Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Ang HH, Chan KL, Mak JW
    J Ethnopharmacol, 1995 Dec 15;49(3):171-5.
    PMID: 8824743 DOI: 0.1016/0378-8741(95)01321-0
    Six Malaysian chloroquine-resistant Plasmodium falciparum isolates were cultured in vitro following the candle-jar method. Antimalarial evaluations of daily replacement of culture medium containing chloroquine and a semi-purified extract of Eurycoma longifolia Jack (containing 13 beta, 18-dihydroeurycomanol (1), eurycomanol-2-O-beta-D-glucopyranoside (2), eurycomanol (3) and eurycomanone (4)) were performed on 6-well plates at 37 degrees C for a week. Presence or absence of the parasites was determined microscopically on thin-film Giemsa-stained preparations. Results showed that the antimalarial activity of Eurycoma longifolia Jack was dose-dependent and reached a maximum of < 50% at 0.07-5.00 micrograms ml-1 after 1 day post-treatment. However, complete inhibitions were observed at 1.25-5.00 micrograms ml-1 extract after 3 days post-treatment and 0.62 and 0.31 micrograms ml-1 after 4 and 6 days post-treatment, respectively. Further results indicated that chloroquine exhibited total inhibition at concentrations > 2.50 and 0.62 micrograms ml-1 after 1 and 2 days post-treatment, respectively and at all concentrations after 3 days post-treatment.
    Matched MeSH terms: Cell Division/drug effects
  2. Nesaretnam K, Jin Lim E, Reimann K, Lai LC
    Toxicology, 2000 Oct 26;151(1-3):117-26.
    PMID: 11074306
    Breast cancer is the most common cancer in women worldwide. The growth of breast cancer cells is either hormone-dependent or hormone-independent. Both types are represented in vitro by the estrogen-receptor positive (ER+) MCF-7 and the estrogen-receptor negative (ER-) MDA-MB-231 cell lines, respectively. The pS2 gene is an estrogen-regulated gene and serves as a marker for the ER+ tumours. Carotenoids are pigments with anti-cancer properties besides having pro-vitamin A, antioxidant and free-radical quenching effects. This study was designed firstly, to compare the effect of palm oil carotene concentrate with retinoic acid on the growth of the ER+ MCF-7 and the ER- MDA-MB-231 cells; and secondly to evaluate the effect of the palm oil carotene concentrate on the regulation of pS2 mRNA. The growth experiments were performed with monolayer cells seeded in phenol red free RPMI 1640 culture media and subsequently treated with varying concentrations of either retinoic acid or palm oil carotenoids. The cell numbers were determined at the start of each experiment and then at successive time intervals. The results showed that the palm oil carotene concentrate caused dose-dependent inhibition of estradiol-stimulated growth of MCF-7 cells but did not affect the proliferation of MDA-MB-231 cells. Retinoic acid caused similar, albeit more potent effects, as significant inhibition was observed at lower concentrations than the palm oil carotenoids. In the pS2 gene expression experiment, cell monolayers were treated with the carotene concentrate (10(-6) M), either with or without supplemented estradiol (10(-8) M), and subsequently the RNA was extracted. Northern blotting was performed and the regulation of pS2 mRNA determined using a 32P-labelled pS2 cDNA probe. The results showed that the palm oil carotene concentrate did not affect the expression of pS2 mRNA and are therefore independent of the estrogen-regulated pathway.
    Matched MeSH terms: Cell Division/drug effects
  3. Mai-Ngam K, Seetapan N, Sagnella S
    Med J Malaysia, 2004 May;59 Suppl B:172-3.
    PMID: 15468873
    Matched MeSH terms: Cell Division/drug effects
  4. Teo GY, Rasedee A, Al-Haj NA, Beh CY, How CW, Rahman HS, et al.
    Saudi J Biol Sci, 2020 Feb;27(2):653-658.
    PMID: 32210684 DOI: 10.1016/j.sjbs.2019.11.032
    Erythropoietin receptors (EPORs) are present not only in erythrocyte precursors but also in non-hematopoietic cells including cancer cells. In this study, we determined the effect of fetal bovine serum (FBS) in culture medium on the EPOR expression and viability of the estrogen receptor (ER)-positive MCF-7 and ER-negative MDA-MB-231 breast cancer cells. Using flow cytometry, we showed that the inclusion of 10% FBS in the medium increased the EPOR expressions and viabilities of MDA-MB-231 and MCF-7 cells. The MDA-MB-231 showed greater EPOR expression than MCF-7 cells, suggesting that the presence of ERs on cells is associated with poor expression of EPOR. Culture medium containing 10% FBS also caused increased number of breast cancer cells entering the synthesis phase of the cell cycle. The study also showed that rHuEPO treatment did not affect viability of breast cancer cells. In conclusion, it was shown that the inclusion of FBS in culture medium increased expression of EPOR in breast cancer cells and rHuEPO treatment had no effect on the proliferation of these cancer cells.
    Matched MeSH terms: Cell Division
  5. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Cell Division/drug effects
  6. Nesaretnam K, Guthrie N, Chambers AF, Carroll KK
    Lipids, 1995 Dec;30(12):1139-43.
    PMID: 8614304
    The tocotrienol-rich fraction (TRF) of palm oil consists of tocotrienols and some alpha-tocopherol (alpha-T). Tocotrienols are a form of vitamin E having an unsaturated side-chain, rather than the saturated side-chain of the more common tocopherols. Because palm oil has been shown not to promote chemically-induced mammary carcinogenesis, we tested effects of TRF and alpha-T on the proliferation, growth, and plating efficiency (PE) of the MDA-MB-435 estrogen-receptor-negative human breast cancer cells. TRF inhibited the proliferation of these cells with a concentration required to inhibit cell proliferation by 50% of 180 microgram/mL whereas alpha-T had no effect at concentrations up to 1000 microgram/mL as measured by incorporation of [3H]thymidine. The effects of TRF and alpha-T also were tested in longer-term growth experiments, using concentrations of 180 and 500 microgram/mL. We found that TRF inhibited the growth of these cells by 50%, whereas alpha-T did not. Their effect on the ability of these cells to form colonies also was studied, and it was found that TRF inhibited PE, whereas alpha T had no effect. These results suggest that the inhibition is due to the presence of tocotrienols in TRF rather than alpha T.
    Matched MeSH terms: Cell Division/drug effects*
  7. Ee YS, Lai LC, Reimann K, Lim PK
    Oncol Rep, 1999 6 22;6(4):843-6.
    PMID: 10373668
    Transforming growth factor-beta (TGF-beta) has been shown to inhibit the growth of mammary epithelial cells and may play a protective role in mammary carcinogenesis. In contrast, oestrogens promote the development of breast cancer. Oestrone sulphate (E1S) is a huge reservoir of active oestrogens in the breast being converted to the weak oestrogen, oestrone (E1), by oestrone sulphatase. E1 is reversibly converted by oestradiol-17beta hydroxysteroid dehydrogenase to the potent oestrogen, oestradiol (E2). The aim of this study was to assess the effect of the TGF-beta1 isoform on growth and oestrogen metabolism in the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines. The results showed that TGF-beta1 significantly inhibited cell growth and stimulated the conversion of E1S to E1 and E1 to E2 in the MCF-7 cell line. In the MDA-MB-231 cell line TGF-beta1 significantly stimulated cell growth and inhibited the interconversions between E1 and E2. In conclusion, the growth inhibitory effect of TGF-beta1 on the MCF-7 cell line would appear to confer a protective effect in breast cancer. However, its ability to increase the amount of E2 would increase the risk of breast cancer. Which of these effects predominates in vivo remains to be explored. The growth stimulatory effect of TGF-beta1 on the MDA-MB-231 cell line probably acts through a mechanism independent of the effect of TGF-beta1 on oestrogen concentrations since this cell line is hormone unresponsive.
    Matched MeSH terms: Cell Division/drug effects
  8. Wong SF, Reimann K, Lai LC
    Pathology, 2001 Nov;33(4):454-9.
    PMID: 11827412
    Oestrogens play an important role in the development of breast cancer. Oestrone sulphate (E1S) acts as a huge reservoir of oestrogens in the breast and is converted to oestrone (E1) by oestrone sulphatase (E1STS). E1 is then reversibly converted to the potent oestrogen, oestradiol (E2) by oestradiol-17beta hydroxysteroid dehydrogenase (E2DH). The aim of this study was to assess the effects of transforming growth factor-beta1 (TGFbeta1), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) on cell growth, E1STS and E2DH activities in the MCF-7 and MDA-MB-231 human breast cancer cell lines. TGFbeta1, IGF-I and IGF-II alone or in combination inhibited cell growth of both cell lines but no additive or synergistic effects were observed. The treatments significantly stimulated E1STS activity in the MCF-7 cell line, except for TGFbeta1 alone and TGFbeta1 and IGF-I in combination, where no effects were seen. Only TGFbeta1 and IGF-II acted synergistically to stimulate E1STS activity in the MCF-7 cells. There was no significant effect on E1STS activity in the MDA-MB-231 cells with any of the treatments. In the MCF-7 cells, TGFbeta1 and IGF-I, IGF-I and IGF-II, and TGFbeta1, IGF-I and IGF-II acted synergistically to stimulate the reductive E2DH activity, while only TGFbeta1, IGF-I and IGF-II synergistically stimulated the oxidative E2DH activity. There were no additive or synergistic effects on both oxidative and reductive E2DH activities in the MDA-MB-231 cells. In conclusion, TGFbeta1, IGF-I and IGF-II may have effects on oestrogen metabolism, especially in the MCF-7 cell line where they stimulated the conversion of E1S to E1 and E1 to E2 and, thus, may have roles to play in the development of breast cancer.
    Matched MeSH terms: Cell Division/drug effects
  9. Kamilla L, Mansor SM, Ramanathan S, Sasidharan S
    Microsc Microanal, 2009 Aug;15(4):366-72.
    PMID: 19575837 DOI: 10.1017/S1431927609090783
    Clitoria ternatea is known for its antimicrobial activity but the antifungal effects of leaf extract on growth and morphogenesis of Aspergillus niger have not been observed. The extract showed a favorable antifungal activity against A. niger with a minimum inhibition concentration 0.8 mg/mL and minimum fungicidal concentration 1.6 mg/mL, respectively. The leaf extract exhibited considerable antifungal activity against filamentous fungi in a dose-dependent manner with 0.4 mg/mL IC50 value on hyphal growth of A. niger. The main changes observed under scanning electron microscopy after C. ternatea extract treatment were loss of cytoplasm in fungal hyphae and the hyphal wall and its diameter became markedly thinner, distorted, and resulted in cell wall disruption. In addition, conidiophore alterations were also observed when A. niger was treated with C. ternatea leaf extract.
    Matched MeSH terms: Cell Division/drug effects
  10. Hwa IA, Reimann K, Lim PK, Lai LC
    Int J Mol Med, 1999 Aug;4(2):175-8.
    PMID: 10402485
    Oestrogens play an important role in the development of breast cancer. A very important source of active oestrogens in the breast is oestrone sulphate which is converted to oestrone by oestrone sulphatase. The aim of this study was to assess the effects of IGF-I and IGF-II on oestrone sulphatase activity in, as well as cell growth of, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cells were grown in supplemented DMEM and treated with varying concentrations of IGFs. At the end of the treatment period, intact cell monolayers were washed and assayed for oestrone sulphatase activity and the number of cell nuclei determined on a Coulter Counter. Oestrone sulphatase activity was significantly stimulated by IGF-I and II at concentrations of 100 ng/ml and 200 ng/ml in MCF-7 cells. IGF-I had no effect on oestrone sulphatase activity in MDA-MB-231 cells over the range of concentrations tested. Significant inhibition of oestrone sulphatase was observed in MDA-MB-231 cells at higher concentrations of IGF-II (50 ng/ml, 100 ng/ml and 200 ng/ml). Both IGF-I and IGF-II at higher concentrations (100 ng/ml and 200 ng/ml) significantly inhibited MCF-7 and stimulated MDA-MB-231 cell growth. Since IGF-I and II have effects on cell growth and oestrone sulphatase activity in breast cancer cell lines they may play a role in the development and progression of human breast cancer.
    Matched MeSH terms: Cell Division/drug effects
  11. Kannan RY, Sales KM, Salacinski HJ, Butler PE, Seifalian AM
    Med J Malaysia, 2004 May;59 Suppl B:107-8.
    PMID: 15468841
    Matched MeSH terms: Cell Division/physiology
  12. Ravichandran R, Ridzwan NFW, Mohamad SB
    J Biomol Struct Dyn, 2020 Dec 31.
    PMID: 33382017 DOI: 10.1080/07391102.2020.1867641
    The disease Tuberculosis (TB) is caused by a bacterium called Mycobacterium tuberculosis (Mtb). The bacterial cell-wall consists of peptidoglycan layer maintains the cellular integrity and cell viability. The main problem resides in the cell cycle of Mycobacterium tuberculosis in its quiescent form which is not targeted by any drugs hence there is an immediate need for new antibiotics to target the cell wall. The current study deals with the dTDP-4-dehydrorahmnose reductase (RmlD) which is the final enzyme in the series of cell-wall proteins of Mtb. The RmlD is a part of Carbohydrate biosynthesis has been considered as a good drug target for the novel class of antibiotics. Our study begins with the protein structure prediction, Homology studies were conducted using the Phyre2 web server. The structure is then refined and subjected to molecular dynamics simulations for 50 ns using GROMACS. The clustering analysis has been carried out and generated 41 clusters with 2 Å as the cut-off. Blind docking virtual screening was performed against RmlD protein using the Super Natural-II database with AutoDock4.0. its results helped to screen top ligands based on best binding energies. In both dockings, there are some common residues in which the ligands are interacting and forming the Hydrogen bonds such as Asp-105, Val-158, Thr-160, Gly-161, Arg-224, Arg-256. The ligand-567 giving the best results by being in the top-3 of all the clusters in both blind docking as well as the active-site docking. Hence ligand-567 can be a potential inhibitor of RmlD which can further inhibit the cell-wall synthesis of Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Cell Division
  13. Phang MY, Ng MH, Tan KK, Aminuddin BS, Ruszymah BH, Fauziah O
    Med J Malaysia, 2004 May;59 Suppl B:198-9.
    PMID: 15468886
    Tricalcium phosphate/hydroxyapatite (TCP/HA), hydroxyapatite (HA), chitosan and calcium sulphate (CaSO4) were studied and evaluated for possible bone tissue engineered construct acting as good support for osteogenic cells to proliferate, differentiate, and eventually spread and integrate into the scaffold. Surface morphology visualized by SEM showed that scaffold materials with additional fibrin had more cell densities attached than those without, depicting that the presence of fibrin and collagen fibers were truly a favourite choice of cells to attach. In comparison of various biomaterials used incorporated with fibrin, TCP/HA had the most cluster of cells attached.
    Matched MeSH terms: Cell Division/physiology
  14. Kim LH, Nadarajah VS, Peh SC, Poppema S
    Histopathology, 2004 Mar;44(3):257-67.
    PMID: 14987230 DOI: 10.1111/j.0309-0167.2004.01829.x
    AIMS: To examine the expression of the Bcl-2 family of proteins (Bcl-2, Bcl-x, Bcl-xL and Bax) in classical Hodgkin's lymphoma (cHL) and to correlate the expression of these proteins with proliferation, apoptosis and the presence of Epstein-Barr virus (EBV).

    METHODS AND RESULTS: Expression of the Bcl-2 family of proteins was detected by immunohistochemistry, proliferation was determined by Ki67 labelling and apoptosis by TUNEL in-situ hybridization. EBV was detected by Epstein-Barr virus early RNA (EBER) in-situ hybridization. Expression of Bcl-2, Bcl-x, Bcl-xL and Bax was detected in the Hodgkin/Reed-Sternberg (H/RS) cells in 43.7% (27/62), 87.5% (56/64), 67.2% (41/61) and 74.6% (47/63) of the cHL cases, respectively. EBER was detected in 53% (35/66) of the cases, whereas Ki67 was observed in 86.7% (52/60) of the cases. Apoptotic H/RS cells were observed infrequently, and only 43.2% (11/26) of the cases showed an apoptotic index of > or = 10% in the H/RS cells. A statistically significant inverse relationship was observed between the expression of Bcl-2 and the presence of EBV (P = 0.003). Bcl-xL showed an inverse correlation with apoptosis in the H/RS cells (P = 0.004).

    CONCLUSIONS: The higher Bcl-xL expression (67.2%) compared with Bcl-2 expression (43.5%) observed in cHL as well as the statistically significant inverse relationship between Bcl-xL and apoptosis suggests that Bcl-xL plays an important role in the survival of H/RS cells. Expression of Bax may be neutralized by other anti-apoptotic members of the family such as Bcl-2 and/or Bcl-xL.
    Matched MeSH terms: Cell Division
  15. Santin M, Morris C, Harrison M, Mikhalovska L, Lloyd AW, Mikhalovsky S
    Med J Malaysia, 2004 May;59 Suppl B:93-4.
    PMID: 15468834
    In-stent restenosis is caused by the proliferation of the smooth muscle cells (SMCs) following a host response towards the implanted device. However, the precise biochemical and cellular mechanisms are still not completely understood. In this paper, the behaviour of SMCs has been investigated by an in vitro model where the cells were stimulated by platelet derived growth factor (PDGF) on tissue-like substrates as well as on biomaterials such as stainless steel (St) and diamond-like carbon (DLC)-coated St. The results demonstrated that SMCs have a completely different adhesion mode on St and become particularly prone to proliferation and pro-inflammatory cytokine secretion under PDGF stimulus. This would suggest that restenosis may caused by the accidental contact of the SMC with the St substrate under an inflammatory insult.
    Matched MeSH terms: Cell Division/physiology*
  16. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
    Matched MeSH terms: Cell Division/physiology
  17. Tay KC, Tan LT, Chan CK, Hong SL, Chan KG, Yap WH, et al.
    Front Pharmacol, 2019;10:820.
    PMID: 31402861 DOI: 10.3389/fphar.2019.00820
    Cancer, a complex yet common disease, is caused by uncontrolled cell division and abnormal cell growth due to a variety of gene mutations. Seeking effective treatments for cancer is a major research focus, as the incidence of cancer is on the rise and drug resistance to existing anti-cancer drugs is major concern. Natural products have the potential to yield unique molecules and combinations of substances that may be effective against cancer with relatively low toxicity/better side effect profile compared to standard anticancer therapy. Drug discovery work with natural products has demonstrated that natural compounds display a wide range of biological activities correlating to anticancer effects. In this review, we discuss formononetin (C16H12O4), which originates mainly from red clovers and the Chinese herb Astragalus membranaceus. The compound comes from a class of 7-hydroisoflavones with a substitution of methoxy group at position 4. Formononetin elicits antitumorigenic properties in vitro and in vivo by modulating numerous signaling pathways to induce cell apoptosis (by intrinsic pathway involving Bax, Bcl-2, and caspase-3 proteins) and cell cycle arrest (by regulating mediators like cyclin A, cyclin B1, and cyclin D1), suppress cell proliferation [by signal transducer and activator of transcription (STAT) activation, phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT), and mitogen-activated protein kinase (MAPK) signaling pathway], and inhibit cell invasion [by regulating growth factors vascular endothelial growth factor (VEGF) and Fibroblast growth factor 2 (FGF2), and matrix metalloproteinase (MMP)-2 and MMP-9 proteins]. Co-treatment with other chemotherapy drugs such as bortezomib, LY2940002, U0126, sunitinib, epirubicin, doxorubicin, temozolomide, and metformin enhances the anticancer potential of both formononetin and the respective drugs through synergistic effect. Compiling the evidence thus far highlights the potential of formononetin to be a promising candidate for chemoprevention and chemotherapy.
    Matched MeSH terms: Cell Division
  18. Jayaram G, Gupta M, Lamba S
    Malays J Pathol, 1993 Dec;15(2):137-42.
    PMID: 8065175
    Forty-eight patients with breast carcinoma were subjected to four quadrant fine needle aspiration (FNA) cytology examination of the ipsilateral and contralateral breast in an attempt to detect any accompanying benign proliferative lesion. Mastectomy of ipsilateral and open biopsy of contralateral breast provided material for histopathological study. Cytological evidence of epithelial proliferation was found in 8 (16.6%) cases which included atypical lobular hyperplasia (ALH), lobular neoplasia in-situ (LNIS), atypical ductal hyperplasia (ADH), and proliferative disease without atypia (PDWA). In lobular proliferative lesions, cytological smears showed configurations of cells that resembled filled up or expanded lobular units. The cytology was not distinctive enough to distinguish the sub-types of lobular proliferations. Likewise, the presence of ductal alterations could be suggested by cytological study but the distinction of proliferative disease without atypia (PDWA) from atypical ductal hyperplasia (ADH) was not possible on a cytological basis.
    Matched MeSH terms: Cell Division/physiology
  19. Jayaram G, Lamba S, Kakar A
    Malays J Pathol, 1993 Dec;15(2):131-6.
    PMID: 8065174
    Seventy-eight symptomatic females without palpable breast lumps were subjected to bilateral four quadrant fine needle aspiration cytology. Cytological evidence of an epithelial proliferative lesion was seen in 44 of these cases. Based on the cytological evidence of proliferation, the site for open biopsy was determined. Histopathological study of the breast biopsies in these patients showed proliferative disease without atypia (PDWA) in 40 cases, atypical ductal hyperplasia (ADH) in two, atypical lobular hyperplasia (ALH) in one and ADH with ALH in one case. Cytology was thus useful in establishing the presence of proliferative activity, commenting on the extent of proliferation, and thereby roughly mapping out the area of the breast most suitable for biopsy. On cytological grounds, it was not possible to distinguish the atypical hyperplastic lesions from the proliferative diseases without atypia.
    Matched MeSH terms: Cell Division/physiology
  20. Chan KM, Rajab NF, Ishak MH, Ali AM, Yusoff K, Din LB, et al.
    Chem Biol Interact, 2006 Feb 1;159(2):129-40.
    PMID: 16297902
    Restenosis represents a major impediment to the success of coronary angioplasty. Abnormal proliferation of vascular smooth muscle cells (VSMCs) has been shown to be an important process in the pathogenesis of restenosis. A number of agents, particularly rapamycin and paclitaxel, have been shown to impact on this process. This study was carried out to determine the mechanisms of cytotoxicity of goniothalamin (GN) on VSMCs. Results from MTT cytotoxicity assay showed that the IC(50) for GN was 4.4 microg/ml (22 microM), which was lower compared to the clinically used rapamycin (IC(50) of 25 microg/ml [27.346 microM]). This was achieved primarily via apoptosis where up to 25.83 +/- 0.44% of apoptotic cells were detected after 72 h treatment with GN. In addition, GN demonstrated similar effects as rapamycin in inhibiting VSMCs proliferation using bromodeoxyuridine (BrdU) cell proliferation assay after 72 h treatment at IC(50) concentration (p > 0.05). In order to understand the mechanisms of GN, DNA damage detection using comet assay was determined at 2h post-treatment with GN. Our results showed that there was a concentration-dependent increase in DNA damage in VSMCs prior to cytotoxicity. Moreover, GN effects were comparable to rapamycin. In conclusion, our data show that GN initially induces DNA damage which subsequently leads to cytotoxicity primarily via apoptosis in VSMCs.
    Matched MeSH terms: Cell Division
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links