Displaying publications 21 - 39 of 39 in total

Abstract:
Sort:
  1. Wong RS, Radhakrishnan AK, Ibrahim TA, Cheong SK
    Microsc Microanal, 2012 Jun;18(3):462-9.
    PMID: 22640960 DOI: 10.1017/S1431927612000177
    Tocotrienols are isomers of the vitamin E family, which have been reported to exert cytotoxic effects in various cancer cells. Although there have been some reports on the effects of tocotrienols in leukemic cells, ultrastructural evidence of tocotrienol-induced apoptotic cell death in leukemic cells is lacking. The present study investigated the effects of three isomers of tocotrienols (alpha, delta, and gamma) on a human T lymphoblastic leukemic cell line (CEM-SS). Cell viability assays showed that all three isomers had cytotoxic effects (p < 0.05) on CEM-SS cells with delta-tocotrienol being the most potent. Transmission electron microscopy showed that the cytotoxic effects by delta- and gamma-tocotrienols were through the induction of an apoptotic pathway as demonstrated by the classical ultrastructural apoptotic changes characterized by peripheral nuclear chromatin condensation and nuclear fragmentation. These findings were confirmed biochemically by the demonstration of phosphatidylserine externalization via flow cytometry analysis. This is the first study showing classical ultrastructural apoptotic changes induced by delta- and gamma-tocotrienols in human T lymphoblastic leukemic cells.
    Matched MeSH terms: Chromatin/ultrastructure
  2. Aravind SR, Joseph MM, George SK, Dileep KV, Varghese S, Rose-James A, et al.
    Int J Biochem Cell Biol, 2015 Feb;59:153-66.
    PMID: 25541375 DOI: 10.1016/j.biocel.2014.11.019
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an attractive target for cancer therapy due to its ability to selectively induce apoptosis in cancer cells, without causing significant toxicity in normal tissues. We previously reported that galactoxyloglucan (PST001) possesses significant antitumor and immunomodulatory properties. However, the exact mechanism in mediating this anticancer effect is unknown. This study, for the first time, indicated that PST001 sensitizes non-small cell lung cancer (A549) and nasopharyngeal (KB) cells to TRAIL-mediated apoptosis. In vitro studies suggested that PST001 induced apoptosis primarily via death receptors and predominantly activated caspases belonging to the extrinsic apoptotic cascade. Microarray profiling of PST001 treated A549 and KB cells showed the suppression of survivin (BIRC5) and anti-apoptotic Bcl-2, as well as increased cytochrome C. TaqMan low density array analysis of A549 cells also confirmed that the induction of apoptosis by the polysaccharide occurred through the TRAIL-DR4/DR5 pathways. This was finally confirmed by in silico analysis, which revealed that PST001 binds to TRAIL-DR4/DR5 complexes more strongly than TNF and Fas ligand-receptor complexes. In summary, our results suggest the potential of PST001 to be developed as an anticancer agent that not only preserves innate biological activity of TRAIL, but also sensitizes cancer cells to TRAIL-mediated apoptosis.
    Matched MeSH terms: Chromatin/drug effects; Chromatin/metabolism
  3. Gallagher D, Voronova A, Zander MA, Cancino GI, Bramall A, Krause MP, et al.
    Dev. Cell, 2015 Jan 12;32(1):31-42.
    PMID: 25556659 DOI: 10.1016/j.devcel.2014.11.031
    Ankrd11 is a potential chromatin regulator implicated in neural development and autism spectrum disorder (ASD) with no known function in the brain. Here, we show that knockdown of Ankrd11 in developing murine or human cortical neural precursors caused decreased proliferation, reduced neurogenesis, and aberrant neuronal positioning. Similar cellular phenotypes and aberrant ASD-like behaviors were observed in Yoda mice carrying a point mutation in the Ankrd11 HDAC-binding domain. Consistent with a role for Ankrd11 in histone acetylation, Ankrd11 was associated with chromatin and colocalized with HDAC3, and expression and histone acetylation of Ankrd11 target genes were altered in Yoda neural precursors. Moreover, the Ankrd11 knockdown-mediated decrease in precursor proliferation was rescued by inhibiting histone acetyltransferase activity or expressing HDAC3. Thus, Ankrd11 is a crucial chromatin regulator that controls histone acetylation and gene expression during neural development, thereby providing a likely explanation for its association with cognitive dysfunction and ASD.
    Matched MeSH terms: Chromatin/genetics*; Chromatin Immunoprecipitation
  4. Maiti AK, Kim-Howard X, Motghare P, Pradhan V, Chua KH, Sun C, et al.
    Hum Mol Genet, 2014 Aug 1;23(15):4161-76.
    PMID: 24608226 DOI: 10.1093/hmg/ddu106
    Integrin alpha M (ITGAM; CD11b) is a component of the macrophage-1 antigen complex, which mediates leukocyte adhesion, migration and phagocytosis as part of the immune system. We previously identified a missense polymorphism, rs1143679 (R77H), strongly associated with systemic lupus erythematosus (SLE). However, the molecular mechanisms of this variant are incompletely understood. A meta-analysis of published and novel data on 28 439 individuals with European, African, Hispanic and Asian ancestries reinforces genetic association between rs1143679 and SLE [Pmeta = 3.60 × 10(-90), odds ratio (OR) = 1.76]. Since rs1143679 is in the most active region of chromatin regulation and transcription factor binding in ITGAM, we quantitated ITGAM RNA and surface protein levels in monocytes from patients with each rs1143679 genotype. We observed that transcript levels significantly decreased for the risk allele ('A') relative to the non-risk allele ('G'), in a dose-dependent fashion: ('AA' < 'AG' < 'GG'). CD11b protein levels in patients' monocytes were directly correlated with RNA levels. Strikingly, heterozygous individuals express much lower (average 10- to 15-fold reduction) amounts of the 'A' transcript than 'G' transcript. We found that the non-risk sequence surrounding rs1143679 exhibits transcriptional enhancer activity in vivo and binds to Ku70/80, NFKB1 and EBF1 in vitro, functions that are significantly reduced with the risk allele. Mutant CD11b protein shows significantly reduced binding to fibrinogen and vitronectin, relative to non-risk, both in purified protein and in cellular models. This two-pronged contribution (nucleic acid- and protein-level) of the rs1143679 risk allele to decreasing ITGAM activity provides insight into the molecular mechanisms of its potent association with SLE.
    Matched MeSH terms: Chromatin/metabolism; Chromatin/pathology
  5. Ismail N, Ismail M, Mazlan M, Latiff LA, Imam MU, Iqbal S, et al.
    Cell Mol Neurobiol, 2013 Nov;33(8):1159-69.
    PMID: 24101432 DOI: 10.1007/s10571-013-9982-z
    Thymoquinone (TQ), a bioactive constituent of Nigella sativa Linn (N. sativa) has demonstrated several neuropharmacological attributes. In the present study, the neuroprotective properties of TQ were investigated by studying its anti-apoptotic potential to diminish β-amyloid peptide 1-40 sequence (Aβ1-40)-induced neuronal cell death in primary cultured cerebellar granule neurons (CGNs). The effects of TQ against Aβ1-40-induced neurotoxicity, morphological damages, DNA condensation, the generation of reactive oxygen species, and caspase-3, -8, and -9 activation were investigated. Pretreatment of CGNs with TQ (0.1 and 1 μM) and subsequent exposure to 10 μM Aβ1-40 protected the CGNs against the neurotoxic effects of the latter. In addition, the CGNs were better preserved with intact cell bodies, extensive neurite networks, a loss of condensed chromatin and less free radical generation than those exposed to Aβ1-40 alone. TQ pretreatment inhibited Aβ1-40-induced apoptosis of CGNs via both extrinsic and intrinsic caspase pathways. Thus, the findings of this study suggest that TQ may prevent neurotoxicity and Aβ1-40-induced apoptosis. TQ is, therefore, worth studying further for its potential to reduce the risks of developing Alzheimer's disease.
    Matched MeSH terms: Chromatin/metabolism
  6. Aisha AF, Abu-Salah KM, Ismail Z, Majid AM
    Molecules, 2012;17(3):2939-54.
    PMID: 22402764 DOI: 10.3390/molecules17032939
    Despite the progress in colon cancer treatment, relapse is still a major obstacle. Hence, new drugs or drug combinations are required in the battle against colon cancer. α-Mangostin and betulinic acid (BA) are cytotoxic compounds that work by inducing the mitochondrial apoptosis pathway, and cisplatin is one of the most potent broad spectrum anti-tumor agents. This study aims to investigate the enhancement of BA cytotoxicity by α-mangostin, and the cytoprotection effect of α-mangostin and BA on cisplatin-induced cytotoxicity on HCT 116 human colorectal carcinoma cells. Cytotoxicity was investigated by the XTT cell proliferation test, and the apoptotic effects were investigated on early and late markers including caspases-3/7, mitochondrial membrane potential, cytoplasmic shrinkage, and chromatin condensation. The effect of α-mangostin on four signalling pathways was also investigated by the luciferase assay. α-Mangostin and BA were more cytotoxic to the colon cancer cells than to the normal colonic cells, and both compounds showed a cytoprotective effect against cisplatin-induced cytotoxicity. On the other hand, α-mangostin enhanced the cytotoxic and apoptotic effects of BA. Combination therapy hits multiple targets, which may improve the overall response to the treatment, and may reduce the likelihood of developing drug resistance by the tumor cells. Therefore, α-mangostin and BA may provide a novel combination for the treatment of colorectal carcinoma. The cytoprotective effect of the compounds against cisplatin-induced cytotoxicity may find applications as chemopreventive agents against carcinogens, irradiation and oxidative stress, or to neutralize cisplatin side effects.
    Matched MeSH terms: Chromatin/drug effects
  7. Tang JR, Mat Isa NA, Ch'ng ES
    PLoS One, 2015;10(11):e0142830.
    PMID: 26560331 DOI: 10.1371/journal.pone.0142830
    Despite the effectiveness of Pap-smear test in reducing the mortality rate due to cervical cancer, the criteria of the reporting standard of the Pap-smear test are mostly qualitative in nature. This study addresses the issue on how to define the criteria in a more quantitative and definite term. A negative Pap-smear test result, i.e. negative for intraepithelial lesion or malignancy (NILM), is qualitatively defined to have evenly distributed, finely granular chromatin in the nuclei of cervical squamous cells. To quantify this chromatin pattern, this study employed Fuzzy C-Means clustering as the segmentation technique, enabling different degrees of chromatin segmentation to be performed on sample images of non-neoplastic squamous cells. From the simulation results, a model representing the chromatin distribution of non-neoplastic cervical squamous cell is constructed with the following quantitative characteristics: at the best representative sensitivity level 4 based on statistical analysis and human experts' feedbacks, a nucleus of non-neoplastic squamous cell has an average of 67 chromatins with a total area of 10.827 μm2; the average distance between the nearest chromatin pair is 0.508 μm and the average eccentricity of the chromatin is 0.47.
    Matched MeSH terms: Chromatin/chemistry*
  8. Abdel Wahab SI, Abdul AB, Alzubairi AS, Mohamed Elhassan M, Mohan S
    J Biomed Biotechnol, 2009;2009:769568.
    PMID: 19343171 DOI: 10.1155/2009/769568
    Zerumbone (ZER), a potential anticancer compound, isolated from the fresh rhizomes of Zingiber zerumbet. In this investigation, the cytotoxic properties of ZER were evaluated, on cancer cells of human cervix (HeLa), breast and ovary, and normal cells of Chinese Hamster ovary, using MTT assay. Apoptogenic effects of ZER on HeLa were studied using fluorescence microscopy (AO/PI double staining), scanning and transmission electron microscopy (SEM and TEM), and colorimetric assay of the apoptosis promoter enzyme, caspase-3. The results of MTT assay showed that ZER has less effect on normal cells compared to cancer cells. The lowest IC(50) of ZER was observed on HeLa cells. Cytological observations showed nuclear and chromatin condensation, cell shrinkage, multinucleation, abnormalities of mitochondrial cristae, membrane blebbing, holes, cytoplasmic extrusions and formation of apoptotic bodies as confirmed collectively by double staining of AO/PI, SEM and TEM. Statistical analysis (two-tailed t-test) of differential counting of 200 cells under fluorescence microscope revealed significant difference in apoptotic cells populations between treated and untreated HeLa cells. In addition, ZER has increased the cellular level of caspase-3 on the treated HeLa cells. It could be concluded that ZER was able to produce distinctive morphological features of cell death that corresponds to apoptosis.
    Matched MeSH terms: Chromatin/drug effects
  9. Ghoussaini M, Edwards SL, Michailidou K, Nord S, Cowper-Sal Lari R, Desai K, et al.
    Nat Commun, 2014 Sep 23;4:4999.
    PMID: 25248036 DOI: 10.1038/ncomms5999
    GWAS have identified a breast cancer susceptibility locus on 2q35. Here we report the fine mapping of this locus using data from 101,943 subjects from 50 case-control studies. We genotype 276 SNPs using the 'iCOGS' genotyping array and impute genotypes for a further 1,284 using 1000 Genomes Project data. All but two, strongly correlated SNPs (rs4442975 G/T and rs6721996 G/A) are excluded as candidate causal variants at odds against >100:1. The best functional candidate, rs4442975, is associated with oestrogen receptor positive (ER+) disease with an odds ratio (OR) in Europeans of 0.85 (95% confidence interval=0.84-0.87; P=1.7 × 10(-43)) per t-allele. This SNP flanks a transcriptional enhancer that physically interacts with the promoter of IGFBP5 (encoding insulin-like growth factor-binding protein 5) and displays allele-specific gene expression, FOXA1 binding and chromatin looping. Evidence suggests that the g-allele confers increased breast cancer susceptibility through relative downregulation of IGFBP5, a gene with known roles in breast cell biology.
    Matched MeSH terms: Chromatin/metabolism
  10. Ngiow Shin Foong, Maha Abdullah, Jasmine Lim, Cheong Soon-Keng, Seow Heng-Fong
    MyJurnal
    Introduction: Current prognostic markers have improved survival prediction, however, it has not
    advanced treatment strategies. Gene expression profiling may identify biological markers suitable as
    therapeutic targets. Leukaemia stem cell is associated with adverse outcome, however, its biological
    characteristics are still being investigated. We observed higher in vitro cell viability in acute myeloid
    leukaemia (AML) samples with poor prognosis, which may be stem cell related. Objective: The
    objective of this study was to profile highly expressed genes in an AML sample of poor prognosis/high
    viability and compare with a sample of good prognosis/low viability. Method: Subtractive hybridization
    was performed on two AML samples with high blast counts (>80%), a poor prognosis, PP (disease free
    survival, DFS12 months) sample. The PP sample had
    higher CD34+ counts (73% vs 46%) and higher cell viability than the GP sample. cDNA libraries were
    subsequently cloned and sequenced. Results: cDNA subtracted from the PP samples was identified
    as genes active during fetal/embryonic development (LCOR, CNOT1, ORMDL1), HOX- related genes
    (HOXA3, PBX3, SF3B1), hematopoiesis (SELL, IL-3RA) and aerobic glycolysis/hypoxia (PGK1,
    HIGD1A) -associated genes. Majority of GP clones isolated contained genes involved in oxidative
    phosphorylation, OXPHOS (COXs, ATPs, MTND4 and MTRNR2), protein synthesis (including
    ribosomal proteins, initiating and elongation factors), chromatin remodeling (H2AFZ, PTMA), cell
    motility (MALAT1, CALM2, TMSB4X), and mitochondria (HSPA9, MPO) genes. Conclusion: Thus,
    the PP sample exhibited stem cell-like features while the GP sample showed cells at a high level of cell
    activity. These genes are potential prognostic markers and targets for therapy.
    Matched MeSH terms: Chromatin Assembly and Disassembly
  11. Muhammad II, Kong SL, Akmar Abdullah SN, Munusamy U
    Int J Mol Sci, 2019 Dec 25;21(1).
    PMID: 31881735 DOI: 10.3390/ijms21010167
    The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.
    Matched MeSH terms: Chromatin Immunoprecipitation
  12. Yau Hsiung W, Abdul Kadir H
    PMID: 21423690 DOI: 10.1155/2011/293060
    The anticancer potential of Leea indica, a Chinese medicinal plant was investigated for the first time. The crude ethanol extract and fractions (ethyl acetate, hexane, and water) of Leea indica were evaluated their cytotoxicity on various cell lines (Ca Ski, MCF 7, MDA-MB-435, KB, HEP G2, WRL 68, and Vero) by MTT assay. Leea indica ethyl acetate fraction (LIEAF) was found showing the greatest cytotoxic effect against Ca Ski cervical cancer cells. Typical apoptotic morphological changes such as DNA fragmentation and chromatin condensation were observed in LIEAF-treated cells. Early signs of apoptosis such as externalization of phosphatidylserine and disruption of mitochondrial membrane potential indicated apoptosis induction. This was further substantiated by dose- and time-dependent accumulation of sub-G(1) cells, depletion of intracellular glutathione, and activation of caspase-3. In conclusion, these results suggested that LIEAF inhibited cervical cancer cells growth by inducing apoptosis and could be developed as potential anticancer drugs.
    Matched MeSH terms: Chromatin
  13. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    PMID: 31178918 DOI: 10.1155/2019/9607590
    Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.
    Matched MeSH terms: Chromatin
  14. Pfister NT, Fomin V, Regunath K, Zhou JY, Zhou W, Silwal-Pandit L, et al.
    Genes Dev., 2015 Jun 15;29(12):1298-315.
    PMID: 26080815 DOI: 10.1101/gad.263202.115
    Mutant p53 impacts the expression of numerous genes at the level of transcription to mediate oncogenesis. We identified vascular endothelial growth factor receptor 2 (VEGFR2), the primary functional VEGF receptor that mediates endothelial cell vascularization, as a mutant p53 transcriptional target in multiple breast cancer cell lines. Up-regulation of VEGFR2 mediates the role of mutant p53 in increasing cellular growth in two-dimensional (2D) and three-dimensional (3D) culture conditions. Mutant p53 binds near the VEGFR2 promoter transcriptional start site and plays a role in maintaining an open conformation at that location. Relatedly, mutant p53 interacts with the SWI/SNF complex, which is required for remodeling the VEGFR2 promoter. By both querying individual genes regulated by mutant p53 and performing RNA sequencing, the results indicate that >40% of all mutant p53-regulated gene expression is mediated by SWI/SNF. We surmise that mutant p53 impacts transcription of VEGFR2 as well as myriad other genes by promoter remodeling through interaction with and likely regulation of the SWI/SNF chromatin remodeling complex. Therefore, not only might mutant p53-expressing tumors be susceptible to anti VEGF therapies, impacting SWI/SNF tumor suppressor function in mutant p53 tumors may also have therapeutic potential.
    Matched MeSH terms: Chromatin Assembly and Disassembly/genetics*
  15. Garza-Manero S, Sindi AAA, Mohan G, Rehbini O, Jeantet VHM, Bailo M, et al.
    Epigenetics Chromatin, 2019 12 12;12(1):73.
    PMID: 31831052 DOI: 10.1186/s13072-019-0320-7
    BACKGROUND: Members of the HMGN protein family modulate chromatin structure and influence epigenetic modifications. HMGN1 and HMGN2 are highly expressed during early development and in the neural stem/progenitor cells of the developing and adult brain. Here, we investigate whether HMGN proteins contribute to the chromatin plasticity and epigenetic regulation that is essential for maintaining pluripotency in stem cells.

    RESULTS: We show that loss of Hmgn1 or Hmgn2 in pluripotent embryonal carcinoma cells leads to increased levels of spontaneous neuronal differentiation. This is accompanied by the loss of pluripotency markers Nanog and Ssea1, and increased expression of the pro-neural transcription factors Neurog1 and Ascl1. Neural stem cells derived from these Hmgn-knockout lines also show increased spontaneous neuronal differentiation and Neurog1 expression. The loss of HMGN2 leads to a global reduction in H3K9 acetylation, and disrupts the profile of H3K4me3, H3K9ac, H3K27ac and H3K122ac at the Nanog and Oct4 loci. At endodermal/mesodermal genes, Hmgn2-knockout cells show a switch from a bivalent to a repressive chromatin configuration. However, at neuronal lineage genes whose expression is increased, no epigenetic changes are observed and their bivalent states are retained following the loss of HMGN2.

    CONCLUSIONS: We conclude that HMGN1 and HMGN2 maintain the identity of pluripotent embryonal carcinoma cells by optimising the pluripotency transcription factor network and protecting the cells from precocious differentiation. Our evidence suggests that HMGN2 regulates active and bivalent genes by promoting an epigenetic landscape of active histone modifications at promoters and enhancers.

    Matched MeSH terms: Chromatin/metabolism*
  16. Vannas A, Hogan MJ, Wood I
    Am J Ophthalmol, 1975 Feb;79(2):211-9.
    PMID: 46719
    Eleven corneal specimens from nine patients with Salzmann's nodular degeneration of the cornea, together with all available clinical information, were collected for this study. The specimens were examined by light and electron microscopy. An antecedent keratitis was diagnosed by history and microscopic findings in every case. The corneal epithelium showed degenerative changes, its thickness varied, and in nodular areas it often consisted of only a single layer of flattened epithelial cells by light microscopy. Bowman's membrane was missing over the nodules, and in this zone there was excessive secretion of a basement membrane-like material. Hyaline degeneration of collagen, cellular debris, and electron-dense hyaline deposits were seen in the collagen of the nodules. The number of fibrocytes in the nodules varied from many that were active to a few that were degenerating. External irritation because of poor epithelial protection was interpreted as a causative factor, although other tissue repair mechanisms may also have played a role.
    Matched MeSH terms: Chromatin
  17. Ng KB, Bustamam A, Sukari MA, Abdelwahab SI, Mohan S, Buckle MJ, et al.
    PMID: 23432947 DOI: 10.1186/1472-6882-13-41
    Boesenbergia rotunda (Roxb.) Schlecht (family zingiberaceae) is a rhizomatous herb that is distributed from north-eastern India to south-east Asia, especially in Indonesia, Thailand and Malaysia. Previous research has shown that the crude extract of this plant has cytotoxic properties. The current study examines the cytotoxic properties of boesenbergin A isolated from Boesenbergia rotunda.
    Matched MeSH terms: Chromatin/metabolism
  18. Teoh PL, Cheng AY, Liau M, Lem FF, Kaling GP, Chua FN, et al.
    Pharm Biol, 2017 Dec;55(1):394-401.
    PMID: 27931178
    CONTEXT: Clinacanthus nutans Lindau (Acanthaceae) is a medicinal plant that has been reported to have anti-inflammatory, antiviral, antimicrobial and antivenom activities. In Malaysia, it has been widely claimed to be effective in various cancer treatments but scientific evidence is lacking.

    OBJECTIVE: This study investigates the chemical constituents, anti-proliferative, and apoptotic properties of C. nutans root extracts.

    MATERIALS AND METHODS: The roots were subjected to solvent extraction using methanol and ethyl acetate. The anti-proliferative effects of root extracts were tested at the concentrations of 10 to 50 μg/mL on MCF-7 and HeLa by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay for 72 h. Morphological changes were observed under light microscope. Pro-apoptotic effects of root extracts were examined using flow cytometric analysis and RT-PCR. The chemical compositions of root extracts were detected using GC-MS.

    RESULTS: The proliferation of MCF-7 cells was inhibited with the IC50 values of 35 and 30 μg/mL, respectively, for methanol and ethyl acetate root extracts. The average inhibition of HeLa cells was ∼25%. Induction of apoptosis in MCF-7 was supported by chromatin condensation, down-regulation of BCL2 and unaltered expression of BAX. However, only ethyl acetate extract caused the loss of mitochondrial membrane potential. GC-MS analysis revealed the roots extracts were rich with terpenoids and phytosterols.

    DISCUSSION AND CONCLUSIONS: The results demonstrated that root extracts promote apoptosis by suppressing BCL2 via mitochondria-dependent or independent manner. The identified compounds might work solely or cooperatively in regulating apoptosis. However, further studies are required to address this.

    Matched MeSH terms: Chromatin Assembly and Disassembly/drug effects
  19. Atago Y, Shimodaira J, Araki N, Bin Othman N, Zakaria Z, Fukuda M, et al.
    Biosci Biotechnol Biochem, 2016 May;80(5):1012-9.
    PMID: 26828632 DOI: 10.1080/09168451.2015.1127134
    Rhodococcus jostii RHA1 (RHA1) degrades polychlorinated biphenyl (PCB) via co-metabolism with biphenyl. To identify the novel open reading frames (ORFs) that contribute to PCB/biphenyl metabolism in RHA1, we compared chromatin immunoprecipitation chip and transcriptomic data. Six novel ORFs involved in PCB/biphenyl metabolism were identified. Gene deletion mutants of these 6 ORFs were made and were tested for their ability to grow on biphenyl. Interestingly, only the ro10225 deletion mutant showed deficient growth on biphenyl. Analysis of Ro10225 protein function showed that growth of the ro10225 deletion mutant on biphenyl was recovered when exogenous recombinant Ro10225 protein was added to the culture medium. Although Ro10225 protein has no putative secretion signal sequence, partially degraded Ro10225 protein was detected in conditioned medium from wild-type RHA1 grown on biphenyl. This Ro10225 fragment appeared to form a complex with another PCB/biphenyl oxidation enzyme. These results indicated that Ro10225 protein is essential for the formation of the PCB/biphenyl dioxygenase complex in RHA1.
    Matched MeSH terms: Chromatin Immunoprecipitation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links