Displaying publications 21 - 40 of 91 in total

Abstract:
Sort:
  1. Hezaveh H, Muhamad II
    Int J Biol Macromol, 2012 Jun 1;50(5):1334-40.
    PMID: 22484730 DOI: 10.1016/j.ijbiomac.2012.03.017
    In this article, modified κ-carrageenan hydrogel nanocomposites were synthesized to increase the release ability of carrageenan hydrogels under gastrointestinal conditions. The effect of MgO nanoparticle loading in a model drug (methylene blue) release is investigated. Characterization of hydrogels were carried out using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Differential Scanning Calorimetry (DSC). Genipin was used to increase the delivery performance in gastrointestinal tract delivery by decreasing release in simulated stomach conditions and increasing release in simulated intestine conditions. It is shown that the amount of methylene blue released from genipin-cross-linked nanocomposites can be 67.5% higher in intestine medium and 56% lower in the stomach compared to κ-carrageenan hydrogel. It was found that by changing the nanoparticle loading and genipin concentration in the composite, the amount of drug released can be monitored. Therefore, applying nanoparticles appears to be a potential strategy to develop controlled drug delivery especially in gastrointestinal tract studies.
    Matched MeSH terms: Carrageenan/metabolism*; Carrageenan/chemistry*
  2. Kumar YN, Poong SW, Gachon C, Brodie J, Sade A, Lim PE
    PLoS One, 2020;15(9):e0239097.
    PMID: 32925956 DOI: 10.1371/journal.pone.0239097
    The eucheumatoids Kappaphycus and Eucheuma are cultivated in tropical or subtropical regions for the production of carrageenan, a hydrocolloid widely used in the food and cosmetic industries. Kappaphycus alvarezii is a highly valued economic crop in the Coral Triangle, with the Philippines, Indonesia and Malaysia ranked among the largest producers. In the absence of measures to mitigate climate change, extreme events including heatwaves, typhoons, severe El Niño and La Niña, are expected to increase in frequency and magnitude. This inadvertently brings adverse effects to the seaweed cultivation industry, especially in the tropics. Temperatures are rapidly reaching the upper limit of biologically tolerable levels and an increase in reports of ice-ice and pest outbreaks is attributable to these shifts of environmental parameters. Nevertheless, few reports on the response of eucheumatoids to a changing environment, in particular global warming, are available. Understanding the responses and possible mechanisms for acclimation to warming is crucial for a sustainable seaweed cultivation industry. Here, the physiological and biochemical responses of K. alvarezii to acute warming indicated that the strain used in the current study is unlikely to survive sudden increases in temperature above 36°C. As temperature increased, the growth rates, photosynthetic performance, phycocolloid quality (carrageenan yield, gel strength and gel viscosity) and pigment content (chlorophyll-a, carotenoid and phycobiliproteins) were reduced while the production of reactive oxygen species increased indicating the occurrence of stress in the seaweeds. This study provides a basis for future work on long term acclimation to elevated temperature and mesocosm-based multivariate studies to identify heat-tolerant strains for sustainable cultivation.
    Matched MeSH terms: Carrageenan/analysis; Carrageenan/metabolism
  3. Hassan RA, Heng LY, Tan LL
    Sci Rep, 2019 04 23;9(1):6379.
    PMID: 31015498 DOI: 10.1038/s41598-019-42757-y
    A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (ipc) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1-10 mg L-1 (R2 = 0.98) with a detection limit of 0.08 mg L-1. The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6-6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.
    Matched MeSH terms: Carrageenan/analysis*; Carrageenan/chemistry
  4. Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR
    PLoS One, 2017;12(9):e0185313.
    PMID: 28957374 DOI: 10.1371/journal.pone.0185313
    Polymer electrolyte membranes based on the natural polymer κ-carrageenan were modified and characterized for application in electrochemical devices. In general, pure κ-carrageenan membranes show a low ionic conductivity. New membranes were developed by chemically modifying κ-carrageenan via phosphorylation to produce O-methylene phosphonic κ-carrageenan (OMPC), which showed enhanced membrane conductivity. The membranes were prepared by a solution casting method. The chemical structure of OMPC samples were characterized using Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and 31P nuclear magnetic resonance (31P NMR) spectroscopy. The conductivity properties of the membranes were investigated by electrochemical impedance spectroscopy (EIS). The characterization demonstrated that the membranes had been successfully produced. The ionic conductivity of κ-carrageenan and OMPC were 2.79 × 10-6 S cm-1 and 1.54 × 10-5 S cm-1, respectively. The hydrated membranes showed a two orders of magnitude higher ionic conductivity than the dried membranes.
    Matched MeSH terms: Carrageenan/chemical synthesis*; Carrageenan/chemistry*
  5. Ariffin SH, Yeen WW, Abidin IZ, Abdul Wahab RM, Ariffin ZZ, Senafi S
    PMID: 25519220 DOI: 10.1186/1472-6882-14-508
    Carrageenan is a linear sulphated polysaccharide extracted from red seaweed of the Rhodophyceae family. It has broad spectrum of applications in biomedical and biopharmaceutical field. In this study, we determined the cytotoxicity of degraded and undegraded carrageenan in human intestine (Caco-2; cancer and FHs 74 Int; normal) and liver (HepG2; cancer and Fa2N-4; normal) cell lines.
    Matched MeSH terms: Carrageenan/adverse effects*; Carrageenan/chemistry
  6. Zakaria ZA, Mohamad AS, Chear CT, Wong YY, Israf DA, Sulaiman MR
    Med Princ Pract, 2010;19(4):287-94.
    PMID: 20516705 DOI: 10.1159/000312715
    OBJECTIVE: The present study was carried out to determine the antiinflammatory and antinociceptive activities of a methanol extract of Zingiber zerumbet rhizomes (MEZZ) using various experimental model systems.

    MATERIALS AND METHODS: The MEZZ was prepared by macerating oven-dried (50 degrees C) powdered rhizomes (1.2 kg) of Z. zerumbet in 80% methanol in a ratio of 1:20 (w/v) for 48 h. The supernatant was collected, filtered and evaporated to dryness under reduced pressure (50 degrees C) yielding approximately 21.0 g of the crude dried extract. The crude dried extract was stored at -20 degrees C prior to use and was dissolved in normal saline (0.9% NaCl) immediately before administration at concentrations required to produce doses of 25, 50 and 100 mg/kg.

    RESULTS: All dosages of MEZZ showed significant (p < 0.05) antiedema activity when assessed using the carrageenan-induced paw edema test and the cotton-pellet-induced granuloma test. The MEZZ exhibited significant (p < 0.05) antinociceptive activity when assessed by the writhing, hot plate and formalin tests. Pretreatment with naloxone (5 mg/kg) significantly decreased the latency of discomfort produced by the 100 mg/kg dose of MEZZ in the hot plate test.

    CONCLUSION: MEZZ produced antiinflammatory and antinociceptive activities which may involve the inhibition of bradykinin-, prostaglandin-, histamine- and opioid-mediated processes.

    Matched MeSH terms: Carrageenan/pharmacology; Carrageenan/chemistry
  7. Sanagi MM, Loh SH, Wan Ibrahim WN, Pourmand N, Salisu A, Wan Ibrahim WA, et al.
    J Sep Sci, 2016 Mar;39(6):1152-9.
    PMID: 27027592 DOI: 10.1002/jssc.201501207
    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.
    Matched MeSH terms: Carrageenan
  8. Ishamri Ismail, Nur Husna Mohd Fauzi, Mastura Zahidi Baki, Ho, Lee Hoon
    MyJurnal
    This study was carried out to evaluate the effects of different drying methods (sun drying, cabinet
    drying and convection oven) and hydrocolloids (carrageenan and alginate) on physicochemical
    properties of semi-dried catfish jerky. The concentration of hydrocolloids used was 1% and 2%.
    Samples without the addition of hydrocolloid served as the control group. The water activity of semidried catfish jerky decreased with the addition of hydrocolloids. For colour properties, lightness (L*)
    value of semi-dried catfish jerky increased with the increased concentration of hydrocolloids. The
    addition of 2% alginate (2%A) and 2% carrageenan (2%C) showed higher lightness (L*) than the
    controlled group for all drying methods, except for sun drying with carrageenan. Both carrageenan and
    alginate added into semi-dried catfish jerky increased the processing yields. The addition of 2%
    carrageenan (2%C) and 1% alginate (1%A) improved the product yields for all drying methods. This
    paper argues that the application of cabinet dryer gives better shelf stability due to the lower range of
    water activity than other drying methods while preserving colour quality and product yields.
    Matched MeSH terms: Carrageenan
  9. Zhang C, Show PL, Ho SH
    Bioresour Technol, 2019 Oct;289:121700.
    PMID: 31262543 DOI: 10.1016/j.biortech.2019.121700
    There is a growing interest in developing bio-based biodegradable plastics to reduce the dependence on depleting fossil fuels and provide a sustainable alternative. Bio-based plastics can usually be produced from lipids, proteins or carbohydrates, which are major components of microalgae. Despite its potential for algal plastics, little information is available on strain selection, culture optimization and bioplastics fabrication mechanism. In this review, we summarized the recent developments in understanding the utilization of seaweed polysaccharides, such as alginate and carrageenan for bio-based plastics. In addition, a conceptual biorefinery framework for algal plastics through promising components (e.g., lipids, carbohydrates and proteins) from microalgae is comprehensively presented. Moreover, the reasons for variations in bioplastics performance and underlying mechanism of various algal biocomposites have been critically discussed. We believe this review can provide valuable information to accelerate the development of innovative green technologies for improving the commercial viability of algal plastics.
    Matched MeSH terms: Carrageenan
  10. Shaari, N.A., Sulaiman, R., Cheok, C.Y.
    MyJurnal
    Starch and hydrocolloids were often used together in food industry to modify the rheological properties with the aim to enhance the starch tolerance to processing conditions. As such, the rheological properties of xanthan gum (XG), carrageenan, high (HMP) and low methoxyl pectin (LMP), with native corn starch (NCS) and modified corn starch (MCS) at different temperature were evaluated in this study. The flow behavior index (n) of corn starch-hydrocolloid mixtures were observed in the range from 0.160 to 0.604 where indicated the shear thinning behavior. The addition of hydrocolloids increased the apparent viscosity of the starch system. NCS mixtures showed consistency index (K) and apparent viscosities (na,100) decreased with increase in the temperature. The addition of XG and carrageenan increased the storage (G’) and loss (G”) moduli. Among the hydrocolloids, the XG addition to the NCS exhibited superior viscoelastic properties as evidenced by the highest G’ and lowest tan δ values. XG was observed capable to increase while pectin reduced the solid-like starch system. This result provides pragmatic data for food engineer in process design and food product development by minimizing the cost of trial and error.
    Matched MeSH terms: Carrageenan
  11. Ding K, Geng H, Guo W, Sun W, Zhan S, Lou Q, et al.
    J Sci Food Agric, 2023 Aug 30;103(11):5322-5331.
    PMID: 37016806 DOI: 10.1002/jsfa.12600
    BACKGROUND: Fish gelatin (FG) has multifunctional properties similar to mammalian gelatin (MG), and it has been recognized as the optimal alternative to MG. While its poor surface-active and gelling properties significantly limit its application values, glycosylation has been successfully used to increase surface-active properties of FG, but the influence of ultrasonic-associated glycosylation (UAG) on the gelling and structural characteristics of FG is still rarely reported. This article explores UAG (100-200 W, 0.5-1 h) with κ-carrageenan (κC) on the functional properties (emulsifying, gelling and rheological properties) and structural characteristics of FG.

    RESULTS: The longer time and higher power of ultrasonics accelerated the glycosylation reaction with an increase in glycosylation degree and browning index values. Compared with original FG, FG-κC mixture and bovine gelatin, UAG-modified FG possessed higher emulsification activity index, emulsion stability index, gel strength, hardness and melting temperature values. Among them, gelatin modified by appropriate ultrasonic conditions (200 W, 0.5 h) had the highest emulsifying and gelling properties. Rheological results showed that UAG contributed to the gelation process of gelatin with advanced gelation time and endowed it with high viscosity. Structural analysis indicated that UAG promoted κC to link with FG by the formation of covalent and hydrogen bonds, restricting more bound and immobilized water in the gels, exhibiting higher gelling properties.

    CONCLUSION: This work showed that UAG with κC is a promising method to produce high gelling and emulsifying properties of FG that could replace MG. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Carrageenan
  12. Ooi L, Heng LY, Mori IC
    Sensors (Basel), 2015;15(2):2354-68.
    PMID: 25621608 DOI: 10.3390/s150202354
    Biosensors fabricated with whole-cell bacteria appear to be suitable for detecting bioavailability and toxicity effects of the chemical(s) of concern, but they are usually reported to have drawbacks like long response times (ranging from hours to days), narrow dynamic range and instability during long term storage. Our aim is to fabricate a sensitive whole-cell oxidative stress biosensor which has improved properties that address the mentioned weaknesses. In this paper, we report a novel high-throughput whole-cell biosensor fabricated by immobilizing roGFP2 expressing Escherichia coli cells in a k-carrageenan matrix, for the detection of oxidative stress challenged by metalloid compounds. The E. coli roGFP2 oxidative stress biosensor shows high sensitivity towards arsenite and selenite, with wide linear range and low detection limit (arsenite: 1.0 × 10(-3)-1.0 × 10(1) mg·L(-1), LOD: 2.0 × 10(-4) mg·L(-1); selenite: 1.0 × 10(-5)-1.0 × 10(2) mg·L(-1), LOD: 5.8 × 10(-6) mg·L(-1)), short response times (0-9 min), high stability and reproducibility. This research is expected to provide a new direction in performing high-throughput environmental toxicity screening with living bacterial cells which is capable of measuring the bioavailability and toxicity of environmental stressors in a friction of a second.
    Matched MeSH terms: Carrageenan/chemistry
  13. Tan IS, Lee KT
    Bioresour Technol, 2015 May;184:386-94.
    PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146
    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
    Matched MeSH terms: Carrageenan/metabolism*
  14. Hezaveh H, Muhamad II, Noshadi I, Shu Fen L, Ngadi N
    J Microencapsul, 2012;29(4):368-79.
    PMID: 22309480 DOI: 10.3109/02652048.2011.651501
    We studied a model system of controlled drug release using beta-carotene and κ-carrageenan/NaCMC hydrogel as a drug and a device, respectively. Different concentrations of genipin were added to crosslink the beta-carotene loaded beads by using the dripping method. Results have shown that the cross-linked beads possess lower swelling ability in all pH conditions (pH 1.2 and 7.4), and swelling ratio decreases with increasing genipin concentration. Microstructure study shows that cross-linking has enhanced the stability and structure of the beads network. Determination of diffusion coefficient for the release of encapsulated beta-carotene indicates less diffusivity when beads are cross-linked. Swelling models using adaptive neuro fuzzy show that using genipin as a cross-linker in the kC/NaCMC hydrogels affects the transport mechanism. The model shows very good agreement with the experimental data that indicates that applying ANFIS modelling is an accurate, rapid and simple way to model in such a case for controlled release applications.
    Matched MeSH terms: Carrageenan/chemistry
  15. Hezaveh H, Muhamad II
    Carbohydr Polym, 2012 Jun 5;89(1):138-45.
    PMID: 24750615 DOI: 10.1016/j.carbpol.2012.02.062
    In this article, silver and magnetite nanofillers were synthesized in modified κ-carrageenan hydrogels using the in situ method. The effect of metallic nanoparticles in gastro-intestinal tract (GIT) release of a model drug (methylene blue) has been investigated. The effect of nanoparticles loading and genipin cross-linking on GIT release of nanocomposite is also studied to finally provide the most suitable drug carrier system. In vitro release studies revealed that using metallic nanocomposites hydrogels in GIT studies can improve the drug release in intestine and minimize it in the stomach. It was found that cross-linking and nanofiller loading can significantly improve the targeted release. Therefore, applying metallic nanoparticles seems to be a promising strategy to develop GIT controlled drug delivery.
    Matched MeSH terms: Carrageenan/chemistry*
  16. Fakharian MH, Tamimi N, Abbaspour H, Mohammadi Nafchi A, Karim AA
    Carbohydr Polym, 2015 Nov 5;132:156-63.
    PMID: 26256336 DOI: 10.1016/j.carbpol.2015.06.033
    Composite sago starch-based system was developed and characterized with the aim to find an alternative to gelatin in the processing of pharmaceutical capsules. Dually modified (Hydrolyzed-Hydroxypropylated) sago starches were combined with κ-carrageenan (0.25, 0.5, 0.75, and 1%). The rheological properties of the proposed composite system were measured and compared with gelatin as reference material. Results show that combination of HHSS12 (Hydrolysed-hydroxypropylated sago starch at 12h) with 0.5% κ-carrageenan was comparable to gelatin rheological behavior in pharmaceutical capsule processing. The solution viscosity at 50 °C and sol-gel transition of the proposed composite system were comparable to those of gelatin. The viscoelastic moduli (G' and G") for the proposed system were lower than those of gelatin. These results illustrate that by manipulation of the constituents of sago starch-based composite system, a suitable alternative to gelatin can be produced with comparable properties and this could find potential application in pharmaceutical capsule industry.
    Matched MeSH terms: Carrageenan/chemistry*
  17. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
    Matched MeSH terms: Carrageenan/analysis*
  18. Sosroseno W, Herminajeng E
    J Med Microbiol, 2002 Jul;51(7):581-8.
    PMID: 12132775
    The aim of this study was to determine the role of macrophages in the Actinobacillus actinomycetemcomitans-induced murine immune response. BALB/c mice were given carrageenan solution by intraperitoneal injection before immunisation with heat-killed A. actinomycetemcomitans. Mice immunised with antigens and phosphate-buffered saline served as positive and negative controls, respectively. One week after the last immunisation, the delayed-type hypersensitivity (DTH) response was assessed by measurement of footpad swelling. Serum IgG and IgM anti-A. actinomycetemcomitans antibody levels and culture supernate levels of interferon (IFN)-gamma were determined by ELISA. The diameter of abscess formation was determined every 5 days. Sham-immunised spleen cells were transferred to carrageenan-untreated recipients (groups A and B) and to carrageenan-treated recipients (group D). Antigen-immunised spleen cells were transferred to carrageenan-untreated (group C) and carrageenan-treated (group E) recipients. The carrageenan-treated recipients in groups F and G received macrophages from antigen- and sham-immunised mice respectively. All mice except those in group A were immunised with antigen 24 h after cell transfer. After 1 week, a partial suppression of DTH response, reduced levels of IFN-gamma, serum IgG and IgM anti-A. actinomycetemcomitans antibodies and delayed healing were seen in carrageenan-treated mice when compared with the positive control. The immune response to A. actinomycetemcomitans in groups A, B and D was lower than that in groups C and E. Healing of the lesion in the former groups was also delayed when compared with the latter groups. The immune response and the healing of the lesion could be partially restored in carrageenan-treated mice that received antigen-pulsed macrophages (group F) but not in those that received naive macrophages (group G). These results suggest that macrophages play a partial role in the induction of the murine immune response to A. actinomycetemcomitans.
    Matched MeSH terms: Carrageenan/administration & dosage; Carrageenan/immunology
  19. Chin YX, Mi Y, Cao WX, Lim PE, Xue CH, Tang QJ
    Nutrients, 2019 May 21;11(5).
    PMID: 31117266 DOI: 10.3390/nu11051133
    Kappaphycus is a commercially important edible red alga widely cultivated for carrageenan production. Here, we aimed to investigate the anti-obesity mechanism of Kappaphycusalvarezii by comparing the effects of whole seaweed (T), extracted native κ-carrageenan (CGN), and the leftover fraction sans-carrageenan (SCGN) supplementations (5%, w/w) on diet-induced obese C57BL/6J mice. A high-fat diet induced both a raised body fat percentage and serum cholesterol level, increased adipocytes size, abnormal levels of adipocytokines, and promoted gut dysbiosis. Our results showed that, overall, both CGN and SCGN were more effective in reversing obesity and related metabolic syndromes to normal levels than T. Furthermore, these findings suggested that CGN- and SCGN-modulated gut dysbiosis induced by a high-fat diet, which may play an influencing role in adiponectin dysregulation. Our data also showed some evidence that CGN and SCGN have distinct effects on selected genes involved in lipid metabolism. In conclusion, both κ-carrageenan and SCGN have novel anti-obesity potential with possible different mechanisms of action.
    Matched MeSH terms: Carrageenan/pharmacology*; Carrageenan/chemistry
  20. Djaeni M, Prasetyaningrum A, Sasongko SB, Widayat W, Hii CL
    J Food Sci Technol, 2015 Feb;52(2):1170-5.
    PMID: 25694735 DOI: 10.1007/s13197-013-1081-0
    Drying is a significant step in the production of carrageenan. However, current drying process still deals with too long drying time and carrageenan quality degradation. The foam mat drying is an option to speed up drying process as well as retaining carrageenan quality. In this case, the carrageenan was mixed with egg white (albumin) as foaming agent and methyl cellulose for foam stabilizer. The foam will break the carrageenan gels and creates the porous structure resulting higher surface area for water transfer. This research studied the effect of egg white and methyl cellulose on carrageenan drying at various air temperature, and thickness. As a response, the water content versus time was observed and the drying rate was estimated. Meanwhile, the carrageenan texture was verified by X-RD (X-Ray Diffraction) and TEM (Transmission Electron Microscopy). Results showed that the presence of egg white stablized by methyl cellulose can speed up drying rate as well as retaining the crystalline structure of carrageenan. The higher albumin content, the faster drying rate. However, the addition of albumin and methyl cellulose restricted not more than 30 % in the mixture for keeping carrageenan quality and purity. By adding egg white 20 % and methyl cellulose 10 %, the water diffusion and drying rate can be two fold compared with carrageenan drying without foam. The improvement can be higher at the higher temperature and thinner carrageenan sheets.
    Matched MeSH terms: Carrageenan
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links