Displaying publications 21 - 40 of 135 in total

Abstract:
Sort:
  1. Khandaker MM, Boyce AN, Osman N
    Plant Physiol Biochem, 2012 Apr;53:101-10.
    PMID: 22349652 DOI: 10.1016/j.plaphy.2012.01.016
    The present study represents the first report of the effect of hydrogen peroxide (H(2)O(2)) on the growth, development and quality of the wax apple fruit, a widely cultivated fruit tree in South East Asia. The wax apple trees were spray treated with 0, 5, 20 and 50 mM H(2)O(2) under field conditions. Photosynthetic rates, stomatal conductance, transpiration, chlorophyll and dry matter content of the leaves and total soluble solids and total sugar content of the fruits of wax apple (Syzygium samarangense, var. jambu madu) were significantly increased after treatment with 5 mM H(2)O(2). The application of 20 mM H(2)O(2) significantly reduced bud drop and enhanced fruit growth, resulting in larger fruit size, increased fruit set, fruit number, fruit biomass and yield compared to the control. In addition, the endogenous level of H(2)O(2) in wax apple leaves increased significantly with H(2)O(2) treatments. With regard to fruit quality, 20 mM H(2)O(2) treatment increased the K(+), anthocyanin and carotene contents of the fruits by 65%, 67%, and 41%, respectively. In addition, higher flavonoid, phenol and soluble protein content, sucrose phosphate synthase (SPS), phenylalanine ammonia lyase (PAL) and antioxidant activities were recorded in the treated fruits. There was a positive correlation between peel colour (hue) and TSS, between net photosynthesis and SPS activity and between phenol and flavonoid content with antioxidant activity in H(2)O(2)-treated fruits. It is concluded that spraying with 5 and 20 mM H(2)O(2) once a week produced better fruit growth, maximising the yield and quality of wax apple fruits under field conditions.
    Matched MeSH terms: Carotenoids/metabolism
  2. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS
    J Chromatogr A, 2018 Jan 12;1532:50-57.
    PMID: 29241956 DOI: 10.1016/j.chroma.2017.11.059
    A facile dispersive-micro-solid phase extraction (D-μ-SPE) method coupled with HPLC for the analysis of selected non-steroidal anti-inflammatory drugs (NSAIDs) in water samples was developed using a newly prepared magnetic sporopollenin-cyanopropyltriethoxysilane (MS-CNPrTEOS) sorbent. Sporopollenin homogenous microparticles of Lycopodium clavatum spores possessed accessible functional groups that facilitated surface modification. Simple modification was performed by functionalization with 3-cyanopropyltriethoxysilane (CNPrTEOS) and magnetite was introduced onto the biopolymer to simplify the extraction process. MS-CNPrTEOS was identified by infrared spectrometrywhile the morphology and the magnetic property were confirmed by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), respectively. To maximize the extraction performance of ketoprofen, ibuprofen, diclofenac and mefenamic acid using the proposed MS-CNPrTEOS, important D-μ-SPE parameters were comprehensively optimized. The optimum extraction conditions were sorbent amount, 40 mg; extraction time, 5 min; desorption time; 5 min; sample volume, 15 mL; sample pH 2.0; and salt addition, 2.5% (w/v). The feasibility of the developed method was evaluated using spiked tap water, lake water, river water and waste water samples. Results showed that ketoprofen and ibuprofen were linear in the range of 1.0-1000 μg L-1whilst diclofenac and mefenamic acid were linear in the range 0.8-500 μg L-1. The results also showed good detection limits for the studied NSAIDs in the range of 0.21-0.51 μg L-1and good recoveries for spiked water samples in the range of 85.1-106.4%. The MS-CNPrTEOS proved a promising dispersive sorbent and applicable to facile and rapid assay of NSAIDs in water samples.
    Matched MeSH terms: Carotenoids/chemistry
  3. Chow KS, Mat-Isa MN, Bahari A, Ghazali AK, Alias H, Mohd-Zainuddin Z, et al.
    J Exp Bot, 2012 Mar;63(5):1863-71.
    PMID: 22162870 DOI: 10.1093/jxb/err363
    The cytosolic mevalonate (MVA) pathway in Hevea brasiliensis latex is the conventionally accepted pathway which provides isopentenyl diphosphate (IPP) for cis-polyisoprene (rubber) biosynthesis. However, the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway may be an alternative source of IPP since its more recent discovery in plants. Quantitative RT-PCR (qRT-PCR) expression profiles of genes from both pathways in latex showed that subcellular compartmentalization of IPP for cis-polyisoprene synthesis is related to the degree of plastidic carotenoid synthesis. From this, the occurrence of two schemes of IPP partitioning and utilization within one species is proposed whereby the supply of IPP for cis-polyisoprene from the MEP pathway is related to carotenoid production in latex. Subsequently, a set of latex unique gene transcripts was sequenced and assembled and they were then mapped to IPP-requiring pathways. Up to eight such pathways, including cis-polyisoprene biosynthesis, were identified. Our findings on pre- and post-IPP metabolic routes form an important aspect of a pathway knowledge-driven approach to enhancing cis-polyisoprene biosynthesis in transgenic rubber trees.
    Matched MeSH terms: Carotenoids/metabolism
  4. Wan Hasan WN, Chin KY, Abd Ghafar N, Soelaiman IN
    Drug Des Devel Ther, 2020;14:969-976.
    PMID: 32184566 DOI: 10.2147/DDDT.S224941
    PURPOSE: Annatto-derived tocotrienol (AnTT) has been shown to improve bone formation in animal models of osteoporosis and promote differentiation of pre-osteoblastic cells. However, the mechanism of action of AnTT in achieving these effects is unclear. This study aims to investigate the mechanism of action of AnTT on MC3T3-E1 pre-osteoblasts via the mevalonate pathway.

    METHODS: Murine pre-osteoblastic cells, MC3T3-E1, were cultured with the density of 1 × 104 cells/mL and treated with 4 concentrations of AnTT (0.001-1 µg/mL). Expression of HMG-CoA reductase (HMGR) gene was carried out using qPCR after treatment with AnTT for 21 days. RhoA activation and bone morphogenetic protein-2 (BMP-2) were measured using immunoassay after 9 and 15 days of AnTT treatment. Lovastatin was used as the positive control. Mineralized nodules were detected using Von Kossa staining after 21 days of AnTT treatment.

    RESULTS: The results showed that HMGR was up-regulated in the lovastatin group on day 9 and 21 compared to the control. Lovastatin also inhibited RhoA activation (day 9 and 15) and increased BMP-2 protein (day 15). On the other hand, AnTT at 0.001 μg/mL (day 3) and 0.1 μg/mL (day 21) significantly down-regulated HMGR gene expression compared to the control. On day 21, HMGR gene expression was significantly reduced in all groups compared to day 15. AnTT at 0.1 μg/mL significantly decreased RhoA activation on day 9 compared to the control. AnTT at 1 μg/mL significantly increased BMP-2 protein on day 15 compared to the control (P<0.05). Mineralized calcium nodules were more abundant in AnTT treated groups compared to the control on day 21.

    CONCLUSION: AnTT suppresses the mevalonate pathway by downregulating HMGR gene expression and inhibiting RhoA activation, leading to increased BMP-2 protein in MC3T3-E1 cells. This explains the stimulating effects of AnTT on osteoblast mineralization.

    Matched MeSH terms: Carotenoids/pharmacology*
  5. Ali Hassan SH, Fry JR, Abu Bakar MF
    Biomed Res Int, 2013;2013:138950.
    PMID: 24288662 DOI: 10.1155/2013/138950
    Garcinia parvifolia belongs to the same family as mangosteen (Garcinia mangostana), which is known locally in Sabah as "asam kandis" or cherry mangosteen. The present study was conducted to determine the phytochemicals content (total phenolic, flavonoid, anthocyanin, and carotenoid content) and antioxidant and acetylcholinesterase inhibition activity of the flesh and peel of G. parvifolia. All samples were freeze-dried and extracted using 80% methanol and distilled water. For the 80% methanol extract, the flesh of G. parvifolia displayed higher phenolic and flavonoid contents than the peel, with values of 7.2 ± 0.3 mg gallic acid equivalent (GAE)/g and 5.9 ± 0.1 mg rutin equivalent (RU)/g, respectively. Anthocyanins were detected in the peel part of G. parvifolia but absent in the flesh. The peel of G. parvifolia displayed higher total carotenoid content as compared to the flesh part with the values of 17.0 ± 0.3 and 3.0 ± 0.0 mg β-carotene equivalents (BC)/100 g, respectively. The free-radical scavenging, ferric reducing, and acetylcholinesterase inhibition effect of the flesh were higher as compared to the peel in both extracts. These findings suggested that the edible part of G. parvifolia fruit has a potential as a natural source of antioxidant and anti-Alzheimer's agents.
    Matched MeSH terms: Carotenoids/analysis
  6. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Carotenoids/isolation & purification; Carotenoids/pharmacology*
  7. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S
    Bone, 2018 11;116:8-21.
    PMID: 29990585 DOI: 10.1016/j.bone.2018.07.003
    Metabolic syndrome (MetS) is associated with osteoporosis due to the underlying inflammatory and hormonal changes. Annatto tocotrienol has been shown to improve medical complications associated with MetS or bone loss in animal studies. This study aimed to investigate the effects of annatto tocotrienol as a single treatment for MetS and osteoporosis in high-carbohydrate high-fat (HCHF) diet-induced MetS animals. Three-month-old male Wistar rats were randomly divided into five groups. The baseline group was euthanized at the onset of the study. The normal group received standard rat chow and tap water. The remaining groups received HCHF diet and treated with three different regimens orally daily: (a) tocopherol-stripped corn oil (the vehicle of tocotrienol), (b) 60 mg/kg annatto tocotrienol, and (c) 100 mg/kg annatto tocotrienol. At the end of the study, measurements of MetS parameters, body compositions, and bone mineral density were performed in animals before sacrifice. Upon euthanasia, blood and femur of the rats were harvested for the evaluations of bone microstructure, biomechanical strength, remodelling activities, hormonal changes, and inflammatory response. Treatment with annatto tocotrienol improved all MetS parameters (except abdominal obesity), trabecular bone microstructure, bone strength, increased osteoclast number, normalized hormonal changes and inflammatory response in the HCHF animals. In conclusion, annatto tocotrienol is a potential agent for managing MetS and osteoporosis concurrently. The beneficial effects of annatto tocotrienol may be attributed to its ability to prevent the hormonal changes and pro-inflammatory state in animals with MetS.
    Matched MeSH terms: Carotenoids/administration & dosage; Carotenoids/therapeutic use
  8. Bakker MF, Peeters PH, Klaasen VM, Bueno-de-Mesquita HB, Jansen EH, Ros MM, et al.
    Am J Clin Nutr, 2016 Feb;103(2):454-64.
    PMID: 26791185 DOI: 10.3945/ajcn.114.101659
    BACKGROUND: Carotenoids and vitamin C are thought to be associated with reduced cancer risk because of their antioxidative capacity.

    OBJECTIVE: This study evaluated the associations of plasma carotenoid, retinol, tocopherol, and vitamin C concentrations and risk of breast cancer.

    DESIGN: In a nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort, 1502 female incident breast cancer cases were included, with an oversampling of premenopausal (n = 582) and estrogen receptor-negative (ER-) cases (n = 462). Controls (n = 1502) were individually matched to cases by using incidence density sampling. Prediagnostic samples were analyzed for α-carotene, β-carotene, lycopene, lutein, zeaxanthin, β-cryptoxanthin, retinol, α-tocopherol, γ-tocopherol, and vitamin C. Breast cancer risk was computed according to hormone receptor status and age at diagnosis (proxy for menopausal status) by using conditional logistic regression and was further stratified by smoking status, alcohol consumption, and body mass index (BMI). All statistical tests were 2-sided.

    RESULTS: In quintile 5 compared with quintile 1, α-carotene (OR: 0.61; 95% CI: 0.39, 0.98) and β-carotene (OR: 0.41; 95% CI: 0.26, 0.65) were inversely associated with risk of ER- breast tumors. The other analytes were not statistically associated with ER- breast cancer. For estrogen receptor-positive (ER+) tumors, no statistically significant associations were found. The test for heterogeneity between ER- and ER+ tumors was statistically significant only for β-carotene (P-heterogeneity = 0.03). A higher risk of breast cancer was found for retinol in relation to ER-/progesterone receptor-negative tumors (OR: 2.37; 95% CI: 1.20, 4.67; P-heterogeneity with ER+/progesterone receptor positive = 0.06). We observed no statistically significant interaction between smoking, alcohol, or BMI and all investigated plasma analytes (based on tertile distribution).

    CONCLUSION: Our results indicate that higher concentrations of plasma β-carotene and α-carotene are associated with lower breast cancer risk of ER- tumors.

    Matched MeSH terms: Carotenoids/blood*; Carotenoids/therapeutic use
  9. Wan Rosli WI, Babji AS, Aminah A, Foo SP, Abd Malik O
    Int J Food Sci Nutr, 2010 Aug;61(5):519-35.
    PMID: 20166846 DOI: 10.3109/09637481003591582
    The effect of retorting and oven cooking on the nutritional properties of beef frankfurters blended with palm oil (PO), red PO35 and red PO48 were compared against the control beef fat treatment. Red PO oven-cooked beef frankfurters resulted in a significant loss of vitamin E from 538.5 to 287.5 microg after 6 months. Oven cooked sausages stored at -18 degrees C and retorted sausages stored for the 6 months of shelf studies resulted in more than 90% loss of alpha-carotene and beta-carotene in red PO beef frankfurters. Cholesterol was reduced at the range of 29.0-32.2 mg/100 g when beef fat was substituted with palm-based oils, in beef frankfurters. Differences of heat treatments did not significantly change THE cholesterol content, within all treatments. This study showed the potential of utilizing red palm oils as animal fat analogues in improving vitamin E, reducing cholesterol but not carotenes in beef frankfurters.
    Matched MeSH terms: Carotenoids/analysis
  10. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Carotenoids/pharmacology*
  11. Sundram K, Khor HT, Ong AS, Pathmanathan R
    Cancer Res, 1989 Mar 15;49(6):1447-51.
    PMID: 2493981
    Female Sprague-Dawley rats, 50 days of age, were treated with a single dose of 5 mg of 7,12-dimethylbenz(a)anthracene intragastrically. 3 days after carcinogen treatment, the rats were put on semisynthetic diets containing 20% by weight of corn oil (CO), soybean oil (SBO), crude palm oil (CPO), refined, bleached, deodorized palm oil (RBD PO) and metabisulfite-treated palm oil (MCPO) for 5 months. During the course of experiments, rats fed on different dietary fats had similar rate of growth. Rats fed 20% CO or SBO diet have higher tumor incidence than rats fed on palm oil (PO) diets; however differences of mean tumor latency periods among the groups were not statistically significant. At autopsy, rats fed on high CO or SBO diets had significantly more tumors than rats fed on the three PO diets. Our results showed that high PO diets did not promote chemically induced mammary tumorigenesis in female rats when compared to high CO or SBO diets. CO and SBO differ greatly from the palm oils in their contents of tocopherols, tocotrienols, and carotenes. But further experiments would be required to determine whether the observed differences in tumor incidence and tumor numbers were due to the differences in these minor components or due to the unique triglyceride structure of the palm oils. Analysis of the fatty acid profiles of plasma total lipids of tumor-bearing rats and of the tumor total lipids showed that, with the exception of arachidonic acid, the fatty acid profiles reflect the nature of the dietary fats. At autopsy, there were no differences in the plasma total cholesterol contents among rats fed on different dietary fats, but rats fed on palm oil diets had a significantly higher plasma triglyceride level than that of rats fed CO or SBO diets. As for the tumor lipids, there were no significant differences in the triglyceride, diglyceride, and phospholipid levels when the CO or SBO groups were compared to the palm oil groups.
    Matched MeSH terms: Carotenoids/analysis
  12. Teh SS, Lau HLN
    Food Chem, 2021 Mar 15;340:127912.
    PMID: 32916404 DOI: 10.1016/j.foodchem.2020.127912
    Palm-pressed mesocarp oil has been found to contain plenty of naturally occurring valuable phytonutrients. The application and study of the oil are limited, therefore, quality assessment of refined red palm-pressed mesocarp olein (PPMO) is deemed necessary to provide data in widening the applications as a niche products or raw material for the nutraceutical industry. Results showed that refined PPMO has comparable physicochemical properties and oxidative stability with commercial cooking oil, palm olein (PO). The food safety parameters and contaminants (PAH, 3-MCPD ester, 2-MCPD ester, glycidyl ester and trace metals) analyses proven that refined PPMO is safe to be consumed. Besides, refined PPMO contains remarkably greater concentrations of phytonutrients including carotenoids, phytosterols, squalene and vitamin E than PO, postulating its protective health benefits. The overall quality assessment of refined PPMO showed that it is suitable for human consumption and it is a good source for food applications and dietary nutritional supplements.
    Matched MeSH terms: Carotenoids/analysis
  13. Kar Soon T, Al-Azad S, Ransangan J
    J Microbiol Biotechnol, 2014 Aug;24(8):1034-43.
    PMID: 24759424
    This study determined the effect of light intensity and photoperiod on the dry cell weight and total amount of carotenoids in four isolates of purple non-sulfur bacteria obtained from shaded and exposed microhabitats of a mangrove ecosystem in Kota Kinabalu, Sabah, Malaysia. The initial isolation of the bacteria was carried out using synthetic 112 medium under anaerobic conditions (2.5 klx) at 30 ± 2°C. On the basis of colony appearance, cell morphology, gram staining, motility test, and 16S rRNA gene sequencing analyses, all four bacteria were identified as Afifella marina. One of the bacterial isolates, designated as Af. marina strain ME, which was extracted from an exposed mud habitat within the mangrove ecosystem, showed the highest yield in dry cell weight (4.32± 0.03 g/l) as well as total carotenoids (0.783 ± 0.002 mg/g dry cell weight). These values were significantly higher than those for dry cell weight (3.77 ± 0.02g/l ) and total carotenoid content (0.706 ± 0.008 mg/g) produced by the isolates from shaded habitats. Further analysis of the effect of 10 levels of light intensity on the growth characteristics of Af. marina strain ME showed that the optimum production of dry cell weight and total carotenoids was achieved at different light intensities and incubation periods. The bacterium produced the highest dry cell weight of 4.98 g/l at 3 klx in 72 h incubation, but the carotenoid production of 0.783 mg/g was achieved at 2.5 klx in 48 h incubation. Subsequent analysis of the effect of photoperiod on the production of dry cell weight and total carotenoids at optimum light intensities (3 and 2.5 klx, respectively) revealed that 18 and 24 h were the optimum photoperiods for the production of dry cell weight and total carotenoids, respectively. The unique growth characteristics of the Af. marina strain ME can be exploited for biotechnology applications.
    Matched MeSH terms: Carotenoids/metabolism*
  14. Loganathan R, Subramaniam KM, Radhakrishnan AK, Choo YM, Teng KT
    Nutr Rev, 2017 Feb 01;75(2):98-113.
    PMID: 28158744 DOI: 10.1093/nutrit/nuw054
    The fruit of the oil palm tree (Elaeis guineesis) is the source of antioxidant-rich red palm oil. Red palm oil is a rich source of phytonutrients such as tocotrienols, tocopherols, carotenoids, phytosterols, squalene, and coenzyme Q10, all of which exhibit nutritional properties and oxidative stability. Mutagenic, nutritional, and toxicological studies have shown that red palm oil contains highly bioavailable β-carotene and vitamin A and is reasonably stable to heat without any adverse effects. This review provides a comprehensive overview of the nutritional properties of red palm oil. The possible antiatherogenic, antihemorrhagic, antihypertensive, anticancer, and anti-infective properties of red palm oil are examined. Moreover, evidence supporting the potential effectiveness of red palm oil to overcome vitamin A deficiency in children and pregnant women, to improve ocular complications of vitamin A deficiency, to protect against ischemic heart disease, to promote normal reproduction in males and females, to aid in the management of diabetes, to ameliorate the adverse effects of chemotherapy, and to aid in managing hypobaric conditions is presented.
    Matched MeSH terms: Carotenoids/analysis
  15. Saiman MZ, Mustafa NR, Verpoorte R
    Methods Mol Biol, 2018;1815:437-455.
    PMID: 29981141 DOI: 10.1007/978-1-4939-8594-4_31
    The plant Catharanthus roseus is a rich source of terpenoid indole alkaloids (TIA). Some of the TIA are important as antihypertensive (ajmalicine) and anticancer (vinblastine and vincristine) drugs. However, production of the latter is very low in the plant. Therefore, in vitro plant cell cultures have been considered as a potential supply of these chemicals or their precursors. Some monomeric alkaloids can be produced by plant cell cultures, but not on a level feasible for commercialization, despite extensive studies on this plant that deepened the understanding of the TIA biosynthesis and its regulation. In order to analyze the metabolites in C. roseus cell cultures, this chapter presents the method of TIA, carotenoids, and phytosterols analyses. Furthermore, an NMR-based metabolomics approach to study C. roseus cell culture is described.
    Matched MeSH terms: Carotenoids/analysis*
  16. Chong WT, Tan CP, Cheah YK, B Lajis AF, Habi Mat Dian NL, Kanagaratnam S, et al.
    PLoS One, 2018;13(8):e0202771.
    PMID: 30142164 DOI: 10.1371/journal.pone.0202771
    Red palm oil (RPO) is a natural source of Vitamin E (70-80% tocotrienol). It is a potent natural antioxidant that can be used in skin-care products. Its antioxidant property protects skin from inflammation and aging. In our work, a tocotrienol-rich RPO-based nanoemulsion formulation was optimized using response surface methodology (RSM) and formulated using high pressure homogenizer. Effect of the concentration of three independent variables [surfactant (5-15 wt%), co-solvent (10-30 wt%) and homogenization pressure (500-700 bar)] toward two response variables (droplet size, polydispersity index) was studied using central composite design (CCD) coupled to RSM. RSM analysis showed that the experimental data could be fitted into a second-order polynomial model and the coefficients of multiple determination (R2) is 0.9115. The optimized formulation of RPO-based nanoemulsion consisted of 6.09 wt% mixed surfactant [Tween 80/Span 80 (63:37, wt)], 20 wt% glycerol as a co-solvent via homogenization pressure (500 bar). The optimized tocotrienol-rich RPO-based nanoemulsion response values for droplet size and polydispersity index were 119.49nm and 0.286, respectively. The actual values of the formulated nanoemulsion were in good agreement with the predicted values obtained from RSM, thus the optimized compositions have the potential to be used as a nanoemulsion for cosmetic formulations.
    Matched MeSH terms: Carotenoids/analysis
  17. Chang SK, Alasalvar C, Shahidi F
    Crit Rev Food Sci Nutr, 2019;59(10):1580-1604.
    PMID: 29360387 DOI: 10.1080/10408398.2017.1422111
    The term "superfruit" has gained increasing usage and attention recently with the marketing strategy to promote the extraordinary health benefits of some exotic fruits, which may not have worldwide popularity. This has led to many studies with the identification and quantification of various groups of phytochemicals. This contribution discusses phytochemical compositions, antioxidant efficacies, and potential health benefits of the main superfruits such as açai, acerola, camu-camu, goji berry, jaboticaba, jambolão, maqui, noni, and pitanga. Novel product formulations, safety aspects, and future perspectives of these superfruits have also been covered. Research findings from the existing literature published within the last 10 years have been compiled and summarized. These superfruits having numerous phytochemicals (phenolic acids, flavonoids, proanthocyanidins, iridoids, coumarins, hydrolysable tannins, carotenoids, and anthocyanins) together with their corresponding antioxidant activities, have increasingly been utilized. Hence, these superfruits can be considered as a valuable source of functional foods due to the phytochemical compositions and their corresponding antioxidant activities. The phytochemicals from superfruits are bioaccessible and bioavailable in humans with promising health benefits. More well-designed human explorative studies are needed to validate the health benefits of these superfruits.
    Matched MeSH terms: Carotenoids/analysis
  18. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Carotenoids/chemistry
  19. Dauqan E, Sani HA, Abdullah A, Kasim ZM
    Pak J Biol Sci, 2011 Mar 15;14(6):399-403.
    PMID: 21902064
    The objective of the study was to evaluate the effect of four different vegetable oils [red palm olein (RPO), palm olein (PO), corn oil (CO), coconut oil (COC)] on antioxidant enzymes activity of rat liver. Sixty six Sprague Dawley male rats which were randomly divided into eleven groups of 6 rats per group and were treated with 15% of RPO, PO, CO and COC for 4 and 8 weeks. Rats in the control group were given normal rat pellet only while in treated groups, 15% of additional different vegetable oils were given. After 4 weeks of treatment the catalase (CAT) activity results showed that there was no significance difference (p > or = 0.05) between the control group and treated groups while after 8 weeks of treatment showed that there was no significant different (p > or = 0.05) between control group and RPO group but the treated rat liver with PO, CO and COC groups were the lowest and it were significantly lower (> or = 0.05) than control group. For superoxide dismutase (SOD) there was no significance difference (p > or = 0.05) between the control group and treated groups of vegetable oils after 4 and 8 weeks of treatment. Thus the study indicated that there was no significant (p > or = 0.05) effect on antioxidant enzyme (superoxide dismutase) but there was significant effect (p > or = 0.05) on catalase in rat liver.
    Matched MeSH terms: Carotenoids/pharmacology
  20. Naz T, Nazir Y, Nosheen S, Ullah S, Halim H, Fazili ABA, et al.
    Biomed Res Int, 2020;2020:8890269.
    PMID: 33457420 DOI: 10.1155/2020/8890269
    Carotenoids produced by microbial sources are of industrial and medicinal importance due to their antioxidant and anticancer properties. In the current study, optimization of β-carotene production in M. circinelloides strain 277.49 was achieved using response surface methodology (RSM). Cerulenin and ketoconazole were used to inhibit fatty acids and the sterol biosynthesis pathway, respectively, in order to enhance β-carotene production by diverting metabolic pool towards the mevalonate pathway. All three variables used in screening experiments were found to be significant for the production of β-carotene. The synergistic effect of the C/N ratio, cerulenin, and ketoconazole was further evaluated and optimized for superior β-carotene production using central composite design of RSM. Our results found that the synergistic combination of C/N ratios, cerulenin, and ketoconazole at different concentrations affected the β-carotene productions significantly. The optimal production medium (std. order 11) composed of C/N 25, 10 μg/mL cerulenin, and 150 mg/L ketoconazole, producing maximum β-carotene of 4.26 mg/L (0.43 mg/g) which was 157% greater in comparison to unoptimized medium (1.68 mg/L, 0.17 mg/g). So, it was concluded that metabolic flux had been successfully redirected towards the mevalonate pathway for enhanced β-carotene production in CBS 277.49.
    Matched MeSH terms: Carotenoids/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links