodynamic chemical equilibrium analysis using, total Gibbs energy minimization method, was carried out for methane oxidation to higher hydrocarbons. For a large methane conversion and a high selectivity to higher hydrocarbons, the system temperature and oxygen concentration played a vital role, whereas, the system pressure only slightly influenced the two variables. Numerical results showed that the conversion of methane increased with the concentration of oxygen and reaction temperature, but it decreased with pressure. Nevertheless, the presence of oxygen suppressed the formation of higher hydrocarbons which mostly consisted of aromatics, but enhanced the formation of hydrogen. As the system pressure increased, the aromatics, olefins and hydrogen yields diminished, but the paraffin yield improved. Carbon monoxide seemed to be the major oxygen-containing equilibrium product from methane oxidation, whilst almost no H2O, CH3OH and HCOH were detected although traces amount of carbon dioxide were formed at relatively lower temperature and higher pressure. The total Gibbs energy minimization method is useful to theoretically analyze the feasibility of methane conversion to higher hydrocarbons and syngas at the selected temperature and pressure.
    Matched MeSH terms: Carbon Monoxide
  2. Leman, A.M., Fatin Afiqah Jajuli, Dafit Feriyanto
    MyJurnal
    Automobile exhaust emission control is one of the trending issues in automobile research field. It caused by high
    pollution such as carbon monoxide (CO), nitrogen oxides (NOx), and hydrocarbons (HC) distributed by automobile
    especially form diesel engine. These pollutants give a harmful effect to the environment and human health. Therefore,
    this paper proposed in reviewing methods on fabrication of modified catalytic converter. FeCrAl is used as substrate
    which treated using ultrasonic bath technique which could improve the exhaust emission control. This metallic catalytic converter used as the replacement of precious metal that have high production cost.
    Matched MeSH terms: Carbon Monoxide
  3. Miah MA, Elzaki MEA, Husna A, Han Z
    Arch Insect Biochem Physiol, 2019 Feb;100(2):e21525.
    PMID: 30511429 DOI: 10.1002/arch.21525
    Deltamethrin resistance in Laodelphax striatellus had been associated with its oxidative detoxification by overexpression of four cytochrome P450 monooxygenases like CYP353D1v2, CYP6FU1, CYP6AY3v2, and CYP439A1v3. The first three P450s have been validated for insecticide-metabolizing capability and only CYP6FU1 was found to degrade deltamethrin. In this study, an investigation was conducted to confirm the capability of CYP439A1v3 to degrade deltamethrin. The CYP439A1v3 was first expressed in Sf9 cell line and its recombinant enzyme was tested for metabolic activity against different insecticides using substrate depletion assay combined with metabolite identification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and carbon monoxide (CO)-difference spectra analysis showed that the intact cytochrome P450 protein was successfully expressed. Tests with probe substrates proved its enzyme activity, as p-nitroanisole, ethoxycoumarin, and ethoxyresorufin were preferentially metabolized (specific activity 7.767 ± 1.22, 1.325 ± 0.37, and 0.355 ± 0.37 nmol/min per mg of protein, respectively) while only luciferin-HEGE was not. In vitro incubation of the recombinant CYP439A1v3 protein with deltamethrin revealed hydroxylation by producing hydroxydeltamethrin. On the contrary, no metabolite/metabolism was seen with nonpyrethroid insecticide, including imidacloprid, buprofezin, chlorpyrifos, and fipronil. To the best of our knowledge, this is the first study to link a CYP450 from family 439 to confer pyrethroid resistance to L. striatellus. This finding should help in the design of appropriate insecticide resistance management for control of this strain of L. striatellus.
    Matched MeSH terms: Carbon Monoxide
  4. Mohammed Saifuddin, Amru N. Boyce
    Sains Malaysiana, 2017;46:1771-1778.
    As fossil energy resources are depleting quick and energy security is playing a vital role in the world economy. Quest for alternative energy sources have turned researches investigation in waste foods for next generation fuel. Biodiesel is usually considered to be environmentally friendly as it reduces greenhouse gas emission. Fish wastes rich in fatty acids and can be used as the raw material to produce biodiesel through transesterification reaction. The results showed that the seven peaks are fatty acid methyl esters, indicating all the triglycerides were successfully methylated to methyl esters. Fish based biodiesel provided a significant reduction in carbon monoxide (CO) and hydrocarbon (HC) emissions under engine loads of 15 (Nm) and required no engine modification. The viscosity of the produced biodiesel was within the range of international standards (ASTM). The biodiesel was found to contain a low base number and exhibited a lower specific fuel consumption compared to the conventional diesel. It can be concluded that biodiesel derived from waste fish oil can be considered as a potential source of commercial biodiesel.
    Matched MeSH terms: Carbon Monoxide
  5. Abdullah S, Abd Hamid FF, Ismail M, Ahmed AN, Wan Mansor WN
    Data Brief, 2019 Aug;25:103969.
    PMID: 31198825 DOI: 10.1016/j.dib.2019.103969
    The aim of the measurement of this data is to evaluate the Indoor Air Quality (IAQ) in terms of chemical and physical parameters. Data were collected at three different kindergartens having different surrounding activities (industrial, institutional, residential area). The chemical parameters measured were respirable suspended particulates of PM10, PM2.5, PM1, carbon monoxide and carbon dioxide, and the concentrations are within the acceptable limit. Physical parameters of wind speed are within the standard, while temperature and relative humidity exceeded the acceptable limit. A strong correlation was found between the chemical IAQ parameters with thermal comfort parameters (temperature and relative humidity). The concentration of IAQ pollutants is higher in order of residential > institutional > industrial.
    Matched MeSH terms: Carbon Monoxide
  6. Chong S, Yang TC
    Materials (Basel), 2017 Jul 05;10(7).
    PMID: 28773110 DOI: 10.3390/ma10070756
    This paper remarks the general correlations of the shape and crystallinity of titanium dioxide (TiO₂) support on gold deposition and carbon monoxide (CO) oxidation. It was found that due to the larger rutile TiO₂ particles and thus the pore volume, the deposited gold particles tended to agglomerate, resulting in smaller catalyst surface area and limited gold loading, whilst anatase TiO₂ enabled better gold deposition. Those properties directly related to gold particle size and thus the number of low coordinated atoms play dominant roles in enhancing CO oxidation activity. Gold deposited on anatase spheroidal TiO₂ at photo-deposition wavelength of 410 nm for 5 min resulted in the highest CO oxidation activity of 0.0617 mmol CO/s.gAu (89.5% conversion) due to the comparatively highest catalyst surface area (114.4 m²/g), smallest gold particle size (2.8 nm), highest gold loading (7.2%), and highest Au⁰ content (68 mg/g catalyst). CO oxidation activity was also found to be directly proportional to the Au⁰ content. Based on diffuse reflectance infrared Fourier transform spectroscopy, we postulate that anatase TiO₂-supported Au undergoes rapid direct oxidation whilst CO oxidation on rutile TiO₂-supported Au could be inhibited by co-adsorption of oxygen.
    Matched MeSH terms: Carbon Monoxide
  7. Hayder A. Alrazen, Ahmad, K.A.
    MyJurnal
    Diesel engines produce high emissions of nitrogen oxide, smoke and particulate matter. The challenge is to reduce exhaust emissions but without making changing their mechanical configuration. This paper is an overview of the effect of natural gas on the diesel engine emissions. Literature review suggests that engine load, air-fuel ratio, and engine speed play a key role in reducing the pollutants in the diesel engine emissions with natural gas enrichment. It is found that increasing the percentage of natural gas (CNG) will affect emissions. Nitrogen oxide (NOx) is decreased and increased at part loads and high loads respectively when adding CNG. The reduction in carbon dioxide (CO2), particulate matter (PM) and smoke are observed when adding CNG. However, carbon monoxide (CO) and unburned hydrocarbon (HC) are increased when CNG is added.
    Matched MeSH terms: Carbon Monoxide
  8. Hayder Baqer Abdullah, Irmawati Ramli, Ismayadi Ismail, Nor Azah Yusof
    MyJurnal
    The synthesis of carbon nanotubes (CNTs) using a chemical vapour deposition (CVD) method requires the use of hydrocarbon as the carbon precursor. Among the commonly used hydrocarbons are methane and acetylene, which are both light gas-phase substances. Besides that, other carbon-rich sources, such as carbon monoxide and coal, have also been reportedly used. Nowadays, researches have also been conducted into utilising heavier hydrocarbons and petrochemical products for the production of CNTs, such as kerosene and diesel oil. Therefore, this article reviews the different kind of hydrocarbon sources for CNTs production using a CVD method. The method is used for it allows the decomposition of the carbon-rich source with the aid of a catalyst at a temperature in the range 600-1200°C. This synthesis technique gives an advantage as a high yield and high-quality CNTs can be produced at a relatively low cost process. As compared to other processes for CNTs production such as arc discharge and laser ablation, they may produce high quality CNTs but has a disadvantage for use as large scale synthesis routes.
    Matched MeSH terms: Carbon Monoxide
  9. Vadrevu KP, Lasko K, Giglio L, Justice C
    Environ Pollut, 2014 Dec;195:245-56.
    PMID: 25087199 DOI: 10.1016/j.envpol.2014.06.017
    In this study, we assess the intense pollution episode of June 2013, in Riau province, Indonesia from land clearing. We relied on satellite retrievals of aerosols and Carbon monoxide (CO) due to lack of ground measurements. We used both the yearly and daily data for aerosol optical depth (AOD), fine mode fraction (FMF), aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI) for characterizing variations. We found significant enhancement in aerosols and CO during the pollution episode. Compared to mean (2008-2012) June AOD of 0.40, FMF-0.39, AAOD-0.45, UVAI-1.77 and CO of 200 ppbv, June 2013 values reached 0.8, 0.573, 0.672, 1.77 and 978 ppbv respectively. Correlations of fire counts with AAOD and UVAI were stronger compared to AOD and FMF. Results from a trajectory model suggested transport of air masses from Indonesia towards Malaysia, Singapore and southern Thailand. Our results highlight satellite-based mapping and monitoring of pollution episodes in Southeast Asia.
    Matched MeSH terms: Carbon Monoxide/analysis
  10. Mohd Jaafar MN, Eldrainy YA, Mat Ali MF, Wan Omar WZ, Mohd Hizam MF
    Environ Sci Technol, 2012 Feb 21;46(4):2445-50.
    PMID: 22296110 DOI: 10.1021/es2025005
    The problems of global warming and the unstable price of petroleum oils have led to a race to develop environmentally friendly biofuels, such as palm oil or ethanol derived from corn and sugar cane. Biofuels are a potential replacement for fossil fuel, since they are renewable and environmentally friendly. This paper evaluates the combustion performance and emission characteristics of Refined, Bleached, and Deodorized Palm Oil (RBDPO)/diesel blends B5, B10, B15, B20, and B25 by volume, using an industrial oil burner with and without secondary air. Wall temperature profiles along the combustion chamber axis were measured using a series of thermocouples fitted axially on the combustion chamber wall, and emissions released were measured using a gas analyzer. The results show that RBDPO blend B25 produced the maximum emission reduction of 56.9% of CO, 74.7% of NOx, 68.5% of SO(2), and 77.5% of UHC compared to petroleum diesel, while air staging (secondary air) in most cases reduces the emissions further. However, increasing concentrations of RBDPO in the blends also reduced the energy released from the combustion. The maximum wall temperature reduction was 62.7% for B25 at the exit of the combustion chamber.
    Matched MeSH terms: Carbon Monoxide/analysis
  11. Niza S, Jamal HH
    Int J Environ Health Res, 2007 Apr;17(2):95-103.
    PMID: 17616865
    A comparative cross-sectional study was conducted to determine tollbooth carbon monoxide (CO) levels and carboxyhaemoglobin (COHb) levels among the tollbooth operators and office workers in the Klang Valley, Kuala Lumpur. All tollbooths were equipped with well functioning air-conditioning. The total number of respondents was 180: 90 toll operators and 90 office workers aged between 19 and 52 years. The highest peak of CO level recorded was 61 ppm. The highest average peak CO level within a shift was 30 ppm. The CO level was higher during peak traffic at 6.00 - 8.00 a.m. There was no significant correlation between average peak CO level with vehicle load (r = -0.007, p = 0.474). The toll operators' median COHb level (1.0%, IQR = 0.8%) was significantly higher (p = 0.008) compared to office workers (0.7%, IQR = 0.8). There was a weak and significant correlation between COHb levels with average peak CO levels (r = 0.228, p = 0.031). In conclusion, tollbooth operators were chronically exposed to CO leading to higher COHb levels compared to office workers.
    Matched MeSH terms: Carbon Monoxide/analysis*
  12. Tawfiq MF, Aroua MK, Sulaiman NM
    J Environ Sci (China), 2015 Jul 1;33:239-44.
    PMID: 26141898 DOI: 10.1016/j.jes.2015.01.015
    Atmospheric pollution and global warming issues are increasingly becoming major environmental concerns. Fire is one of the significant sources of pollutant gases released into the atmosphere; and tropical biomass fires, which are of particular interest in this study, contribute greatly to the global budget of CO and CO2. This pioneer research simulates the natural biomass burning strategy in Malaysia using an experimental burning facility. The investigation was conducted on the emissions (CO2, CO, and Benzene, Toluene, Ethylbenzene, Xylenes (BTEX)) from ten tropical biomass species. The selected species represent the major tropical forests that are frequently subjected to dry forest fire incidents. An experimental burning facility equipped with an on-line gas analyzer was employed to determine the burning emissions. The major emission factors were found to vary among the species, and the specific results were as follows. The moisture content of a particular biomass greatly influenced its emission pattern. The smoke analysis results revealed the existence of BTEX, which were sampled from a combustion chamber by enrichment traps aided with a universal gas sampler. The BTEX were determined by organic solvent extraction followed by GC/MS quantification, the results of which suggested that the biomass burning emission factor contributed significant amounts of benzene, toluene, and m,p-xylene. The modified combustion efficiency (MCE) changed in response to changes in the sample moisture content. Therefore, this study concluded that the emission of some pollutants mainly depends on the burning phase and sample moisture content of the biomass.
    Matched MeSH terms: Carbon Monoxide/chemistry*
  13. Wee LH, West R, Mariapun J, Chan CM, Bulgiba A, Peramalah D, et al.
    Addict Behav, 2015 Aug;47:74-9.
    PMID: 25889913 DOI: 10.1016/j.addbeh.2015.03.021
    BACKGROUND: It has been proposed that the expired-air carbon monoxide (CO) threshold for confirming smoking abstinence in clinical practice be reduced below 10 ppm. Optimal thresholds may vary across regions. Data are needed to assess the impact of such a change on claimed success.
    METHODS: A total of 253 smokers who attended the Tanglin quit smoking clinic in Malaysia were followed-up 1, 3 and 6 months after the target quit date. All participants received a standard behavioural support programme and were prescribed either varenicline or nicotine replacement therapy. Expired-air CO was measured at every visit. Respondents' smoking status was assessed using a range of different CO thresholds (3, 5 and 10 ppm) and the impact on quit rates was calculated. Predictors of success as defined using the different thresholds were assessed.
    RESULTS: The 6-month abstinence rates were: 1 month - 54.9% at 10 ppm, 54.9% at 5 ppm and 48.6% at 3 ppm; 3 months - 36.0% at 10 ppm, 35.2% at 5 ppm and 30.4% at 3 ppm; 6 months - 24.1% at 10 ppm, 24.1% at 5 ppm and 20.6% at 3 ppm. Older smokers were more likely to be recorded as abstinent at 6 months regardless of the threshold used.
    CONCLUSIONS: Reducing the threshold for expired-air carbon monoxide concentrations to verify claimed smoking abstinence from 10 ppm to 5 ppm makes minimal difference to documented success rates in Malaysian smoker's clinic patients. Reducing to 3 ppm decreases success rates slightly. Predictors of success at stopping appear to be unaffected by the threshold used.
    KEYWORDS: Carbon monoxide; Predictors for abstinence; Smoking cessation; Success rates
    Matched MeSH terms: Carbon Monoxide/analysis*
  14. Afroz R, Hassan MN, Ibrahim NA
    Environ Res, 2003 Jun;92(2):71-7.
    PMID: 12854685
    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, O(x), SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts.
    Matched MeSH terms: Carbon Monoxide/adverse effects
  15. Awang MB, Jaafar AB, Abdullah AM, Ismail MB, Hassan MN, Abdullah R, et al.
    Respirology, 2000 Jun;5(2):183-96.
    PMID: 10894109
    OBJECTIVE: Observations have been made on the long-term trends of major air pollutants in Malaysia including nitrogen dioxide, carbon monoxide, the ozone and total suspended particulate matter (particularly PM10), and sulfur dioxide, emitted from industrial and urban areas from early 1970s until late 1998.

    METHODOLOGY: The data show that the status of atmospheric environment in Malaysia, in particular in highly industrialized areas such as Klang Valley, was determined both by local and transboundary emissions and could be described as haze and non-haze periods.

    RESULTS: During the non-haze periods, vehicular emissions accounted for more than 70% of the total emissions in the urban areas and have demonstrated two peaks in the diurnal variations of the aforementioned air pollutants, except ozone. The morning 'rush-hour' peak was mainly due to vehicle emissions, while the late evening peak was mainly attributed to meteorological conditions, particularly atmospheric stability and wind speed. Total suspended particulate matter was the main pollutant with its concentrations at few sites often exceeding the Recommended Malaysia Air Quality Guidelines. The levels of other pollutants were generally within the guidelines. Since 1980, six major haze episodes were officially reported in Malaysia: April 1983, August 1990, June 1991, October 1991, August to October 1994, and July to October 1997. The 1997 haze episode was the worst ever experienced by the country. Short-term observations using continuous monitoring systems during the haze episodes during these periods clearly showed that suspended particulate matter (PM10) was the main cause of haze and was transboundary in nature. Large forest fires in parts of Sumatra and Kalimantan during the haze period, clearly evident in satellite images, were identified as the probable key sources of the widespread heavy haze that extended across Southeast Asia from Indonesia to Singapore, Malaysia and Brunei. The results of several studies have also provided strong evidence that biomass burning is the dominating source of particulate matter. The severity and extent of 1997's haze pollution was unprecedented, affecting some 300 million people across the region. The amount of economic costs suffered by Southeast Asian countries during this environmental disaster was enormous and is yet to be fully determined. Among the important sectors severely affected were air and land transport, shipping, construction, tourism and agro-based industries. The economic cost of the haze-related damage to Malaysia presented in this study include short-term health costs, production losses, tourism-related losses and the cost of avertive action. Although the cost reported here is likely to be underestimated, they are nevertheless significant (roughly RM1 billion).

    CONCLUSIONS: The general air quality of Malaysia since 1970 has deteriorated. Studies have shown that should no effective countermeasures be introduced, the emissions of sulfur dioxide, nitrogen oxides, particulate matter, hydrocarbons and carbon monoxide in the year 2005 would increase by 1.4, 2.12, 1.47 and 2.27 times, respectively, from the 1992 levels.

    Matched MeSH terms: Carbon Monoxide/analysis
  16. Muhammad Aidil ZA, Hayati K, Rosliza AM
    Med J Malaysia, 2019 02;74(1):62-66.
    PMID: 30846665
    INTRODUCTION: For the last 30 years, tobacco smoking has continued to be the leading cause of premature deaths in Malaysia. Majority of the smokers in Malaysia are at the precontemplation and contemplation stages. Therefore, for the purpose of increasing smoking cessation among this group, the strategies that motivate them to quit smoking have to be reviewed.

    OBJECTIVE: This study aims to evaluate the effectiveness of carbon monoxide measurement feedback and the standard brief motivation adopted to encourage the smoker to quit.

    METHODS: A single-blind, cluster randomised controlled trial was conducted at ten tertiary colleges in Selangor. The study recruited young adult smokers at the precontemplation and contemplation stages. The subjects in the control group received a standard brief motivational strategy. On the other hand, the intervention group received additional carbon monoxide measurement and a motivational feedback module. A follow up was conducted at the first, third and sixth month to measure changes in smoking cessation stage. Subsequently, the secondary outcomes of a mean number of cigarette consumption and quit smoking attempt were analysed. A total of 160 subjects were required to detect the expected difference of 17% in primary outcomes between the groups. This study utilised Generalised Estimating Equations (GEE) to handle the clustering effects.

    CONCLUSION: Biomedical risk assessment feedback mechanism by using carbon monoxide is a promising aid to motivate the smoker to quit. This mechanism is a relatively easy, quick and non-invasive technique. Thus, it can be utilised as a reinforcement relating to the harmful effect of smoking. Besides, it can also increase the smokers' selfefficacy and decisional balance to adopt behavioural changes.

    Matched MeSH terms: Carbon Monoxide/analysis*
  17. Adam IK, Heikal M, Aziz ARA, Yusup S
    Environ Sci Pollut Res Int, 2018 Oct;25(28):28500-28516.
    PMID: 30088249 DOI: 10.1007/s11356-018-2863-8
    The present work analyzes the effect of antioxidants on engine combustion performance of a multi-cylinder diesel engine fueled with PB30 and PB50 (30 and 50 vol.% palm biodiesel (PB)). Four antioxidants namely N,N'-diphenyl-1,4-phenylenediamine (DPPD), N-phenyl-1,4-phenylenediamine (NPPD), 2(3)-tert-Butyl-4-methoxyphenol (BHA), and 2-tert-butylbenzene-1,4-diol (TBHQ) were added at concentrations of 1000 and 2000 ppm to PB30 and PB50. TBHQ showed the highest activity in increasing oxidation stability in both PB30 and PB50 followed by BHA, DPPD, and NPPD respectively, without any negative effect on physical properties. Compared to diesel fuel, PB blends showed 4.61-6.45% lower brake power (BP), 5.90-8.69% higher brake specific fuel consumption (BSFC), 9.64-11.43% higher maximum in cylinder pressure, and 7.76-12.51% higher NO emissions. Carbon monoxide (CO), hydrocarbon (HC), and smoke opacity were reduced by 36.78-43.56%, 44.12-58.21%, and 42.59-63.94%, respectively, than diesel fuel. The start of combustion angles (SOC) of PB blends was - 13.2 to - 15.6 °CA BTDC, but the combustion delays were 5.4-7.8 °CA short compared to diesel fuel which were - 10 °CA BTDC and 11°CA respectively. Antioxidant fuels of PB showed higher BP (1.81-5.32%), CO (8.41-24.60%), and HC (13.51-37.35%) with lower BSFC (1.67-7.68%), NO (4.32-11.53%), maximum in cylinder pressure (2.33-4.91%) and peak heat release rates (HRR) (3.25-11.41%) than baseline fuel of PB. Similar SOC of - 13 to - 14 °CA BTDC was observed for PB blended fuels and antioxidants. It can be concluded that antioxidants' addition is effective in increasing the oxidation stability and in controlling the NOx emissions of palm biodiesel fuelled diesel engine.
    Matched MeSH terms: Carbon Monoxide/analysis
  18. Nadzir MSM, Ashfold MJ, Khan MF, Robinson AD, Bolas C, Latif MT, et al.
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2194-2210.
    PMID: 29116536 DOI: 10.1007/s11356-017-0521-1
    The Antarctic continent is known to be an unpopulated region due to its extreme weather and climate conditions. However, the air quality over this continent can be affected by long-lived anthropogenic pollutants from the mainland. The Argentinian region of Ushuaia is often the main source area of accumulated hazardous gases over the Antarctic Peninsula. The main objective of this study is to report the first in situ observations yet known of surface ozone (O3) over Ushuaia, the Drake Passage, and Coastal Antarctic Peninsula (CAP) on board the RV Australis during the Malaysian Antarctic Scientific Expedition Cruise 2016 (MASEC'16). Hourly O3 data was measured continuously for 23 days using an EcoTech O3 analyzer. To understand more about the distribution of surface O3 over the Antarctic, we present the spatial and temporal of surface O3 of long-term data (2009-2015) obtained online from the World Meteorology Organization of World Data Centre for greenhouse gases (WMO WDCGG). Furthermore, surface O3 satellite data from the free online NOAA-Atmospheric Infrared Sounder (AIRS) database and online data assimilation from the European Centre for Medium-Range Weather Forecasts (ECMWF)-Monitoring Atmospheric Composition and Climate (MACC) were used. The data from both online products are compared to document the data sets and to give an indication of its quality towards in situ data. Finally, we used past carbon monoxide (CO) data as a proxy of surface O3 formation over Ushuaia and the Antarctic region. Our key findings were that the surface O3 mixing ratio during MASEC'16 increased from a minimum of 5 ppb to ~ 10-13 ppb approaching the Drake Passage and the Coastal Antarctic Peninsula (CAP) region. The anthropogenic and biogenic O3 precursors from Ushuaia and the marine region influenced the mixing ratio of surface O3 over the Drake Passage and CAP region. The past data from WDCGG showed that the annual O3 cycle has a maximum during the winter of 30 to 35 ppb between June and August and a minimum during the summer (January to February) of 10 to 20 ppb. The surface O3 mixing ratio during the summer was controlled by photochemical processes in the presence of sunlight, leading to the depletion process. During the winter, the photochemical production of surface O3 was more dominant. The NOAA-AIRS and ECMWF-MACC analysis agreed well with the MASEC'16 data but twice were higher during the expedition period. Finally, the CO past data showed the surface O3 mixing ratio was influenced by the CO mixing ratio over both the Ushuaia and Antarctic regions. Peak surface O3 and CO hourly mixing ratios reached up to ~ 38 ppb (O3) and ~ 500 ppb (CO) over Ushuaia. High CO over Ushuaia led to the depletion process of surface O3 over the region. Monthly CO mixing ratio over Antarctic (South Pole) were low, leading to the production of surface O3 over the Antarctic region.
    Matched MeSH terms: Carbon Monoxide/analysis
  19. Alwi A, Zulkifli NW, Sukiman NL, Yusoff A, Zakaria Z, Jamshaid M, et al.
    Environ Sci Pollut Res Int, 2019 Apr;26(12):11815-11826.
    PMID: 30811022 DOI: 10.1007/s11356-019-04603-6
    The availability of natural energy resources and the environmental issues are the most significant issues that are often highlighted by the world communities. With regard to these problems, isobutanol is a higher chain alcohol with four carbons which can be derived from biomass resources and it is potential to become an alternative fuel source besides the biodiesel for a diesel engine. The aim of this study is to evaluate the effect of isobutanol with Calophyllum inophyllum methyl ester and diesel as the ternary blend on physicochemical properties, engine performance, and emission characteristics. Five different fuel blends containing Calophyllum inophyllum biodiesel and isobutanol were tested on a single-cylinder direct injection diesel engine at different engine load of brake mean effective pressure. The physicochemical properties of the fuel blends were measured and then compared with neat diesel. The results indicate that the blend containing isobutanol and CIME gives a slight increase in BSEC and EGT and a minimal drop in BTE as compared to that of neat diesel. Besides that, the tested blends show a reduction of carbon monoxide and unburned hydrocarbon emissions. Meanwhile, all the fuel blends show a minimal increase in carbon dioxide and nitrogen oxides emissions, compared to that of neat diesel. Isobutanol can be proved as a preferred substitute for biodiesel and diesel fuels to achieve desired engine performance and emissions level.
    Matched MeSH terms: Carbon Monoxide/analysis
  20. Kanniah KD, Kamarul Zaman NAF, Kaskaoutis DG, Latif MT
    Sci Total Environ, 2020 Sep 20;736:139658.
    PMID: 32492613 DOI: 10.1016/j.scitotenv.2020.139658
    Since its first appearance in Wuhan, China at the end of 2019, the new coronavirus (COVID-19) has evolved a global pandemic within three months, with more than 4.3 million confirmed cases worldwide until mid-May 2020. As many countries around the world, Malaysia and other southeast Asian (SEA) countries have also enforced lockdown at different degrees to contain the spread of the disease, which has brought some positive effects on natural environment. Therefore, evaluating the reduction in anthropogenic emissions due to COVID-19 and the related governmental measures to restrict its expansion is crucial to assess its impacts on air pollution and economic growth. In this study, we used aerosol optical depth (AOD) observations from Himawari-8 satellite, along with tropospheric NO2 column density from Aura-OMI over SEA, and ground-based pollution measurements at several stations across Malaysia, in order to quantify the changes in aerosol and air pollutants associated with the general shutdown of anthropogenic and industrial activities due to COVID-19. The lockdown has led to a notable decrease in AOD over SEA and in the pollution outflow over the oceanic regions, while a significant decrease (27% - 30%) in tropospheric NO2 was observed over areas not affected by seasonal biomass burning. Especially in Malaysia, PM10, PM2.5, NO2, SO2, and CO concentrations have been decreased by 26-31%, 23-32%, 63-64%, 9-20%, and 25-31%, respectively, in the urban areas during the lockdown phase, compared to the same periods in 2018 and 2019. Notable reductions are also seen at industrial, suburban and rural sites across the country. Quantifying the reductions in major and health harmful air pollutants is crucial for health-related research and for air-quality and climate-change studies.
    Matched MeSH terms: Carbon Monoxide/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links