Displaying publications 21 - 40 of 69 in total

Abstract:
Sort:
  1. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  2. Elbashir AA, Suliman FE, Saad B, Aboul-Enein HY
    Talanta, 2009 Feb 15;77(4):1388-93.
    PMID: 19084654 DOI: 10.1016/j.talanta.2008.09.029
    A capillary electrophoretic method for the separation of the aminoglutethimide (AGT) enantiomers using methylated-beta-cyclodextrin (M-beta-CD) as chiral selector is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixture was achieved in less than 9 min with resolution factor Rs=2.1, using a fused-silica capillary and a background electrolyte (BGE) of tris-phosphate buffer solution (50 mmol L(-1), pH 3.0) containing 30 mgm L(-1) of M-beta-CD. The separation was carried out in normal polarity mode at 25 degrees C, 16 kV and using hydrostatic injection. Acceptable validation criteria for selectivity, linearity, precision, and accuracy/recovery were included. The proposed method was successfully applied to the assay of AGT enantiomers in pharmaceutical formulations. The computational calculations for the inclusion complexes of the R- and S-AGT-M-beta-CD rationalized the reasons for the different migration times between the AGT enantiomers.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  3. Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA
    Int J Nanomedicine, 2016;11:2279-304.
    PMID: 27307730 DOI: 10.2147/IJN.S105016
    Ethosomal systems are novel lipid vesicular carriers containing a relatively high percentage of ethanol. These nanocarriers are especially designed for the efficient delivery of therapeutic agents with different physicochemical properties into deep skin layers and across the skin. Ethosomes have undergone extensive research since they were invented in 1996; new compounds were added to their initial formula, which led to the production of new types of ethosomal systems. Different preparation techniques are used in the preparation of these novel carriers. For ease of application and stability, ethosomal dispersions are incorporated into gels, patches, and creams. Highly diverse in vivo models are used to evaluate their efficacy in dermal/transdermal delivery, in addition to clinical trials. This article provides a detailed review of the ethosomal systems and categorizes them on the basis of their constituents to classical ethosomes, binary ethosomes, and transethosomes. The differences among these systems are discussed from several perspectives, including the formulation, size, ζ-potential (zeta potential), entrapment efficiency, skin-permeation properties, and stability. This paper gives a detailed review on the effects of ethosomal system constituents, preparation methods, and their significant roles in determining the final properties of these nanocarriers. Furthermore, the novel pharmaceutical dosage forms of ethosomal gels, patches, and creams are highlighted. The article also provides detailed information regarding the in vivo studies and clinical trials conducted for the evaluation of these vesicular systems.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  4. Bin LK, Helaluddin ABM, Islam Sarker MZ, Mandal UK, Gaurav A
    Pak J Pharm Sci, 2020 Mar;33(2):551-559.
    PMID: 32276897
    Orally disintegrating tablet (ODT) is a friendly dosage form that requires no access to water and serves as a solution to non-compliance. There are many co-processed adjuvants available in the market. However, there is no single product possesses all the ideal characteristics such as good compressibility, fast disintegration and good palatability for ODT application. The aim of this research was to produce a xylitol-starch base co-processed adjuvant which is suitable for ODT application. Two processing methods namely wet granulation and freeze drying were used to compare the characteristics of co-processed adjuvant comprising of xylitol, starch and crospovidone XL-10 mixed at various ratios. The co-processed excipients were compressed into ODT and physically characterized for powder flow, particle size, hardness, thickness, weight, friability, in-vitro disintegration time and in-situ disintegration time, lubricant sensitivity, dilution potential, Fourier transform infrared spectroscopy, scanning electronic microscopy and x-ray diffraction analysis. Formulation F6 was selected as the optimum formulation due to the fastest in-vitro (135.33±11.52 s) and in-situ disintegration time (88.67±13.56s) among all the formulations (p<0.05). Increase in starch component decreases disintegration time of ODT. The powder flow fell under the category of fair flow. Generally, it was observed that freeze drying method produced smaller particle size granules compared to wet granulation method. ODT produced from freeze drying method had shorter disintegration time compared to ODT from wet granulation batch. In conclusion, a novel co-processed excipient comprised of xylitol, starch and crospovidone XL-10, produced using freeze drying method with fast disintegration time, good compressibility and palatability was developed and characterized. The co-processed excipient is suitable for ODT application.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  5. Chieng N, Teo X, Cheah MH, Choo ML, Chung J, Hew TK, et al.
    J Pharm Sci, 2019 12;108(12):3848-3858.
    PMID: 31542436 DOI: 10.1016/j.xphs.2019.09.013
    The study aims to characterize the structural relaxation times of quench-cooled co-amorphous systems using Kohlrausch-Williams-Watts (KWW) and to correlate the relaxation data with the onset of crystallization. Comparison was also made between the relaxation times obtained by KWW and the width of glass transition temperature (ΔTg) methods (simple and quick). Differential scanning calorimetry, Fourier-transformed infrared spectroscopy, and polarized light microscopy were used to characterize the systems. Results showed that co-amorphous systems yielded a single Tg and ΔCp, suggesting the binary mixtures exist as a single amorphous phase. A narrow step change at Tg indicates the systems were fragile glasses. In co-amorphous nap-indo and para-indo, experimental Tgs were in good agreement with the predicted Tg. However, the Tg of co-amorphous nap-cim and indo-cim were 20°C higher than the predicted Tg, possibly due to stronger molecular interactions. Structural relaxation times below the experimental Tg were successfully characterized using the KWW and ΔTg methods. The comparison plot showed that KWW data are directly proportional to the ½ power of ΔTg data, after adjusting for a small offset. A moderate positive correlation was observed between the onset of crystallization and the KWW data. Structural relaxation times may be useful predictor of physical stability of co-amorphous systems.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  6. Virk NA, Rehman A, Abbasi MA, Siddiqui SZ, Rashid U, Iqbal J, et al.
    Pak J Pharm Sci, 2018 Jul;31(4(Supplementary)):1501-1510.
    PMID: 30058542
    N-(Substituted)-5-(1-(4-methoxyphenylsulfonyl)piperidin-4-yl)-4H-1,2,4-triazol-3-ylthio) acetamide were synthesized by following conventional as well as microwave assisted protocol through five consecutive steps under the impact of various reaction conditions to control the reaction time and the yield of product. Starting from 4-methoxybenzenesulfonyl chloride and ethyl isonipecotate, product 3 was obtained which was converted into product 4 by treating with hydrazine hydrate. In step 3, the product 4 was refluxed with methyl isothiocyanate and KOH to yield compound 5 which was finally treated with variety of N-substituted acetamides to yield an array of different new compounds (8a-k). These synthesized compounds were evaluated for their inhibition potential against bovine carbonic anhydrase (bCA-II), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Compound 8g demonstrated good activity against bCA-II, AChE and BChE with IC50 values of 8.69 ± 0.38 μM, 11.87±0.19 μM and 26.01±0.55 μM respectively. SAR studies assisted with molecular docking were carried out to explore the mode of binding of the compounds against the studied enzymes.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  7. Singh I, Nair RS, Gan S, Cheong V, Morris A
    Pharm Dev Technol, 2019 Apr;24(4):448-454.
    PMID: 30084268 DOI: 10.1080/10837450.2018.1509347
    The drawbacks associated with chemical skin permeation enhancers such as skin irritation and toxicity necessitated the research to focus on potential permeation enhancers with a perceived lower toxicity. Crude palm oil (CPO) is obtained by direct compression of the mesocarp of the fruit of the oil palm belonging to the genus Elaeis. In this research, CPO and tocotrienol-rich fraction (TRF) of palm oil were evaluated for the first time as skin permeation enhancers using full-thickness human skin. The in vitro permeation experiments were conducted using excised human skin mounted in static upright 'Franz-type' diffusion cells. The drugs selected to evaluate the enhancing effects of these palm oil derivatives were 5-fluorouracil, lidocaine and ibuprofen: compounds covering a wide range of Log p values. It was demonstrated that CPO and TRF were capable of enhancing the percutaneous permeation of drugs across full-thickness human skin in vitro. Both TRF and CPO were shown to significantly enhance the permeation of ibuprofen with flux values of 30.6 µg/cm2 h and 23.0 µg/cm2 h respectively, compared to the control with a flux of 16.2 µg/cm2 h. The outcome of this research opens further scope for investigation on the transdermal penetration enhancement activity of pure compounds derived from palm oil.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  8. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF, Looi CY
    J Control Release, 2019 12 28;316:168-195.
    PMID: 31669211 DOI: 10.1016/j.jconrel.2019.09.019
    The applications of eutectic systems, including deep eutectic solvents (DESs), in diverse sectors have drawn significant interest from researchers, academicians, engineers, medical scientists, and pharmacists. Eutecticity increases drug dissolution, improves drug penetration, and acts as a synthesis route for drug carriers. To date, DESs have been extensively explored as potential drug delivery systems on account of their unique properties such as tunability and chemical and thermal stability. This review discusses two major topics: first, the application of eutectic mixtures (before and after the introduction of DES) in the field of drug delivery systems, and second, the most promising examples of DES pharmaceutical activity. It also considers future prospects in the medical and biotechnological fields. In addition to the application of DESs in drug delivery systems, they show greatly promising pharmaceutical activities, including anti-fungal, anti-bacterial, anti-viral, and anti-cancer activities. Eutecticity is a valid strategy for overcoming many obstacles inherently associated with either introducing new drugs or enhancing drug delivery systems.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  9. Abeer MM, Mohd Amin MC, Martin C
    J Pharm Pharmacol, 2014 Aug;66(8):1047-61.
    PMID: 24628270 DOI: 10.1111/jphp.12234
    The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  10. Peh KK, Lim CP, Quek SS, Khoh KH
    Pharm Res, 2000 Nov;17(11):1384-8.
    PMID: 11205731
    PURPOSE: To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.

    METHODS: The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).

    RESULTS: The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.

    CONCLUSION: The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.

    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  11. Yakubu R, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2009 Dec;35(12):1430-8.
    PMID: 19929202 DOI: 10.3109/03639040902988566
    The purpose of this study was to design a 24-hour controlled porosity osmotic pump system that utilizes polyvinyl pyrrolidone (PVP) as an osmotic-suspending/release retarding agent of drugs.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  12. Leung SSY, Parumasivam T, Nguyen A, Gengenbach T, Carter EA, Carrigy NB, et al.
    Eur J Pharm Biopharm, 2018 Jun;127:213-222.
    PMID: 29486303 DOI: 10.1016/j.ejpb.2018.02.033
    This study aimed to assess the robustness of using a spray drying approach and formulation design in producing inhalable phage powders. Two types of Pseudomonas phages, PEV2 (Podovirus) and PEV40 (Myovirus) in two formulations containing different amounts of trehalose (70% and 60%) and leucine (30% and 40%) were studied. Most of the surface of the produced powders was found to be covered in crystalline leucine. The powders were stored at 4 °C and 20 °C under vacuum. The phage stability and in vitro aerosol performance of the phage powders were examined on the day of production and after 1, 3 and 12 months of storage. A minor titer loss during production was observed for both phages (0.2-0.8 log10 pfu/ml). The storage stability of the produced phage powders was found to be phage and formulation dependent. No further reduction in titer occurred for PEV2 powders stored at 4 °C across the study. The formulation containing 30% leucine maintained the viability of PEV2 at 20 °C, while the formulation containing 40% leucine gradually lost titer over time with a storage reduction of ∼0.9 log10 pfu/ml measured after 12 months. In comparison, the PEV40 phage powders generally had a ∼ 0.5 log10 pfu/ml loss upon storage regardless of temperature. When aerosolized, the total in vitro lung doses of PEV2 were of the order of 107 pfu, except the formulation containing 40% leucine stored at 20 °C which had a lower lung dose. The PEV40 powders also had lung doses of 106-107 pfu. The results demonstrate that spray dried Myoviridae and Podoviridae phage in a simple formulation of leucine and trehalose can be successfully stored for one year at 4 °C and 20 °C with vacuum packaging.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  13. Biswas A, A JM, Lewis SA, Raja S, Paul A, Ghosal K, et al.
    AAPS PharmSciTech, 2024 Sep 05;25(7):203.
    PMID: 39237802 DOI: 10.1208/s12249-024-02909-4
    Normal skin is the first line of defense in the human body. A burn injury makes the skin susceptible to bacterial infection, thereby delaying wound healing and ultimately leading to sepsis. The chances of biofilm formation are high in burn wounds due to the presence of avascular necrotic tissue. The most common pathogen to cause burn infection and biofilm is Pseudomonas aeruginosa. The purpose of this study was to create a microemulsion (ME) formulation for topical application to treat bacterial burn infection. In the present study, tea tree oil was used as the oil phase, Tween 80 and transcutol were used as surfactants, and water served as the aqueous phase. Pseudo ternary phase diagrams were used to determine the design space. The ranges of components as suggested by the design were chosen, optimization of the microemulsion was performed, and in vitro drug release was assessed. Based on the characterization studies performed, it was found that the microemulsion were formulated properly, and the particle size obtained was within the desired microemulsion range of 10 to 300 nm. The I release study showed that the microemulsion followed an immediate release profile. The formulation was further tested based on its ability to inhibit biofilm formation and bacterial growth. The prepared microemulsion was capable of inhibiting biofilm formation.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  14. Phang HC, Ng ZQ, Mohamad N, Chew YL, Balaraman A, Kee PE, et al.
    Drug Dev Ind Pharm, 2024 Sep;50(9):810-826.
    PMID: 39320267 DOI: 10.1080/03639045.2024.2409168
    BACKGROUND: Quetiapine fumarate (QTP) is commonly prescribed for schizophrenic patient, typically available in tablet or oral suspension form, presenting challenges such as administration difficulties, fear of choking and distaste for its bitter taste. Fast melt films (FMF) offer an alternative dosage form with a simple development process, ease of administration and rapid drug absorption and action onset.

    OBJECTIVE: This study aims to prepare FMF with different formulations using solvent casting methods and to compare the effects of different drying methods, including oven drying and freeze drying, on the properties of the films.

    METHODS: Various formulations were created by manipulating polymer types (starch, hydroxypropyl methylcellulose (HPMC) and guar gum) at different concentrations, along with fixed concentrations of QTP and other excipients. Characterization tests including surface morphology, weight, thickness, pH, tensile strength, elongation length, Young's modulus, folding endurance and disintegration time were conducted. The optimal FMF formulation was identified and further evaluated for moisture and drug content, dissolution behavior, accelerated stability, X-ray diffraction (XRD), and palatability.

    RESULTS: FMF containing 10 mg guar gum/film developed using oven drying emerged as the optimum choice, exhibiting desirable film appearance, ultra-thin thickness (0.453 ± 0.002 mm), appropriate pH for oral intake (pH 5.0), optimal moisture content of 11.810%, rapid disintegration (52.67 ± 1.53 s), high flexibility (folding endurance > 300 times) and lower Young's modulus (1.308 ± 0.214).

    CONCLUSION: Oven drying method has been proven to be favorable for developing FMF containing QTP, meeting all testing criteria and providing an alternative option for QTP prescription.

    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  15. Loke YH, Phang HC, Gobal G, Vijayaraj Kumar P, Kee PE, Widodo RT, et al.
    Drug Dev Ind Pharm, 2024 Oct;50(10):845-855.
    PMID: 39418138 DOI: 10.1080/03639045.2024.2417999
    INTRODUCTION: Fast melt tablets (FMTs) provide a convenient dosage form that rapidly dissolves on the tongue without the need for water. Cocoa butter serves as a suitable matrix system for FMTs formulation, facilitating rapid disintegration at body temperature.

    OBJECTIVES: This study aimed to formulate FMTs using cocoa butter as a base and investigate the effect of various disintegrants and superdisintegrants on their characteristics.

    METHODS: Cocoa butter-based FMTs were prepared via the fusion molding technique. Different disintegrants and superdisintegrants were added at varying concentrations and subjected to characterization. The optimal formulation was selected and incorporated with 10 mg memantine hydrochloride.

    RESULTS: The optimal FMT formulation consisted of 340 mg cocoa butter, 75 mg starch, and 75 mg crospovidone, exhibiting a hardness of 17.12 ± 0.31 N and a disintegration time of 32.67 ± 0.17 s. Furthermore, FMTs demonstrated a faster release profile compared to the commercially available product, Ebixa. SEM micrographs revealed homogenous blending of individual ingredients within the cocoa butter matrix and FT-IR analysis confirmed the chemical stability of memantine hydrochloride in the formulation. The dissolution profile of F17 suggested that the drug in FMTs released faster compared to Ebixia. Memantine hydrochloride achieved 98.07% of drug release in FMTs at 10 min. Moreover, the prepared FMTs exhibited stability for at least 6 months.

    CONCLUSION: The successful development of cocoa butter-based FMTs containing memantine hydrochloride highlights the potential of cocoa butter as viable alternative matrix-forming material for FMTs production. This innovative formulation offers patients a convenient alternative for medication administration.

    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  16. Rajoo A, Siva SP, Sia CS, Chan ES, Tey BT, Low LE
    Eur J Pharm Biopharm, 2024 Dec;205:114572.
    PMID: 39486631 DOI: 10.1016/j.ejpb.2024.114572
    Cosmeceuticals, focusing on enhancing skin health and appearance, heavily rely on emulsions as one of the common mediums. These emulsions pose a challenge due to their dependence on surfactants which are essential for stability but are causing concerns about environmental impact as well as evolving consumer preferences. This has led to research focused on Pickering emulsions (PEs), which are colloidal particle-based emulsion alternatives. Compared to conventional emulsions, PEs offer enhanced stability and functionality in addition to serving as a sustainable alternative but still pose challenges such as rheological control and requiring further improvement in long-term stability, whereby the limitations could be addressed through the introduction of a hydrogel network. In this review, we first highlight the strategies and considerations to optimize active ingredient (AI) absorption and penetration in a PE-based formulation. We then delve into a comprehensive overview of the potential of Pickering-based cosmeceutical emulsions including their attractive features, the various Pickering particles that can be employed, past studies and their limitations. Further, PE hydrogels (PEHs), which combines the features between PE and hydrogel as an innovative solution to address challenges posed by both conventional emulsions and PEs in the cosmeceutical industry is explored. Moreover, concerns related to toxicity and biocompatibility are critically examined, alongside considerations of scalability and commercial viability, providing a forward-looking perspective on potential future research directions centered on the application of PEHs in the cosmeceutical field.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  17. Hasnain MS, Nayak AK, Singh M, Tabish M, Ansari MT, Ara TJ
    Int J Biol Macromol, 2016 Feb;83:71-7.
    PMID: 26608007 DOI: 10.1016/j.ijbiomac.2015.11.044
    Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release were developed through incorporation of nano-hydroxyapatite [nHAp] powders within ionotropically-gelled calcium ion-induced alginate-poly (vinyl pyrrolidone) blends polymeric systems. nHAp powders were synthesized by precipitation technique using calcium hydroxide [Ca(OH)2] and orthophosphoric acid [H3PO4] as raw materials. The average particle size of these was synthesized. nHAp powders was found as 19.04 nm and used to prepare nHAp-alginate-PVP beads containing DS. These beads exhibited drug entrapment efficiency (%) of 65.82±1.88 to 94.45±3.72% and average bead sizes of 0.98±0.07 to 1.23±0.15 mm. These beads were characterized by scanning electron microscopy (SEM) and Fourier transform-infra red (FTIR) spectroscopy analyses. Various nHAp-alginate-PVP beads containing DS exhibited prolonged sustained drug release and followed the Koresmeyer-Peppas model of drug release (R2=0.9908-0.9978) with non-Fickian release (anomalous transport) mechanism (n=0.73-0.84) for drug release over 8 h.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
  18. Liew KB, Tan YT, Peh KK
    AAPS PharmSciTech, 2012 Mar;13(1):134-42.
    PMID: 22167416 DOI: 10.1208/s12249-011-9729-4
    The aim of this study was to develop a taste-masked oral disintegrating film (ODF) containing donepezil, with fast disintegration time and suitable mechanical strength, for the treatment of Alzheimer's disease. Hydroxypropyl methylcellulose, corn starch, polyethylene glycol, lactose monohydrate and crosspovidone served as the hydrophilic polymeric bases of the ODF. The uniformity, in vitro disintegration time, drug release and the folding endurance of the ODF were examined. The in vitro results showed that 80% of donepezil hydrochloride was released within 5 minutes with mean disintegration time of 44 seconds. The result of the film flexibility test showed that the number of folding time to crack the film was 40 times, an indication of sufficient mechanical property for patient use. A single-dose, fasting, four-period, eight-treatment, double-blind study involving 16 healthy adult volunteers was performed to evaluate the in situ disintegration time and palatability of ODF. Five parameters, namely taste, aftertaste, mouthfeel, ease of handling and acceptance were evaluated. The mean in situ disintegration time of ODF was 49 seconds. ODF containing 7 mg of sucralose were more superior than saccharin and aspartame in terms of taste, aftertaste, mouthfeel and acceptance. Furthermore, the ODF was stable for at least 6 months when stored at 40°C and 75% relative humidity.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  19. Wong TW, Nurjaya S
    Eur J Pharm Biopharm, 2008 May;69(1):176-88.
    PMID: 17980563
    The effects of microwave irradiation on the drug release property of pectinate beads loaded internally with chitosan (chitosan-pectinate beads) were investigated against the pectinate beads and beads coacervated with chitosan externally (pectinate-chitosonium beads). These beads were prepared by an extrusion method using sodium diclofenac as the model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5, 10, 21 and 40 min. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by drug dissolution testing, drug content assay, drug adsorption study, differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR) techniques. Treatment of pectinate beads by microwave did not lead to a decrease, but an increase in the extent of drug released at 4h of dissolution owing to reduced pectin-pectin interaction via the CO moiety of polymer. In addition, the extent of drug released from the pectinate beads could not be reduced merely through the coacervation of pectinate matrix with chitosan. The reduction in the extent of drug released from the pectinate-chitosonium beads required the treatment of these beads by microwave, following an increase in drug-polymer and polymer-polymer interaction in the matrix. The extent of drug released from the pectinate beads was reduced through incorporating chitosan directly into the interior of pectinate matrix, owing to drug-chitosan adsorption. Nonetheless, the treatment of chitosan-pectinate matrix by microwave brought about an increase in the extent of drug released unlike those of pectinate-chitosonium beads. Apparently, the loading of chitosan into the interior of pectinate matrix could effectively retard the drug release without subjecting the beads to the treatment of microwave. The microwave was merely essential to reduce the release of drug from pectinate beads when the chitosan was introduced to the pectinate matrix by means of coacervation. Under the influences of microwave, the drug release property of beads made of pectin and chitosan was mainly modulated via the CH, OH and NH moieties of polymers and drug, with CH functional group purported to retard while OH and NH moieties purported to enhance the drug released from the matrix.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods*
  20. Tan SL, Stanslas J, Basri M, Abedi Karjiban RA, Kirby BP, Sani D, et al.
    Curr Drug Deliv, 2015;12(6):795-804.
    PMID: 26324229
    Carbamzepine (CBZ) was encapsulated in a parenteral oil-in-water nanoemulsion, in an attempt to improve its bioavailability. The particle size, polydispersity index and zeta potential were measured using dynamic light scattering. Other parameters such as pH, osmolality, viscosity, drug loading efficiency and entrapment efficiency were also recorded. Transmission electron microscopy revealed that emulsion droplets were almost spherical in shape and in the nano-range. The in vitro release profile was best characterized by Higuchi's equation. The parenteral nanoemulsion of CBZ showed significantly higher AUC0→5, AUC0→∞, AUMC0→5, AUMC0→∞, Cmax and lower clearance than that of CBZ solution in plasma. Additionally, parenteral nanoemulsion of CBZ showed significantly higher AUC0→∞, AUMC0→∞ and Cmaxthan that of CBZ solution in brain. The parenteral nanoemulsion of CBZ could therefore use as a carrier, worth exploring further for brain targeting.
    Matched MeSH terms: Chemistry, Pharmaceutical/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links