Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Phuah NH, Nagoor NH
    Biomed Res Int, 2014;2014:804510.
    PMID: 25254214 DOI: 10.1155/2014/804510
    MicroRNAs (miRNAs) are short noncoding RNA which regulate gene expression by messenger RNA (mRNA) degradation or translation repression. The plethora of published reports in recent years demonstrated that they play fundamental roles in many biological processes, such as carcinogenesis, angiogenesis, programmed cell death, cell proliferation, invasion, migration, and differentiation by acting as tumour suppressor or oncogene, and aberrations in their expressions have been linked to onset and progression of various cancers. Furthermore, each miRNA is capable of regulating the expression of many genes, allowing them to simultaneously regulate multiple cellular signalling pathways. Hence, miRNAs have the potential to be used as biomarkers for cancer diagnosis and prognosis as well as therapeutic targets. Recent studies have shown that natural agents such as curcumin, resveratrol, genistein, epigallocatechin-3-gallate, indole-3-carbinol, and 3,3'-diindolylmethane exert their antiproliferative and/or proapoptotic effects through the regulation of one or more miRNAs. Therefore, this review will look at the regulation of miRNAs by natural agents as a means to potentially enhance the efficacy of conventional chemotherapy through combinatorial therapies. It is hoped that this would provide new strategies in cancer therapies to improve overall response and survival outcome in cancer patients.
    Matched MeSH terms: Catechin/analogs & derivatives; Catechin/therapeutic use
  2. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Catechin/analogs & derivatives; Catechin/pharmacology
  3. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Catechin/genetics*; Catechin/chemistry
  4. Ravindran R, Jaganathan R, Periandavan K
    Cell Biochem Funct, 2020 Apr;38(3):309-318.
    PMID: 31926118 DOI: 10.1002/cbf.3490
    The aim is to test the hypothesis whether the cholesterol loaded lysosomes are capable of mediating lysosomal membrane permeabilization (LMP) during aging and to study the efficacy of epigallocatechin-3-gallate (EGCG) in preserving the lysosomal membrane stability. Aged rats were fed with high cholesterol diet (HCD) and treated with EGCG orally. Serum and tissue lipid status, cholesterol levels in lysosomal fraction, activities of lysosomal enzymes in lysosomal, and cytosolic fractions were measured. Transmission electron microscopic studies (TEM), oil red "O" (ORO) staining, and immunohistochemical analysis of oxidized low density lipoprotein (OxLDL) were carried out. Significant increase in serum, tissue lipid profile, and lysosomal cholesterol levels were observed in aged HCD-fed rats with a concomitant decrease in high density lipoprotein (HDL) levels. We also observed a significant increase in lipid accumulation in hepatocytes of aged HCD-fed rats by TEM, ORO, and immunohistochemical staining. Upon treatment with EGCG to aged HCD-fed animals, we found augmented levels of HDL with a concomitant decrease in lysosomal cholesterol levels and other lipoproteins. TEM studies and immunohistochemistry of OxLDL also showed a marked reduction in lipid deposition of hepatocytes. Thus, EGCG has preserved the lysosomal membrane stability in HCD stressed aged rats. SIGNIFICANCE OF THE STUDY: The research article is focused mainly on the effect of EGCG and its capability on mitigating the release of lysosomal enzymes in aged animals fed with HCD. The study signifies the cellular function of the organelle lysosome following administration of aged rats with HCD, which would make the readers to understand the action of EGCG and the interrelationship of both cholesterol and activity of lysosomes when cholesterol is loaded.
    Matched MeSH terms: Catechin/analogs & derivatives*; Catechin/pharmacology
  5. Moghadamtousi SZ, Kamarudin MN, Chan CK, Goh BH, Kadir HA
    Am J Chin Med, 2014;42(1):23-35.
    PMID: 24467533 DOI: 10.1142/S0192415X14500025
    Loranthus parasiticus Merr (L. parasiticus) is a member of Loranthaceae family and is an important medicinal plant with a long history of Chinese traditional use. L. parasiticus, also known as Sang Ji Sheng (in Chinese), benalu teh (in Malay) and baso-kisei (in Japanese), is a semiparasitic plant, which is mostly distributed in the southern and southwestern regions of China. This review aims to provide a comprehensive overview of the ethnomedicinal use, phytochemistry and pharmacological activity of L. parasiticus and to highlight the needs for further investigation and greater global development of the plant's medicinal properties. To date, pharmacological studies have demonstrated significant biological activities, which support the traditional use of the plant as a neuroprotective, tranquilizing, anticancer, immunomodulatory, antiviral, diuretic and hypotensive agent. In addition, studies have identified antioxidative, antimutagenic, antiviral, antihepatotoxic and antinephrotoxic activity. The key bioactive constituents in L. parasiticus include coriaria lactone comprised of sesquiterpene lactones: coriamyrtin, tutin, corianin, and coriatin. In addition, two proanthocyanidins, namely, AC trimer and (+)-catechin, have been recently discovered as novel to L. parasiticus. L. parasiticus usefulness as a medicinal plant with current widespread traditional use warrants further research, clinical trials and product development to fully exploit its medicinal value.
    Matched MeSH terms: Catechin/isolation & purification; Catechin/chemistry
  6. Sampath Kumar NS, Sarbon NM, Rana SS, Chintagunta AD, Prathibha S, Ingilala SK, et al.
    AMB Express, 2021 Mar 01;11(1):36.
    PMID: 33646462 DOI: 10.1186/s13568-021-01194-9
    Psidium guajava L. (guava) is predominantly grown throughout the world and known for its medicinal properties in treating various diseases and disorders. The present work focuses on aqueous extraction of bioactive compounds from the guava leaf and its utilization in the formulation of jelly to improve the public health. The guava leaf extract has been used in the preparation of jelly with pectin (1.5 g), sugar (28 g) and lemon juice (2 mL). The prepared guava leaf extract jelly (GJ) and the control jelly (CJ, without extract) were subjected to proximate, nutritional and textural analyses besides determination of antioxidant and antimicrobial activities. GJ was found to contain carbohydrate (45.78 g/100 g), protein (3.0 g/100 g), vitamin C (6.15 mg/100 g), vitamin B3 (2.90 mg/100 g) and energy (120.6 kcal). Further, the texture analysis of CJ and GJ indicated that both the jellies showed similar properties emphasizing that the addition of guava leaf extract does not bring any change in the texture properties of jelly. GJ exhibited antimicrobial activity against various bacteria ranging from 11.4 to 13.6 mm. Similarly, GJ showed antioxidant activity of 42.38% against DPPH radical and 33.45% against hydroxyl radical. Mass spectroscopic analysis of aqueous extract confirmed the presence of esculin, quercetin, gallocatechin, 3-sinapoylquinic acid, gallic acid, citric acid and ellagic acid which are responsible for antioxidant and antimicrobial properties.
    Matched MeSH terms: Catechin
  7. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
    Matched MeSH terms: Catechin
  8. Kamal DAM, Salamt N, Zaid SSM, Mokhtar MH
    Molecules, 2021 May 03;26(9).
    PMID: 34063635 DOI: 10.3390/molecules26092675
    Tea is one of the most widely consumed beverages worldwide after water, and green tea accounts for 20% of the total tea consumption. The health benefits of green tea are attributed to its natural antioxidants, namely, catechins, which are phenolic compounds with diverse beneficial effects on human health. The beneficial effects of green tea and its major bioactive component, (-)-epigallocatechin-3-gallate (EGCG), on health include high antioxidative, osteoprotective, neuroprotective, anti-cancer, anti-hyperlipidemia and anti-diabetic effects. However, the review of green tea's benefits on female reproductive disorders, including polycystic ovary syndrome (PCOS), endometriosis and dysmenorrhea, remains scarce. Thus, this review summarises current knowledge on the beneficial effects of green tea catechins on selected female reproductive disorders. Green tea or its derivative, EGCG, improves endometriosis mainly through anti-angiogenic, anti-fibrotic, anti-proliferative and proapoptotic mechanisms. Moreover, green tea enhances ovulation and reduces cyst formation in PCOS while improving generalised hyperalgesia, and reduces plasma corticosterone levels and uterine contractility in dysmenorrhea. However, information on clinical trials is inadequate for translating excellent findings on green tea benefits in animal endometriosis models. Thus, future clinical intervention studies are needed to provide clear evidence of the green tea benefits with regard to these diseases.
    Matched MeSH terms: Catechin
  9. Marina, Z., Noriham, A.
    MyJurnal
    This study was undertaken to evaluate the potential of fruit waste materials as source of natural antioxidant. The fruit peels including mango, guava and papaya peel were used in this study. The total phenolic content (TPC) was determined by Folin-Ciocalteu assay while antioxidant activities were determined by using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferric thiocynate (FTC) and thiobarbituric acid (TBA) assays. These antioxidant activities were compared to synthetic antioxidants, BHA/BHT combination and ascorbic acid. The results demonstrated that TPC ranged from 3.23 to 15.84 g GAE/100 g extract. Mango peels extract exhibited highest TPC compared to guava peel and papaya peel extract. In the FRAP assay, mango peel extract at 200 ppm, guava peel extract at 400 ppm and papaya peel extract at 1200 ppm, exhibited reducing power comparable to the permissible amount of BHA/BHT at 200 ppm. At concentration of 250 μg/ml, the DPPH radical scavenging activity of extracts and standards decreased significantly in the order of mango peel extract > guava peel extract > BHA/BHT > ascorbic acid > papaya peel extract. For the FTC assay, the antioxidant activity of mango peel extract was significantly higher than ascorbic acid, guava peel and papaya peel extract but lower than BHA/BHT while in the TBA assay, percentage inhibition of BHA/BHT and ascorbic acid were found to be higher than fruit peel extracts. The quantitative analysis for flavonoids showed the presence of catechin, epicatechin and kaempferol in the peel extracts.
    Matched MeSH terms: Catechin
  10. Mohd Zainol, M.K., Abdul-Hamid A., Abu Bakar, F., Pak Dek, S.
    MyJurnal
    The effect of different drying methods on the degradation of flavonoids in Centella asiatica was evaluated. C. asiatica leaf, root and petiole were dried using air-oven, vacuum oven and freeze drier. Flavonoid was determined utilizing reverse-phase high performance liquid chromatography (RP-HPLC). Results of the study revealed the presence of high concentration of flavonoids in C. asiatica leaf, root and petiole, which include, naringin (4688.8 ± 69 μg/100 g, 3561.3 ± 205 μg/ 100 g, and 978.3 ± 96 μg/ 100 g), rutin (905.6 ± 123 μg/ 100 g, 756.07 ± 95 μg/ 100 g, and 557.25 ± 58 μg/ 100 g), quercetin (3501.1 ± 107 μg/ 100 g, 1086.31 ± 90 μg/ 100 g, and 947.63 ± 83 μg/ 100 g) and catechin (915.87 ± 6.01 μg/ 100 g, 400.6 ± 67 μg/ 100 g, and 250.56 ± 18 μg/ 100g). Luteolin, kaempferol and apigenin on the other hand, were inconsistently present in some parts of C. asiatica. Air-oven treatment resulted in the highest total flavonoids degradation followed by vacuum oven and freeze dried with percent degradation of 97%, 87.6% and 73%, respectively. Catechin and rutin were found to be the most stable flavonoids with percent degradation up to 35%, 66% and 76% for freeze dried, vacuum oven and air oven, respectively.
    Matched MeSH terms: Catechin
  11. Saleem H, Htar TT, Naidu R, Anwar S, Zengin G, Locatelli M, et al.
    Plants (Basel), 2020 Mar 20;9(3).
    PMID: 32245104 DOI: 10.3390/plants9030388
    The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC-PDA), ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) phytochemical composition, and enzyme inhibition potential against key enzymes involved in diabetes (α-amylase), skin problems (tyrosinase), and inflammatory disorders (lipoxygenase (LOX)). HPLC-PDA quantification revealed the identification of nine different polyphenolics, amongst which both flower extracts were richest. The flower MeOH extract contained the highest amount of catechin (6.31 μg/g), gallic acid (2.39 μg/g), and rutin (1.26 μg/g). However, none of the quantified compounds were detected in the aerial DCM extract. UHPLC-MS analysis of DCM extracts revealed the tentative identification of 27 secondary metabolites, where the most common belonged to terpenoid, alkaloid, and phenolic derivatives. Similarly, for enzyme inhibition, all the extracts presented moderate activity against tyrosinase and α-amylases, whereas, for LOX, both methanolic extracts showed higher percentage inhibition compared with DCM extracts. Based on our findings, B. glabra could be regarded as a perspective starting material for designing novel pharmaceuticals.
    Matched MeSH terms: Catechin
  12. Azizan A, Xin LA, Abdul Hamid NA, Maulidiani M, Mediani A, Abdul Ghafar SZ, et al.
    Foods, 2020 Feb 11;9(2).
    PMID: 32053982 DOI: 10.3390/foods9020173
    Pineapple (Ananascomosus) waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications. This study strives to characterize the complete metabolite profiles of a variety of MD2 pineapple waste extracts. Metabolomics strategies were utilized to identify bioactive metabolites of this variety prepared with different solvent ratios. Each pineapple waste extract was first screened for total phenolic content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, nitric oxide scavenging, and α-glucosidase inhibitory activities. The highest TPC was found in all samples of the peel, crown, and core extracted using a 50% ethanol ratio, even though the results were fairly significant than those obtained for other ethanol ratios. Additionally, crown extracted with a 100% ethanol ratio demonstrated the highest potency in DPPH and NO scavenging activity, with IC50 values of 296.31 and 338.52 µg/mL, respectively. Peel extracted with 100% ethanol exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 92.95 µg/mL. Then, the extracts were analyzed and the data from 1H NMR were processed using multivariate data analysis. A partial least squares and correlogram plot suggested that 3-methylglutaric acid, threonine, valine, and α-linolenic acid were the main contributors to the antioxidant activities, whereas epicatechin was responsible for the α-glucosidase inhibitory activity. Relative quantification further supported that 100% crown extract was among the extracts that possessed the most abundant potential metabolites. The present study demonstrated that the crown and peel parts of MD2 pineapple extracted with 100% ethanol are potentially natural sources of antioxidants and α-glucosidase inhibitors, respectively.
    Matched MeSH terms: Catechin
  13. Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA
    PMID: 30949217 DOI: 10.1155/2019/3807207
    Curcuma longa L. is a rhizome plant often used as traditional medicinal preparations in Southeast Asia. The dried powder is commonly known as cure-all herbal medicine with a wider spectrum of pharmaceutical activities. In spite of the widely reported therapeutic applications of C. longa, research on its safety and teratogenic effects on zebrafish embryos and larvae is still limited. Hence, this research aimed to assess the toxicity of C. longa extract on zebrafish. Using a reflux flask, methanol extract of C. longa was extracted and the identification and quantification of total flavonoids were carried out with HPLC. Twelve fertilized embryos were selected to test the embryotoxicity and teratogenicity at different concentration points. The embryos were exposed to the extract in the E3M medium while the control was only exposed to E3M and different developmental endpoints were recorded with the therapeutic index calculated using the ratio of LC50/EC50. C. longa extract was detected to be highly rich in flavonoids with catechin, epicatechin, and naringenin as the 3 most abundant with concentrations of 3,531.34, 688.70, and 523.83μg/mL, respectively. The toxicity effects were discovered to be dose-dependent at dosage above 62.50μg/mL, while, at 125.0μg/mL, mortality of embryos was observed and physical body deformities of larvae were recorded among the hatched embryos at higher concentrations. Teratogenic effect of the extract was severe at higher concentrations producing physical body deformities such as kink tail, bend trunk, and enlarged yolk sac edema. Finally, the therapeutic index (TI) values calculated were approximately the same for different concentration points tested. Overall, the result revealed that plants having therapeutic potential could also pose threats when consumed at higher doses especially on the embryos. Therefore, detailed toxicity analysis should be carried out on medicinal plants to ascertain their safety on the embryos and its development.
    Matched MeSH terms: Catechin
  14. Kamsani NE, Zakaria ZA, Md Nasir NL, Mohtarrudin N, Mohamad Alitheen NB
    PMID: 31885651 DOI: 10.1155/2019/5207958
    Methanol extract of Melastoma malabathricum (MEMM) has been traditionally used by the Malay to treat various ailments. In an attempt to develop the plant as an herbal product, MEMM was subjected to the subacute and subchronic toxicity and cytotoxicity studies. On the one hand, the subacute study was performed on three groups of male and three groups of female rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (500 and 1000 mg/kg) daily for 28 days, respectively. On the other hand, the subchronic study was performed on four groups of rats (n = 6), which were orally administered with 8% Tween 80 (vehicle control group) or MEMM (50, 250, and 500 mg/kg) daily for 90 days, respectively. In the in vitro study, the cytotoxic effect of MEMM against the HT29 colon cancer cell line was assessed using the MTT assay. MEMM was also subjected to the UHPLC-ESI-HRMS analysis. The results demonstrated that MEMM administration did not cause any mortality, irregularity of behaviour, modification in body weight, as well as food and water intake following the subacute and subchronic oral treatment. There were no significant differences observed in haematological parameters between treatment and control groups in both studies, respectively. The in vitro study demonstrated that MEMM exerts a cytotoxic effect against the HT29 colon cancer cell line when observed under the inverted and phase-contrast microscope and confirmed by the acridine orange/propidium iodide (AOPI) staining. The UHPLC-ESI-HRMS analysis of MEMM demonstrated the occurrence of several compounds including quercetin, p-coumaric acid, procyanidin A, and epigallocatechin. In conclusion, M. malabathricum leaves are safe for oral consumption either at the subacute or subchronic levels and possess cytotoxic action against the HT29 colon cancer cells possibly due to the synergistic action of several flavonoid-based compounds.
    Matched MeSH terms: Catechin
  15. Md Nesran ZN, Shafie NH, Md Tohid SF, Norhaizan ME, Ismail A
    PMID: 32280356 DOI: 10.1155/2020/7958041
    In many studies, green tea epigallocatechin-3-gallate (EGCG) has already shown its therapeutic effects in colorectal cancer cells (CRC). However, its mechanism of actions in CRC is poorly elucidated. Hence, this study attempts to elucidate the mechanism of actions of green tea ECGG via iron chelation activity in CRC. In order to investigate this property, HT-29 cell lines (CRC) were treated with EGCG for 24 h, 48 h, and 72 h. From western blot analysis, EGCG had upregulated transferrin receptor (TfR) protein and downregulated Ferritin-H (FtH) protein indicating that iron chelation activity has occurred in CRC. Meanwhile, the molecular docking study demonstrated that EGCG is able to strongly interact the ferritin protein with a high binding affinity (-7.3 kcal/mol) via strong hydrogen bindings to glutamic acid 64 and lysine 71; two moderate hydrogen bindings to asparagine 74 and a hydrophobic interaction to the hydrophobic pocket of lysine 71. The strong interaction predicted between EGCG to ferritin may lead to inhibition of ferritin by EGCG, thus supporting the downregulation of FtH observed in in vitro studies. Molecular docking study of TfR to EGCG cannot be modulated based on the in vitro results. In conclusion, EGCG possesses iron chelator property in CRC and this potential could be further exploited for CRC treatment.
    Matched MeSH terms: Catechin
  16. Ghasemzadeh A, Jaafar HZ, Rahmat A, Devarajan T
    PMID: 24693327 DOI: 10.1155/2014/873803
    In this study, we investigated some bioactive compounds and pharmaceutical qualities of curry leaf (Murraya koenigii L.) extracts from three different locations in Malaysia. The highest TF and total phenolic (TP) contents were observed in the extracts from Kelantan (3.771 and 14.371 mg/g DW), followed by Selangor (3.146 and 12.272 mg/g DW) and Johor (2.801 and 12.02 mg/g DW), respectively. High quercetin (0.350 mg/g DW), catechin (0.325 mg/g DW), epicatechin (0.678 mg/g DW), naringin (0.203 mg/g DW), and myricetin (0.703 mg/g DW) levels were observed in the extracts from Kelantan, while the highest rutin content (0.082 mg/g DW) was detected in the leaves from Selangor. The curry leaf extract from Kelantan exhibited higher concentration of gallic acid (0.933 mg/g DW) than that from Selangor (0.904 mg/g DW) and Johor (0.813 mg/g DW). Among the studied samples, the ones from Kelantan exhibited the highest radical scavenging activity (DPPH, 66.41%) and ferric reduction activity potential (FRAP, 644.25  μ m of Fe(II)/g) followed by those from Selangor (60.237% and 598.37  μ m of Fe(II)/g) and Johor (50.76% and 563.42  μ m of Fe(II)/g), respectively. A preliminary screening showed that the curry leaf extracts from all the locations exhibited significant anticarcinogenic effects inhibiting the growth of breast cancer cell line (MDA-MB-231) and maximum inhibition of MDA-MB-231 cell was observed with the curry leaf extract from Kelantan. Based on these results, it is concluded that Malaysian curry leaf collected from the North (Kelantan) might be potential source of potent natural antioxidant and beneficial chemopreventive agents.
    Matched MeSH terms: Catechin
  17. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Catechin/chemistry
  18. Wong DZ, Kadir HA, Ling SK
    J Ethnopharmacol, 2012 Jan 6;139(1):256-64.
    PMID: 22107836 DOI: 10.1016/j.jep.2011.11.010
    A parasite plant, Loranthus parasiticus (Loranthaceae), which is generally known as benalu teh (in Malay), Sang Ji Sheng (in Chinese), and baso-kisei (in Japan) distributed in south and southwest part of China, has been used as a folk medicine for the treatment of schizophrenia in southwest China. Loranthus parasiticus has various uses in folk and traditional medicines for bone, brain, kidney, liver, expels wind-damp, and prevents miscarriage.
    Matched MeSH terms: Catechin/isolation & purification; Catechin/pharmacology*
  19. Md Nesran ZN, Shafie NH, Ishak AH, Mohd Esa N, Ismail A, Md Tohid SF
    Biomed Res Int, 2019;2019:3480569.
    PMID: 31930117 DOI: 10.1155/2019/3480569
    Epigallocatechin-3-gallate (EGCG) is the most abundant bioactive polyphenolic compound among the green tea constituents and has been identified as a potential anticancer agent in colorectal cancer (CRC) studies. This study was aimed to determine the mechanism of actions of EGCG when targeting the endoplasmic reticulum (ER) stress pathway in CRC. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay was performed on HT-29 cell line and normal cell line (3T3) to determine the EGCG toxicity. Next, western blot was done to observe the expression of the related proteins for the ER stress pathway. The Caspase 3/7 assay was performed to determine the apoptosis induced by EGCG. The results demonstrated that EGCG treatment was toxic to the HT-29 cell line. EGCG induced ER stress in HT-29 by upregulating immunoglobulin-binding (BiP), PKR-like endoplasmic reticulum kinase (PERK), phosphorylation of eukaryotic initiation factor 2 alpha subunit (eIF2α), activating transcription 4 (ATF4), and inositol-requiring kinase 1 alpha (IRE1α). Apoptosis was induced in HT-29 cells after the EGCG treatment, as shown by the Caspase 3/7 activity. This study indicates that green tea EGCG has the potential to inhibit colorectal cancer cells through the induction of ER stress.
    Matched MeSH terms: Catechin/analogs & derivatives*; Catechin/pharmacology
  20. Ghasemzadeh A, Nasiri A, Jaafar HZ, Baghdadi A, Ahmad I
    Molecules, 2014 Oct 30;19(11):17632-48.
    PMID: 25361426 DOI: 10.3390/molecules191117632
    In the current study, changes in secondary metabolite synthesis and the pharmaceutical quality of sabah snake grass leaves and buds were considered in relation to plant age (1 month, 6 months, and 1 year old). The activity of the enzyme chalcone synthase (CHS, EC 2.3.1.74) was measured, as it is a key enzyme for flavonoid production. Significant differences in total flavonoid (TF) production were observed between the three plant growth periods and the different plant parts. The highest contents of TF (6.32 mg/g dry weight [DW]) and total phenolic (TP) (18.21 mg/g DW) were recorded in 6-month-old buds. Among the flavonoids isolated in this study the most important ones based on concentration were from high to low as follows: catechin > quercetin > kaempferol > luteolin. Production of phenolic acids increased from 1 to 6 months, but after 6 months up to 1 year of age, they decreased significantly. The highest contents of caffeic acid (0.307 mg/g DW) and gallic acid (5.96 mg/g DW) were recorded in 1-year and 6-month-old buds, respectively. The lowest and highest activity of CHS was recorded in 1-month and 6-month-old buds with values of 3.6 and 9.5 nkat/mg protein, respectively. These results indicate that the increment in flavonoids and phenolic acids in 6-month-old buds can be attributed to an increase in CHS activity. The highest 1,1-diphenyl-2-picrylhydrazyl (DPPH) activity was observed in the extract of 1-year-old buds followed by 6-month-old buds, with 50% of free radical scavenging (IC50) values of 64.6 and 73.5 µg/mL, respectively. Interestingly, a ferric reducing antioxidant power (FRAP) assay showed a higher activity in 6-month-old buds (488 μM of Fe(II)/g) than in 1-year-old buds (453 μM of Fe(II)/g), in contrast to the DPPH result. Significant correlations (p < 0.05) were observed between CHS enzyme activity and FRAP activity, TF, catechin, and kaempferol content. Extracts of 6-month-old bud exhibited a significant in vitro anticancer activity against HeLa cancer cells with IC50 value of 56.8 µg/mL. These results indicate that early harvesting of snake grass (6-month-old) may yield increased concentrations of secondary metabolites, which are potent antioxidant compounds.
    Matched MeSH terms: Catechin/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links