Displaying publications 21 - 40 of 853 in total

Abstract:
Sort:
  1. Mustafa Z, Shamsuddin HS, Ideris A, Ibrahim R, Jaafar H, Ali AM, et al.
    Biomed Res Int, 2013;2013:248507.
    PMID: 23586025 DOI: 10.1155/2013/248507
    Oncolytic viruses have been extensively evaluated for anticancer therapy because this virus preferentially infects cancer cells without interfering with normal cells. Newcastle Disease Virus (NDV) is an avian virus and one of the intensively studied oncolytic viruses affecting many types of cancer including glioma. Nevertheless, the capability of NDV infection on heterogeneous glioma tissue in a cerebrospinal fluid atmosphere has never been reported. Recently, Rac1 is reported to be required for efficient NDV replication in human cancer cells and established a link between tumourigenesis and sensitivity to NDV. Rac1 is a member of the Rho GTPases involved in the regulation of the cell migration and cell-cycle progression. Rac1 knockdown leads to significant inhibition of viral replication. In this work, we demonstrated that NDV treatment led to significant reduction of tumour tissue viability of freshly isolated heterogeneous human brain tumour slice, known as an ex vivo glioma acute slice (EGAS). Analysis of gene expression indicated that reduced tissue viability was associated with downregulation of Rac1. However, the viability reduction was not persistent. We conclude that NDV treatment induced EGAS viability suppression, but subsequent downregulation of Rac1 gene may reduce the NDV replication and lead to regrowth of EGAS tissue.
    Matched MeSH terms: Cell Survival/drug effects
  2. Ghazali AR, Muralitharan RV, Soon CK, Salyam T, Ahmad Maulana NN, Mohamed Thaha UAB, et al.
    Asian Pac J Cancer Prev, 2020 Nov 01;21(11):3381-3386.
    PMID: 33247699 DOI: 10.31557/APJCP.2020.21.11.3381
    BACKGROUND: Traditional cooling rice powder (bedak sejuk) is a fermented rice-based cosmetic that is applied topically on one's skin, as an overnight facial mask. According to user testimonies, bedak sejuk beautifies and whitens skin, whereby these benefits could be utilised as a potential melanoma chemopreventive agent.

    OBJECTIVE: Hence, this study aimed to determine the effects of bedak sejuk made from Oryza sativa ssp. indica (Indica) and Oryza sativa ssp. japonica (Japonica) on UVB-induced B164A5 melanoma cells, and also identify the antioxidant capacities of both types of bedak sejuk.

    METHODS: The optimum dose of Indica and Japonica bedak sejuk to treat the cells was determined via the MTT assay. Then, the antioxidant capacities of both types of bedak sejuk were determined using the FRAP assay.

    RESULTS: From the MTT assay, it was found that Indica and Japonica bedak sejuk showed no cytotoxic effects towards the cells. Hence, no IC50 can be obtained and two of the higher doses, 50 and 100 g/L were chosen for treatment. In the FRAP assay, Indica bedak sejuk at 50 and 100 g/L showed FRAP values of 0.003 ± 0.001 μg AA (ascorbic acid)/g of bedak sejuk and 0.004 ± 0.0003 μg AA/g of bedak sejuk. Whereas Japonica bedak sejuk at 50 g/L had the same FRAP value as Indica bedak sejuk at 100 g/L. As for Japonica bedak sejuk at 100 g/L, it showed the highest antioxidant capacity with the FRAP value of 0.01 ± 0.0007 μg AA/g of bedak sejuk which was statistically significant (p < 0.05) when compared to other tested concentrations.

    CONCLUSION: In conclusion, Japonica bedak sejuk has a higher antioxidant capacity compared to Indica bedak sejuk despite both being not cytotoxic towards the cells. Regardless, further investigations need to be done before bedak sejuk could be developed as potential melanoma chemoprevention agents.

    Matched MeSH terms: Cell Survival
  3. Hanafi NI, Mohamed AS, Md Noor J, Abdu N, Hasani H, Siran R, et al.
    Genet. Mol. Res., 2016 Jun 17;15(2).
    PMID: 27323195 DOI: 10.4238/gmr.15028150
    Ursodeoxycholic acid (UDCA) is used to treat liver diseases and demonstrates cardioprotective effects. Accumulation of the plasma membrane sphingolipid sphingomyelin in the heart can lead to atherosclerosis and coronary artery disease. Sphingomyelinases (SMases) break down sphingomyelin, producing ceramide, and inhibition of SMases activity can promote cell survival. We hypothesized that UDCA regulates activation of ERK and Akt survival signaling pathways and SMases in protecting cardiac cells against hypoxia. Neonatal cardiomyocytes were isolated from 0- to 2-day-old Sprague Dawley rats, and given 100 μM CoCl2, 150 μM H2O2, or placed in a hypoxia chamber for 24 h. The ameliorative effects of 100-μM UDCA treatment for 12 h were then assessed using MTS, QuantiGene Plex (for Smpd1 and Smpd2), and SMase assays, beating rate assessment, and western blotting (for ERK and Akt). Data were analyzed by the paired Student t-tests and one-way analyses of variance. Cell viability decreased significantly after H2O2 (85%), CoCl2 (50%), and hypoxia chamber (52%) treatments compared to the untreated control (100%). UDCA significantly counteracted the effects of chamber- and CoCl2- induced hypoxia on viability and beating rate. However, no significant differences were observed in acid SMase gene and protein expression between the untreated, CoCl2, and UDCA-CoCl2 groups. In contrast, neutral SMase gene and protein expression did significantly differ between the latter two groups. ERK and Akt phosphorylation was higher in hypoxic cardiomyocytes treated with UDCA than those given CoCl2 alone. In conclusion, UDCA regulates the activation of survival signaling proteins and SMases in neonatal rat cardiomyocytes during hypoxia.
    Matched MeSH terms: Cell Survival/drug effects
  4. Mohamed AS, Hanafi NI, Sheikh Abdul Kadir SH, Md Noor J, Abdul Hamid Hasani N, Ab Rahim S, et al.
    Cell Biochem Funct, 2017 Oct;35(7):453-463.
    PMID: 29027248 DOI: 10.1002/cbf.3303
    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca2+ ]i ), and sphingosine-1-phosphate (S1P)-receptor via Gαi -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca2+ ]i , and S1P-Gαi -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gαi inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl2 -induced [Ca2+ ]i dynamic alteration. Pharmacological inhibition of the Gαi -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl2 detrimental effects, except for cell viability and [Ca2+ ]i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl2 -induced [Ca2+ ]i dynamic changes. We conclude that UDCA cardioprotection against CoCl2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gαi -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile acid and is currently used to treat liver diseases. Recently, UDCA is shown to have a cardioprotection effects; however, the mechanism of UDCA cardioprotection is still poorly understood. The current data generated were the first to show that UDCA is able to inhibit the activation of HIF-1α and p53 protein during CoCl2 -induced hypoxia in cardiomyocytes. This study provides an insight of UDCA mechanism in protecting cardiomyocytes against hypoxia.
    Matched MeSH terms: Cell Survival/drug effects
  5. Sharma S, Chatterjee A, Kumar P, Lal S, Kondabagil K
    Viruses, 2020 04 15;12(4).
    PMID: 32326380 DOI: 10.3390/v12040444
    Micro RNAs (miRNAs) are a class of small non-coding single-stranded RNA, which play an important role in modulating host-Influenza A virus (IAV) crosstalk. The interplay between influenza and miRNA interaction is defined by a plethora of complex mechanisms, which are not fully understood yet. Here, we demonstrate that in IAV infected A549 cells, a synchronous increase was observed in the expression of mTOR up to 24 hpi and significant downregulation at 48 hpi. Additionally, NP of IAV interacts with mTOR and modulates the levels of mTOR mRNA and protein, thus regulating the translation of host cell. RNA sequencing and qPCR analysis of IAV-infected A549 cells and NP transfected cells revealed that miR-101 downregulates mTOR transcripts at later stages of infection. Ectopic expression of miR-101 mimic led to a decrease in expression of NP, a reduction in IAV titer and replication. Moreover, treatment of the cells with Everolimus, a potent inhibitor of mTOR, resulted in an increase of miR-101 transcript levels, which further suppressed the viral protein synthesis. Collectively, the data suggest a novel mechanism that IAV stimulates mTOR pathway at early stages of infection; however, at a later time-point, positive regulation of miR-101 restrains the mTOR expression, and hence, the viral propagation.
    Matched MeSH terms: Cell Survival
  6. Mbous YP, Hayyan M, Wong WF, Looi CY, Hashim MA
    Sci Rep, 2017 02 01;7:41257.
    PMID: 28145498 DOI: 10.1038/srep41257
    In this study, the anticancer potential and cytotoxicity of natural deep eutectic solvents (NADESs) were assessed using HelaS3, PC3, A375, AGS, MCF-7, and WRL-68 hepatic cell lines. NADESs were prepared from choline chloride, fructose, or glucose and compared with an N,N-diethyl ethanolammonium chloride:triethylene glycol DES. The NADESs (98 ≤ EC50 ≥ 516 mM) were less toxic than the DES (34 ≤ EC50 ≥ 120 mM). The EC50 values of the NADESs were significantly higher than those of the aqueous solutions of their individual components but were similar to those of the aqueous solutions of combinations of their chief elements. Due to the uniqueness of these results, the possibility that NADESs could be synthesized intracellularly to counterbalance the cytotoxicity of their excess principal constituents must be entertained. However, further research is needed to explore this avenue. NADESs exerted cytotoxicity by increasing membrane porosity and redox stress. In vivo, they were more destructive than the DES and induced liver failure. The potential of these mixtures was evidenced by their anticancer activity and intracellular processing. This infers that they can serve as tools for increasing our understanding of cell physiology and metabolism. It is likely that we only have begun to comprehend the nature of NADESs.
    Matched MeSH terms: Cell Survival/drug effects
  7. Rasouli E, Basirun WJ, Rezayi M, Shameli K, Nourmohammadi E, Khandanlou R, et al.
    Int J Nanomedicine, 2018;13:6903-6911.
    PMID: 30498350 DOI: 10.2147/IJN.S158083
    Introduction: In the present research, we report a quick and green synthesis of magnetite nanoparticles (Fe3O4-NPs) in aqueous solution using ferric and ferrous chloride, with different percentages of natural honey (0.5%, 1.0%, 3.0% and 5.0% w/v) as the precursors, stabilizer, reducing and capping agent, respectively. The effect of the stabilizer on the magnetic properties and size of Fe3O4-NPs was also studied.

    Methods: The nanoparticles were characterized by X-ray diffraction (XRD) analysis, field emission scanning electron microscopy, energy dispersive X-ray fluorescence, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM) and Fourier transform infrared spectroscopy.

    Results: The XRD analysis indicated the presence of pure Fe3O4-NPs while the TEM images indicated that the Fe3O4-NPs are spherical with a diameter range between 3.21 and 2.22 nm. The VSM study demonstrated that the magnetic properties were enhanced with the decrease in the percentage of honey. In vitro viability evaluation of Fe3O4-NPs performed by using the MTT assay on the WEHI164 cells demonstrated no significant toxicity in higher concentration up to 140.0 ppm, which allows them to be used in some biological applications such as drug delivery.

    Conclusion: The presented synthesis method can be used for the controlled synthesis of Fe3O4-NPs, which could be found to be important in applications in biotechnology, biosensor and biomedicine, magnetic resonance imaging and catalysis.

    Matched MeSH terms: Cell Survival
  8. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
    Matched MeSH terms: Cell Survival/drug effects
  9. Tan DM, Fu JY, Wong FS, Er HM, Chen YS, Nesaretnam K
    Nanomedicine (Lond), 2017 Oct;12(20):2487-2502.
    PMID: 28972460 DOI: 10.2217/nnm-2017-0182
    AIM: To develop 6-O-palmitoyl-ascorbic acid-based niosomes targeted to transferrin receptor for intravenous administration of tocotrienols (T3) in breast cancer.

    MATERIALS & METHODS: Niosomes were prepared using film hydration and ultrasonication methods. Transferrin was coupled to the surface of niosomes via chemical linker. Nanovesicles were characterized for size, zeta potential, morphology, stability and biological efficacy.

    RESULTS: When evaluated in MDA-MB-231 cells, entrapment of T3 in niosomes caused 1.5-fold reduction in IC50 value compared with nonformulated T3. In vivo, the average tumor volume of mice treated with tumor-targeted niosomes was 12-fold lower than that of untreated group, accompanied by marked downregulation of three genes involved in metastasis.

    CONCLUSION: Findings suggested that tumor-targeted niosomes served as promising delivery system for T3 in cancer therapy.

    Matched MeSH terms: Cell Survival
  10. Tan JJ, Azmi SM, Yong YK, Cheah HL, Lim V, Sandai D, et al.
    PLoS One, 2014;9(5):e96800.
    PMID: 24802273 DOI: 10.1371/journal.pone.0096800
    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3 ± 0.4%) were observed compared to the untreated population (20.5 ± 0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in vitro.
    Matched MeSH terms: Cell Survival/drug effects
  11. Chong PN, Sangu M, Huat TJ, Reza F, Begum T, Yusoff AAM, et al.
    Malays J Med Sci, 2018 Nov;25(6):28-45.
    PMID: 30914877 MyJurnal DOI: 10.21315/mjms2018.25.6.4
    Background: Following brain injury, development of hippocampal sclerosis often led to the temporal lobe epilepsy which is sometimes resistant to common anti-epileptic drugs. Cellular and molecular changes underlying epileptogenesis in animal models were studied, however, the underlying mechanisms of kainic acid (KA) mediated neuronal damage in rat hippocampal neuron cell culture alone has not been elucidated yet.

    Methods: Embryonic day 18 (E-18) rat hippocampus neurons were cultured with poly-L-lysine coated glass coverslips. Following optimisation, KA (0.5 μM), a chemoconvulsant agent, was administered at three different time-points (30, 60 and 90 min) to induce seizure in rat hippocampal neuronal cell culture. We examined cell viability, neurite outgrowth density and immunoreactivity of the hippocampus neuron culture by measuring brain derived neurotrophic factor (BDNF), γ-amino butyric acid A (GABAA) subunit α-1 (GABRA1), tyrosine receptor kinase B (TrkB), and inositol trisphosphate receptor (IP3R/IP3) levels.

    Results: The results revealed significantly decreased and increased immunoreactivity changes in TrkB (a BDNF receptor) and IP3R, respectively, at 60 min time point.

    Conclusion: The current findings suggest that TrkB and IP3 could have a neuroprotective role which could be a potential pharmacological target for anti-epilepsy drugs.

    Matched MeSH terms: Cell Survival
  12. Tian Y, Li P, Xiao Z, Zhou J, Xue X, Jiang N, et al.
    Transl Lung Cancer Res, 2021 Feb;10(2):1007-1019.
    PMID: 33718039 DOI: 10.21037/tlcr-21-145
    Background: Chemotherapy is one of the primary treatments for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), however, chemoresistance develops over time and is a bottleneck to effective chemotherapy worldwide. Therefore, the development of new potent therapeutic agents to overcome chemoresistance is of utmost importance. Triptolide is a natural component extracted from Tripterygium Wilfordii, a Chinese plant; our study aimed to evaluate its anti-tumor effects in taxol-resistant human lung adenocarcinoma and investigate its molecular mechanisms of chemoresistance.

    Methods: Triptolide's inhibition of cell viability was detected by sulforhodamine B (SRB) assay. Cell cycle was measured by flow cytometry and cell apoptosis was assessed by flow cytometry and western blot. Expression of β-catenin was analyzed by western blot and immunofluorescence (IF). The anti-tumor effects of triptolide were determined using a subcutaneous in-vivo model. Cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay, respectively. The expression level of p-p70S6K and p-GSK-3α/β was evaluated by western blot and IHC.

    Results: Triptolide inhibited cell proliferation, induced S-phase cell cycle arrest and apoptosis in taxol-resistant A549 (A549/TaxR) cells. Moreover, intraperitoneal injection of triptolide resulted in a significant delay of tumor growth without obvious systemic toxicity in mice. Additionally, triptolide reversed epithelial-mesenchymal transition (EMT) through repression of the p70S6K/GSK3/β-catenin signaling pathway.

    Conclusions: Our study provides evidence that triptolide can reverse EMT in taxol-resistant lung adenocarcinoma cells and impairs tumor growth by inhibiting the p70S6K/GSK3/β-catenin pathway, indicating that triptolide has potential to be used as a new therapeutic agent for taxol-resistant lung adenocarcinoma.

    Matched MeSH terms: Cell Survival
  13. Basu Baul TS, Dutta D, Duthie A, Prasad R, Rana NK, Koch B, et al.
    J Inorg Biochem, 2017 08;173:79-92.
    PMID: 28505480 DOI: 10.1016/j.jinorgbio.2017.04.020
    The cytotoxic potency of a series of triphenyltin(IV) compounds of general composition [Ph3Sn(Ln)] (1-6) has been probed in vitro employing MDA-MB-231 (human breast cancer) and HeLa (human cervical cancer) cell lines, where Ln=L1-3; isomeric 2/3/4-{(E)-2-[4-(dimethylamino)phenyl]diazenyl}benzoates and L4-6are their corresponding isoelectronic imino analogues 2/3/4-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoates. Compounds 1-6 have been characterized by elemental analysis and their spectroscopic properties were studied using IR and NMR (1H,13C,119Sn) techniques. The molecular structures of a pro-ligand 2-[(E)-{[4-(dimethylamino)phenyl]methylidene}amino]benzoic acid (HL4) and two representative molecules, Ph3Sn(L2) 2 and Ph3Sn(L5) 5, have been determined by X-ray crystallography. Structural analyses of 2 and 5 revealed distorted tetrahedral geometries within C3O donor sets owing to monodentate modes of coordination of the respective carboxylate ligands, close intramolecular Sn…O(carbonyl) interactions notwithstanding. Cytotoxic studies in vitro in MDA-MB-231 and HeLa cell lines revealed high activity, in sub-micromolar range, for all investigated compounds. Among these, 1 and 3 exhibited potent cytotoxicity most effectively towards MDA-MB-231 cells with a IC50value of 1.19 and 1.44μM, respectively, whereas 5 showed remarkable activity towards HeLa cells with a IC50value of 0.88μM, yet the series of compounds had minimal cytotoxic effect on normal HEK 293 (human embryonic kidney) cell line. The underlying investigation suggested that the compounds exert potent antitumor effect by elevating intracellular reactive oxygen species generation and cause delay in cell cycle by inhibiting cells at G2/M phase. The results presented herein suggest further development of this class of triphenyltin(IV) compounds-based drugs as potential anti-cancer therapies should be pursued.
    Matched MeSH terms: Cell Survival/drug effects
  14. Lee YH, Pang SW, Revai Lechtich E, Shah K, Simon SE, Ponnusamy S, et al.
    J Cancer Res Clin Oncol, 2020 Jul;146(7):1751-1764.
    PMID: 32377840 DOI: 10.1007/s00432-020-03231-9
    PURPOSE: Although important for apoptosis, the signaling pathway involving MOAP-1(Modulator of Apoptosis 1), RASSF1A (RAS association domain family 1A), and Bax (Bcl-2 associated X protein) is likely to be dysfunctional in many types of human cancers due to mechanisms associated with gene mutation and DNA hyper-methylation. The purpose of the present study was to assess the potential impact of generating physiologically relevant signaling pathway mediated by MOAP-1, Bax, and RASSF1A (MBR) in cancer cells and chemo-drug resistant cancer cells.

    METHODS: The tricistronic expression construct that encodes MOAP-1, Bax, and RASSF1A (MBR) or its mutant, MOAP-1∆BH3L, Bax and RASSF1A (MBRX) was expressed from an IRES (Internal Ribosome Entry Site)-based tricistronic expression vector in human breast cancer cells, including MCF-7, MCF-7-CR (cisplatin resistant) and triple negative breast cancer cells, BMET05, for functional characterization through in vitro and in vivo models.

    RESULTS: Transient expression of MBR potently promoted dose-dependent apoptotic signaling and chemo-sensitization in the cancer cells, as evidenced by loss of cell viability, nuclei condensation and Annexin-V positive staining while stable expression of MBR in MCF-7 cells significantly reduced the number of MBR stable clone by 86% and the stable clone exhibited robust chemo-drug sensitivity. In contrast, MBRX stable clone exhibited chemo-drug resistance while transiently over-expressed MOAP-1ΔBH3L inhibited the apoptotic activity of MBR. Moreover, the spheroids derived from the MBR stable clone displayed enhanced chemo-sensitivity and apoptotic activity. In mouse xenograft model, the tumors derived from MBR stable clone showed relatively high level of tumor growth retardation associated with the increase in apoptotic activity, leading to the decreases in both tumor weight and volume.

    CONCLUSIONS: Expression of MBR in cancer cells induces apoptotic cell death with enhanced chemo-sensitization requiring the BH3L domain of MOAP-1. In animal model, the expression of MBR significantly reduces the growth of tumors, suggesting that MBR is a potent apoptotic sensitizer with potential therapeutic benefits for cancer treatment.

    Matched MeSH terms: Cell Survival
  15. Mamidi MK, Pal R, Govindasamy V, Zakaria Z, Bhonde R
    Med Hypotheses, 2011 Apr;76(4):599-601.
    PMID: 21277690 DOI: 10.1016/j.mehy.2011.01.010
    The staggering number of publications featuring the use of stem cells has revolutionized regenerative medicine research. Preclinical studies indicate that allogeneic human mesenchymal stem cells (MSCs) may be useful for the treatment of several clinical disorders, including sepsis, acute renal failure, acute myocardial infarction, and more recently, acute lung injury (ALI). However, considerable success would not be obtained in clinical trials due to poor survival of transplanted cells under the influence of inflammatory conditions. Despite robust approaches like cellular reprogramming, scaffolds and conditioned media have been tested to overcome this problem; however the success rate of these approaches remain questionable. Recently, pretreatment of bioactive compounds in vitro have been shown to suppress cell apoptosis and promote cell survival. Quite likely a similar phenomenon can take place in vivo. Based on such studies, we hypothesize that MSCs derived from human post-natal tissues could be conditioned and prepared for targeted disease therapy. Depending on the disease condition, the MSCs could be treated prior to delivery with appropriate bioactive compounds to allow them survive longer and perform a better role as biocatalyst. The advantage of this approach could be the tailor made availability of MSCs preconditioned with appropriate bioactive compounds for disease specific therapy. Therefore, the choice of suitable bioactive molecule is likely to enhance the efficacy of targeted stem cell therapy and preconditioning may provide a novel strategy in maximizing biological and functional properties of MSCs.
    Matched MeSH terms: Cell Survival/drug effects
  16. Lim CS, Rosli R, Seow HF, Chong PP
    Int J Med Microbiol, 2011 Aug;301(6):536-46.
    PMID: 21371935 DOI: 10.1016/j.ijmm.2010.12.002
    Systemic infections of Candida albicans, the most prevalent fungal pathogen in humans, are on the rise in recent years. However, the exact mode of pathogenesis of this fungus is still not well elucidated. Previous studies using C. albicans mutants locked into the yeast form via gene deletion found that this form was avirulent and did not induce significant differential expression of host genes in vitro. In this study, a high density of C. albicans was used to infect human umbilical vein endothelial cells (HUVEC), resulting in yeast-form infections, whilst a low density of C. albicans resulted in hyphae infections. Transcriptional profiling of HUVEC response to these infections showed that high densities of C. albicans induced a stronger, broader transcriptional response from HUVEC than low densities of C. albicans infection. Many of the genes that were significantly differentially expressed were involved in apoptosis and cell death. In addition, conditioned media from the high-density infections caused a significant reduction in HUVEC viability, suggesting that certain molecules released during C. albicans and HUVEC interactions were capable of causing cell death. This study has shown that C. albicans yeast-forms, at high densities, cannot be dismissed as avirulent, but instead could possibly contribute to C. albicans pathogenesis.
    Matched MeSH terms: Cell Survival
  17. Mohseni J, Al-Najjar BO, Wahab HA, Zabidi-Hussin ZA, Sasongko TH
    J Hum Genet, 2016 Sep;61(9):823-30.
    PMID: 27251006 DOI: 10.1038/jhg.2016.61
    Several histone deacetylase inhibitors (HDACis) are known to increase Survival Motor Neuron 2 (SMN2) expression for the therapy of spinal muscular atrophy (SMA). We aimed to compare the effects of suberoylanilide hydroxamic acid (SAHA) and Dacinostat, a novel HDACi, on SMN2 expression and to elucidate their acetylation effects on the methylation of the SMN2. Cell-based assays using type I and type II SMA fibroblasts examined changes in transcript expressions, methylation levels and protein expressions. In silico methods analyzed the intermolecular interactions between each compound and HDAC2/HDAC7. SMN2 mRNA transcript levels and SMN protein levels showed notable increases in both cell types, except for Dacinostat exposure on type II cells. However, combined compound exposures showed less pronounced increase in SMN2 transcript and SMN protein level. Acetylation effects of SAHA and Dacinostat promoted demethylation of the SMN2 promoter. The in silico analyses revealed identical binding sites for both compounds in HDACs, which could explain the limited effects of the combined exposure. With the exception on the effect of Dacinostat in Type II cells, we have shown that SAHA and Dacinostat increased SMN2 transcript and protein levels and promoted demethylation of the SMN2 gene.
    Matched MeSH terms: Cell Survival/drug effects; Cell Survival/genetics
  18. Sharif R, Ghazali AR, Rajab NF, Haron H, Osman F
    Food Chem Toxicol, 2008 Jan;46(1):368-74.
    PMID: 17900779
    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, p<0.05). To detect DNA damage in a single cell, alkaline Comet Assay was used. None of the extracts caused DNA damage to the Chang liver cells at 62.5 microg/ml following 24 h incubation, as compared to the positive control, hydrogen peroxide (tail moment - 9.50+/-1.50; tail intensity - 30.50+/-2.50). Proximate analysis which was used for the evaluation of macronutrients in food showed that shrimp paste did not comply with the protein requirement (<25%) as in Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.
    Matched MeSH terms: Cell Survival/drug effects
  19. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
    Matched MeSH terms: Cell Survival
  20. Akhtar MN, Zareen S, Yeap SK, Ho WY, Lo KM, Hasan A, et al.
    Molecules, 2013 Aug 20;18(8):10042-55.
    PMID: 23966087 DOI: 10.3390/molecules180810042
    Naturally occurring anthraquinones, damnacanthal (1) and nordamnacanthal (2) were synthesized with modified reaction steps and investigated for their cytotoxicity against the MCF-7 and K-562 cancer cell lines, respectively. Intermediate analogues 2-bromomethyl-1,3-dimethoxyanthraquinone (5, IC50 = 5.70 ± 0.21 and 8.50 ± 1.18 mg/mL), 2-hydroxymethyl-1,3-dimethoxyanthraquinone (6, IC50 = 12.10 ± 0.14 and 14.00 ± 2.13), 2-formyl-1,3-dimethoxyantharquinone (7, IC50 = 13.10 ± 1.02 and 14.80 ± 0.74), 1,3-dimethoxy-2-methylanthraquinone (4, IC50 = 9.40 ± 3.51 and 28.40 ± 2.33), and 1,3-dihydroxy-2-methylanthraquinone (3, IC50 = 25.60 ± 0.42 and 28.40 ± 0.79) also exhibited moderate cytotoxicity against MCF-7 and K-562 cancer cell lines, respectively. Other structurally related compounds like 1,3-dihydroxyanthraquinone (13a, IC50 = 19.70 ± 0.35 and 14.50 ± 1.28), 1,3-dimethoxyanthraquinone (13b, IC50 = 6.50 ± 0.66 and 5.90 ± 0.95) were also showed good cytotoxicity. The target compound damnacanthal (1) was found to be the most cytotoxic against the MCF-7 and K-562 cancer cell lines, with IC50 values of 3.80 ± 0.57 and 5.50 ± 1.26, respectively. The structures of all compounds were elucidated with the help of detailed spectroscopic techniques.
    Matched MeSH terms: Cell Survival/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links