Displaying publications 21 - 40 of 3428 in total

Abstract:
Sort:
  1. Abdul Hamid NK, Carmona-Antoñanzas G, Monroig Ó, Tocher DR, Turchini GM, Donald JA
    PLoS One, 2016;11(3):e0150770.
    PMID: 26943160 DOI: 10.1371/journal.pone.0150770
    Rainbow trout, Oncorhynchus mykiss, are intensively cultured globally. Understanding their requirement for long-chain polyunsaturated fatty acids (LC-PUFA) and the biochemistry of the enzymes and biosynthetic pathways required for fatty acid synthesis is important and highly relevant in current aquaculture. Most gnathostome vertebrates have two fatty acid desaturase (fads) genes with known functions in LC-PUFA biosynthesis and termed fads1 and fads2. However, teleost fish have exclusively fads2 genes. In rainbow trout, a fads2 cDNA had been previously cloned and found to encode an enzyme with Δ6 desaturase activity. In the present study, a second fads2 cDNA was cloned from the liver of rainbow trout and termed fads2b. The full-length mRNA contained 1578 nucleotides with an open reading frame of 1365 nucleotides that encoded a 454 amino acid protein with a predicted molecular weight of 52.48 kDa. The predicted Fads2b protein had the characteristic traits of the microsomal Fads family, including an N-terminal cytochrome b5 domain containing the heme-binding motif (HPPG), histidine boxes (HDXGH, HFQHH and QIEHH) and three transmembrane regions. The fads2b was expressed predominantly in the brain, liver, intestine and pyloric caeca. Expression of the fasd2b in yeast generated a protein that was found to specifically convert eicosatetraenoic acid (20:4n-3) to eicosapentaenoic acid (20:5n-3), and therefore functioned as a Δ5 desaturase. Therefore, rainbow trout have two fads2 genes that encode proteins with Δ5 and Δ6 desaturase activities, respectively, which enable this species to perform all the desaturation steps required for the biosynthesis of LC-PUFA from C18 precursors.
    Matched MeSH terms: DNA, Complementary/genetics
  2. Abdul Khaliq R, Kafafy R, Salleh HM, Faris WF
    Nanotechnology, 2012 Nov 16;23(45):455106.
    PMID: 23085573 DOI: 10.1088/0957-4484/23/45/455106
    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.
    Matched MeSH terms: DNA/analysis
  3. Abdul Munir Abdul Murad, Rafidah Badrun, Sakina Shahabudin, Shazilah Kamaruddin, Madihah Ahmad Zairun, Farahayu Khairuddin, et al.
    Sains Malaysiana, 2013;42:715-724.
    Kitin merupakan polisakarida struktur yang dapat dicurai oleh enzim kitinolisis kepada pelbagai terbitan yang boleh digunakan dalam bidang perubatan, pertanian dan rawatan air. Pengenalpastian dan pencirian gen-gen Trichoderma virens UKM1 mengekod enzim terlibat dalam pencuraian kitin krustasea telah dilakukan melalui penjanaan penanda jujukan terekspres (ESTs) dan analisis pengekspresan gen menggunakan mikroatur DNA. Sebanyak tiga perpustakaan cDNA T. virens UKM1 yang masing-masing diaruh oleh kitin, glukosamina dan kitosan telah dibina. Sejumlah 1536 klon cDNA telah dijujuk dan sebanyak 1033 ESTs berkualiti telah dijana. Seterusnya, perbezaan pengekspresan gen apabila pertumbuhan kulat diaruh dengan kehadiran kitin krustasea dan tanpa kitin pada hari ketiga dan kelima telah ditentukan. Sebanyak 1824 klon cDNA telah dititik ke atas slaid kaca dan dihibrid bersama dengan cDNA terlabel Cy3 atau Cy5 yang disintesis daripada mRNA yang dipencil daripada kulat yang ditumbuhkan dalam medium mengandungi kitin krustasea atau glukosa (kawalan). Sebanyak 91 dan 61 gen, masing-masing bagi hari ketiga dan kelima didapati terekspres melebihi dua gandaan apabila kulat menggunakan kitin krustasea sebagai sumber karbon. Beberapa gen mengekod kitinase seperti ech1 dan cht3 (endokitinase), nag1 (eksokitinase) dan nagB (glukosamina 6-P-deaminase) didapati terekspres dengan tinggi pada kedua-dua hari. Selain daripada itu, gen mengekod protein hidrofobin, protease serina dan beberapa protein hipotetik juga terekspres dengan tinggi dengan kehadiran kitin krustasea. Protein-protein ini dijangka memainkan peranan penting dalam membantu pencuraian kitin krustasea.
    Matched MeSH terms: DNA; DNA, Complementary
  4. Abdul Murad NA, Razak ZA, Hussain RM, Syed Hussain SN, Ko Ching Huat C, Che Md Ali SA, et al.
    Asian Pac J Cancer Prev, 2013;14(3):1655-9.
    PMID: 23679251
    BACKGROUND: HER-2/neu is a proto-oncogene that encodes a transmembrane tyrosine kinase growth factor which is crucial for stimulating growth and cellular motility. Overexpression of HER-2/neu is observed in 10-35% of human breast cancers and is associated with pathogenesis, prognosis as well as response to therapy. Given the imperative role of HER-2/neu overexpression in breast cancer, it is important to determine the magnitude of amplification which may facilitate a better prognosis as well as personalized therapy in affected patients. In this study, we determined HER-2/neu protein expression by immunohistochemistry (IHC) concurrently with HER-2/neu DNA amplification by quantitative real time-polymerase chain reaction (Q-PCR).

    MATERIALS AND METHODS: A total of 53 paired tissue samples from breast cancer patients were frozen-sectioned to characterize the tumour and normal tissues. Only tissues with 80% tumour cells were used in this study. For confirmation, Q-PCR was used to determine the HER-2/neu DNA amplification.

    RESULTS: We found 20/53 (37.7%) of the tumour tissues to be positive for HER-2/neu protein overexpression using IHC. Out of these twenty, only 9/53 (17%) cases were in agreement with the Q-PCR results. The concordance rate between IHC and Q-PCR was 79.3%. Approximately 20.7% of positive IHC cases showed no HER-2/neu gene amplification using Q-PCR.

    CONCLUSION: In conclusion, IHC can be used as an initial screening method for detection of the HER-2/neu protein overexpression. Techniques such as Q-PCR should be employed to verify the IHC results for uncertain cases as well as determination of HER-2/neu gene amplification.

    Matched MeSH terms: DNA/genetics
  5. Abdul Rahman Z, Choay-Hoong L, Mat Khairuddin R, Ab Razak S, Othman AS
    J Genet, 2012 Aug;91(2):e82-5.
    PMID: 22932425
    Matched MeSH terms: DNA/genetics; DNA/isolation & purification; Sequence Analysis, DNA; DNA Primers
  6. Abdul SN, Ab Mutalib NS, Sean KS, Syafruddin SE, Ishak M, Sagap I, et al.
    Front Pharmacol, 2017;8:465.
    PMID: 28769798 DOI: 10.3389/fphar.2017.00465
    Despite global progress in research, improved screening and refined treatment strategies, colorectal cancer (CRC) remains as the third most common malignancy. As each type of cancer is different and exhibits unique alteration patterns, identifying and characterizing gene alterations in CRC that may serve as biomarkers might help to improve diagnosis, prognosis and predict potential response to therapy. With the emergence of next generation sequencing technologies (NGS), it is now possible to extensively and rapidly identify the gene profile of individual tumors. In this study, we aimed to identify actionable somatic alterations in Dukes' B and C in CRC via NGS. Targeted sequencing of 409 cancer-related genes using the Ion Ampliseq(TM) Comprehensive Cancer Panel was performed on genomic DNA obtained from paired fresh frozen tissues, cancer and normal, of Dukes' B (n = 10) and Dukes' C (n = 9) CRC. The sequencing results were analyzed using Torrent Suite, annotated using ANNOVAR and validated using Sanger sequencing. A total of 141 somatic non-synonymous sequence variations were identified in 86 genes. Among these, 64 variants (45%) were predicted to be deleterious, 38 variants (27%) possibly deleterious while the other 39 variants (28%) have low or neutral protein impact. Seventeen genes have alterations with frequencies of ≥10% in the patient cohort and with 14 overlapped genes in both Dukes' B and C. The adenomatous polyposis coli gene (APC) was the most frequently altered gene in both groups (n = 6 in Dukes' B and C). In addition, TP53 was more frequently altered in Dukes' C (n = 7) compared to Dukes' B (n = 4). Ten variants in APC, namely p.R283(∗), p.N778fs, p.R805(∗), p.Y935fs, p.E941fs, p.E1057(∗), p.I1401fs, p.Q1378(∗), p.E1379(∗), and p.A1485fs were predicted to be driver variants. APC remains as the most frequently altered gene in the intermediate stages of CRC. Wnt signaling pathway is the major affected pathway followed by P53, RAS, TGF-β, and PI3K signaling. We reported the alteration profiles in each of the patient which has the potential to affect the clinical decision. We believe that this study will add further to the understanding of CRC molecular landscape.
    Matched MeSH terms: DNA
  7. Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, et al.
    Free Radic Res, 2018 Sep;52(9):1000-1009.
    PMID: 30079776 DOI: 10.1080/10715762.2018.1506877
    Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
    Matched MeSH terms: DNA Damage
  8. Abdul-Latiff MA, Ruslin F, Faiq H, Hairul MS, Rovie-Ryan JJ, Abdul-Patah P, et al.
    Biomed Res Int, 2014;2014:897682.
    PMID: 25143948 DOI: 10.1155/2014/897682
    The phylogenetic relationships of long-tailed macaque (Macaca fascicularis fascicularis) populations distributed in Peninsular Malaysia in relation to other regions remain unknown. The aim of this study was to reveal the phylogeography and population genetics of Peninsular Malaysia's M. f. fascicularis based on the D-loop region of mitochondrial DNA. Sixty-five haplotypes were detected in all populations, with only Vietnam and Cambodia sharing four haplotypes. The minimum-spanning network projected a distant relationship between Peninsular Malaysian and insular populations. Genetic differentiation (F(ST), Nst) results suggested that the gene flow among Peninsular Malaysian and the other populations is very low. Phylogenetic tree reconstructions indicated a monophyletic clade of Malaysia's population with continental populations (NJ = 97%, MP = 76%, and Bayesian = 1.00 posterior probabilities). The results demonstrate that Peninsular Malaysia's M. f. fascicularis belonged to Indochinese populations as opposed to the previously claimed Sundaic populations. M. f. fascicularis groups are estimated to have colonized Peninsular Malaysia ~0.47 million years ago (MYA) directly from Indochina through seaways, by means of natural sea rafting, or through terrestrial radiation during continental shelf emersion. Here, the Isthmus of Kra played a central part as biogeographical barriers that then separated it from the remaining continental populations.
    Matched MeSH terms: DNA, Mitochondrial/genetics; Sequence Analysis, DNA
  9. Abdul-Latiff MAB, Baharuddin H, Abdul-Patah P, Md-Zain BM
    Primates, 2019 Jan;60(1):63-79.
    PMID: 30471014 DOI: 10.1007/s10329-018-0699-y
    The disjunct distribution of Presbytis femoralis subspecies across Sumatra (P. f. percura), southern (P. f. femoralis) and northern (P. f. robinsoni) Peninsular Malaysia marks the unique vicariance events in the Sunda Shelf. However, the taxonomic positions and evolutionary history of P. f. femoralis are unresolved after decades of research. To elucidate this evolutionary history, we analyzed 501 base pairs of the mitochondrial HVSI gene from 25 individuals representing Malaysia's banded langur, with the addition of 29 sequences of Asian Presbytis from Genbank. Our results revealed closer affinity of P. f. femoralis to P. m. mitrata and P. m. sumatrana while maintaining the monophyletic state of P. f. femoralis as compared to P. f. robinsoni. Two central theses were inferred from the results; (1) P. f. femoralis does not belong in the same species classification as P. f. robinsoni, and (2) P. f. femoralis is the basal lineage of the Presbytis in Peninsular Malaysia. Proving the first hypothesis through genetic analysis, we reassigned P. f. femoralis of Malaysia to Presbytis neglectus (Schlegel's banded langur) (Schlegel in Revue Methodique, Museum d'Histoire Naturelle des Pays-Bas 7:1, 1876) following the International Code of Zoological Nomenclature (article 23.3). The ancestors of P. neglectus are hypothesized to have reached southern Peninsular Malaysia during the Pleistocene and survived in refugium along the western coast. Consequently, they radiated upward, forming P. f. robinsoni and P. siamensis resulting in the highly allopatric distribution in Peninsular Malaysia. This study has successfully resolved the taxonomic position of P. neglectus in Peninsular Malaysia while providing an alternative biogeographic theory for the Asian Presbytis.
    Matched MeSH terms: Sequence Analysis, DNA
  10. Abdulamir AS, Hafidh RR, Bakar FA
    Mol. Cancer, 2010;9:249.
    PMID: 20846456 DOI: 10.1186/1476-4598-9-249
    Colorectal cancer (CRC) has long been associated with bacteremia and/or endocarditis by Streptococcus gallolyticus member bacteria (SGMB) but the direct colonization of SGMB along with its molecular carcinogenic role, if any, has not been investigated. We assessed the colonization of SGMB in CRC patients with history of bacteremia (CRC-w/bac) and without history of bacteremia (CRC-wo/bac) by isolating SGMB from feces, mucosal surfaces of colorectum, and colorectal tissues and detecting SGMB DNA, via PCR and in situ hybridization (ISH) assays targeting SodA gene in colorectal tissues. Moreover, mRNA of IL1, IL-8, COX-2, IFN-γ, c-Myc, and Bcl-2 in colorectal tissues of studied groups was assessed via ISH and RT-PCR.
    Matched MeSH terms: DNA, Bacterial/genetics
  11. Abdull Razis AF, Konsue N, Ioannides C
    Mol Nutr Food Res, 2018 09;62(18):e1700916.
    PMID: 29288567 DOI: 10.1002/mnfr.201700916
    The potential of isothiocyanates to antagonize the carcinogenicity of structurally diverse chemicals has been established in animals. A feasible mechanism of action involves protecting DNA by reducing the availability of the genotoxic metabolites of chemical carcinogens by either inhibiting their generation and/or stimulating their detoxification. In vivo as well as in vitro studies conducted in rat/human primary hepatocytes and precision-cut tissue slices have revealed that isothiocyanates can impair cytochrome P450 activity, including the CYP1 family which is the most active in the bioactivation of carcinogens, by virtue of being mechanism-based inactivators. The aromatic phenethyl isothiocyanate is the most effective of those studied, whereas aliphatic isothiocyanates such as sulforaphane and erucin necessitate high doses in order to manifest such effects that may not always be achievable through the diet. In all systems studied, isothiocyanates are strong inducers of detoxification enzyme systems including quinone reductase, glutathione S-transferase, epoxide hydrolase, and UDP-glucuronosyl transferase. Indeed, in smokers phenethyl isothiocyanate intake increases the urinary excretion of inactive mercapturate metabolites of toxic chemicals present in tobacco. Glucosinolates, the precursors of isothiocyanates, have also the potential to upregulate detoxification enzyme systems, but their contribution to the cancer chemoprevention linked to cruciferous vegetable consumption remains to be evaluated.
    Matched MeSH terms: DNA Damage/drug effects
  12. Abdullah J, Saffie N, Sjasri FA, Husin A, Abdul-Rahman Z, Ismail A, et al.
    Braz J Microbiol, 2014;45(4):1385-91.
    PMID: 25763045
    An in-house loop-mediated isothermal amplification (LAMP) reaction was established and evaluated for sensitivity and specificity in detecting the presence of Salmonella Typhi (S. Typhi) isolates from Kelantan, Malaysia. Three sets of primers consisting of two outer and 4 inner were designed based on locus STBHUCCB_38510 of chaperone PapD of S. Typhi genes. The reaction was optimised using genomic DNA of S. Typhi ATCC7251 as the template. The products were visualised directly by colour changes of the reaction. Positive results were indicated by green fluorescence and negative by orange colour. The test was further evaluated for specificity, sensitivity and application on field samples. The results were compared with those obtained by gold standard culture method and Polymerase Chain Reaction (PCR). This method was highly specific and -10 times more sensitive in detecting S. Typhi compared to the optimised conventional polymerase chain reaction (PCR) method.
    Matched MeSH terms: DNA Primers/genetics
  13. Abdullah JM, Ahmad F, Ahmad KA, Ghazali MM, Jaafar H, Ideris A, et al.
    Neurol Res, 2007 Apr;29(3):239-42.
    PMID: 17509221
    Brain tumorigenesis is a complex process involving multiple genetic alterations. Cyclin D1 and BAX genes are two of the most important regulators in controlling the normal proliferation and apoptosis of cells, respectively. In this study, we analysed the possibilities of involvement of cyclin D1 and BAX genes in the gliomagenesis.
    Matched MeSH terms: DNA Mutational Analysis/methods
  14. Abdullah N, Yuzir A, Curtis TP, Yahya A, Ujang Z
    Bioresour Technol, 2013 Jan;127:181-7.
    PMID: 23131639 DOI: 10.1016/j.biortech.2012.09.047
    Understanding the relationship between microbial community and mechanism of aerobic granulation could enable wider applications of granules for high-strength wastewater treatment. The majority of granulation studies principally determine the engineering aspects of granules formation with little emphasis on the microbial diversity. In this study, three identical reactors namely R1, R2 and R3 were operated using POME at volumetric loadings of 1.5, 2.5 and 3.5 kg COD m(-3) d(-1), respectively. Aeration was provided at a volumetric flow rate of 2.5 cms(-1). Aerobic granules were successfully developed in R2 and R3 while bioflocs dominated R1 until the end of experiments. Fractal dimension (D(f)) averaged at 1.90 suggesting good compactness of granules. The PCR-DGGE results indicated microbial evolutionary shift throughout granulation despite different operating OLRs based on decreased Raup and Crick similarity indices upon mature granule formation. The characteristics of aerobic granules treating high strength agro-based wastewater are determined at different volumetric loadings.
    Matched MeSH terms: DNA Primers/genetics
  15. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA
    C. R. Biol., 2011 Apr;334(4):290-9.
    PMID: 21513898 DOI: 10.1016/j.crvi.2011.01.004
    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.
    Matched MeSH terms: DNA Primers; DNA, Plant/genetics; DNA, Plant/isolation & purification
  16. Abdullah NR, Barber BE, William T, Norahmad NA, Satsu UR, Muniandy PK, et al.
    PLoS One, 2013;8(12):e82553.
    PMID: 24358203 DOI: 10.1371/journal.pone.0082553
    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (H E  = 0.583 in KM and H E  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A (S) >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A (S)  = 0.07 [P = 0.0076] in KM, and I A (S) = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria elimination.
    Matched MeSH terms: DNA, Protozoan/genetics
  17. Abdullah R, Wesseling S, Spenkelink B, Louisse J, Punt A, Rietjens IMCM
    J Appl Toxicol, 2020 12;40(12):1647-1660.
    PMID: 33034907 DOI: 10.1002/jat.4024
    Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of AAI into the DNA-reactive aristolactam-nitrenium ion is involved in the mode of action of tumor formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified by liquid chromatography-electrospray ionization-tandem mass spectrometry. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo dose-response curves in rat, mouse and human kidney using PBK models. Results obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and human kidney and the predicted DNA adduct levels were generally within an order of magnitude compared with values reported in the literature. It is concluded that the combined in vitro PBK modeling approach provides a novel way to define in vivo dose-response curves for kidney DNA adduct formation in rat, mouse and human and contributes to the reduction, refinement and replacement of animal testing.
    Matched MeSH terms: DNA Adducts/metabolism*
  18. Abdullah S, Wendy-Yeo WY, Hosseinkhani H, Hosseinkhani M, Masrawa E, Ramasamy R, et al.
    J Biomed Biotechnol, 2010;2010:284840.
    PMID: 20617146 DOI: 10.1155/2010/284840
    A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.
    Matched MeSH terms: DNA
  19. Abdullah WA, Jamaluddin NB, Kham SK, Tan JA
    PMID: 9031421
    The spectrum of beta-thalassemia mutations in Malays in Singapore and Kelantan (Northeast Malaysia) was studied. Allele specific priming was used to determine the mutations in beta-carriers at -28, Codon 17, IVSI #1, IVSI #5, Codon 41-42 and IVSII #654 along the beta-globin gene. The most common structural hemoglobin variant in Southeast Asia, Hb E, was detected by DNA amplification with restriction enzyme (Mnl1) analysis. Direct genomic sequencing was carried out to detect the beta-mutations uncharacterized by allele-specific priming. The most prevalent beta-mutations in Singaporean Malays were IVSI #5 (45.83%) followed by Hb E (20.83%), codon 15 (12.5%) and IVSI #1 and IVSII #654 at 4.17% each. In contrast, the distribution of the beta-mutations in Kelantan Malays differed, with Hb E as the most common mutation (39.29%) followed by IVSI #5 (17.86%), codon 41-42 (14.29%), codon 19 (10.71%) and codon 17 (3.57%). The beta-mutations in Kelantan Malays follow closely the distribution of beta-mutations in Thais and Malays of Southern Thailand and Malays of West Malaysia. The AAC-->AGC base substitution in codon 19 has been detected only in these populations. The spectrum of beta-mutations in the Singaporean Malays is more similar to those reported in Indonesia with the beta-mutation at codon 15 (TGG-->TAG) present in both populations. The characterization of beta-mutations in Singaporean and Kelantan Malays will facilitate the establishment of effective prenatal diagnosis programs for beta-thalassemia major in this ethnic group.
    Matched MeSH terms: DNA Mutational Analysis*
  20. Abdullahi S, Haris H, Zarkasi KZ, Amir HG
    J Basic Microbiol, 2021 Apr;61(4):293-304.
    PMID: 33491813 DOI: 10.1002/jobm.202000695
    Enterobacter tabaci 4M9 (CCB-MBL 5004) was reported to have plant growth-promoting and heavy metal tolerance traits. It was able to tolerate more than 300 mg/L Cd, 600 mg/L As, and 500 mg/L Pb and still maintained the ability to produce plant growth-promoting substances under metal stress conditions. To explore the genetic basis of these beneficial traits, the complete genome sequencing of 4M9 was carried out using Pacific Bioscience (PacBio) sequencing technology. The complete genome consisted of one chromosome of 4,654,430 bp with a GC content of 54.6% and one plasmid of 51,135 bp with a GC content of 49.4%. Genome annotation revealed several genes involved in plant growth-promoting traits, including the production of siderophore, indole acetic acid, and 1-aminocyclopropane-1-carboxylate deaminase; solubilization of phosphate and potassium; and nitrogen metabolism. Similarly, genes involved in heavy metals (As, Co, Zn, Cu, Mn, Se, Cd, and Fe) tolerance were detected. These support its potential as a heavy metal-tolerant plant growth-promoting bacterium and a good genetic resource that can be employed to improve phytoremediation efficiency of heavy metal-contaminated soil via biotechnological techniques. This, to the best of our knowledge, is the first report on the complete genome sequence of heavy metal-tolerant plant growth-promoting E. tabaci.
    Matched MeSH terms: DNA, Bacterial
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links