Displaying publications 21 - 40 of 80 in total

Abstract:
Sort:
  1. Ng JB, Poh RY, Lee KR, Subrayan V, Deva JP, Lau AY, et al.
    Clin. Lab., 2016 Sep 01;62(9):1731-1737.
    PMID: 28164597 DOI: 10.7754/Clin.Lab.2016.160144
    BACKGROUND: Keratoconus is an ocular degeneration characterized by the thinning of corneal stroma that may lead to varying degrees of myopia and visual impairment. Genetic factors have been reported in the pathology of keratoconus where Asians have a higher incidence, earlier onset, and undergo earlier corneal grafts compared to Caucasians. The visual system homeobox 1 (VSX1) gene forms part of a paired-like homeodomain transcription factor which is responsible for ocular development. The gene was marked as a candidate in genetic studies of keratoconus in various populations. Single nucleotide polymorphisms (SNPs) in the VSX1 gene have been reported to be associated with keratoconus. The detection of the SNPs involves DNA amplification of the VSX1 gene followed by genomic sequencing. Thus, the objective of this study aims to establish sensitive and accurate screening protocols for the molecular characterization of VSX1 polymorphisms.

    METHODS: Keratoconic (n = 74) and control subjects (n = 96) were recruited based on clinical diagnostic tests and selection criteria. DNA extracted from the blood samples was used to genotype VSX1 polymorphisms. In-house designed primers and optimization of PCR conditions were carried out to amplify exons 1 and 3 of the VSX1 gene. PCR conditions including percentage GC content, melting temperatures, and differences in melting temperatures of primers were evaluated to produce sensitive and specific DNA amplifications.

    RESULTS: Genotyping was successfully carried out in 4 exons of the VSX1 gene. Primer annealing temperatures were observed to be crucial in enhancing PCR sensitivity and specificity. Annealing temperatures were carefully evaluated to produce increased specificity, yet not allowing sensitivity to be compromised. In addition, exon 1 of the VSX1 gene was amplified using 2 different sets of primers to produce 2 smaller amplified products with absence of non-specific bands. DNA amplification of exons 1 and 3 consistently showed single band products which were successfully sequenced to yield reproducible data.

    CONCLUSIONS: The use of in-house designed primers and optimized PCR conditions allowed sensitive and specific DNA amplifications that produced distinct single bands. The in-house designed primers and DNA amplification protocols established in this study provide an addition to the current repertoire of primers for accurate molecular characterization of VSX1 gene polymorphisms in keratoconus research.

    Matched MeSH terms: DNA Primers/genetics*
  2. Wong YP, Othman S, Lau YL, Radu S, Chee HY
    J Appl Microbiol, 2018 Mar;124(3):626-643.
    PMID: 29165905 DOI: 10.1111/jam.13647
    Loop-mediated isothermal amplification (LAMP) amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions by using a DNA polymerase with high displacement strand activity and a set of specifically designed primers to amplify targeted DNA strands. Following its first discovery by Notomi et al. ( Nucleic Acids Res 28: E63), LAMP was further developed over the years which involved the combination of this technique with other molecular approaches, such as reverse transcription and multiplex amplification for the detection of infectious diseases caused by micro-organisms in humans, livestock and plants. In this review, available types of LAMP techniques will be discussed together with their applications in detection of various micro-organisms. Up to date, there are varieties of LAMP detection methods available including colorimetric and fluorescent detection, real-time monitoring using turbidity metre and detection using lateral flow device which will also be highlighted in this review. Apart from that, commercialization of LAMP technique had also been reported such as lyophilized form of LAMP reagents kit and LAMP primer sets for detection of pathogenic micro-organisms. On top of that, advantages and limitations of this molecular detection method are also described together with its future potential as a diagnostic method for infectious disease.
    Matched MeSH terms: DNA Primers/genetics
  3. Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF
    J Sci Food Agric, 2018 Sep;98(12):4570-4577.
    PMID: 29505123 DOI: 10.1002/jsfa.8985
    BACKGROUND: The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared.

    RESULTS: A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA.

    CONCLUSION: The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.

    Matched MeSH terms: DNA Primers/genetics
  4. Sultana S, Ali ME, Hossain MAM, Asing, Naquiah N, Zaidul ISM
    Food Res Int, 2018 03;105:19-28.
    PMID: 29433207 DOI: 10.1016/j.foodres.2017.10.065
    Species substitution, the use of a low value fish in place of a high value fish, is the biggest problem in international trade and the leading cause of fraud in the fisheries arena sector. Current DNA barcoding systems have partly solved this problem but also failed in many instances to amplify PCR targets from highly processed products because of the degradation of a longer barcode marker (~650bp). In the present study, a novel mini barcode marker (295bp) was developed to discriminate fish species in raw and processed states forms. The barcode primers were cross-tested against 33 fish species and 15 other animal species and found to be universal for all the tested fish varieties. When 20 commercial fish products of five different categories were screened, all commercial fish sample yielded positive bands for the novel fish barcode. PCR product was sequenced to retrieve the species IDs that reflected 55% (11/20) of Malaysian fish products were mislabeled.
    Matched MeSH terms: DNA Primers/genetics
  5. Zainuddin Z, Teh LK, Suhaimi AW, Salleh MZ, Ismail R
    Clin Chim Acta, 2003 Oct;336(1-2):97-102.
    PMID: 14500040 DOI: 10.1016/s0009-8981(03)00319-x
    BACKGROUND: Cytochrome P4502C9 (CYP2C9), a principle drug-metabolizing enzyme is polymorphic in humans and is responsible for important pharmacokinetic and pharmacodynamic variations of CYP2C9 substrates. We developed an allele-specific multiplex polymerase chain reaction (PCR) method for the detection of common CYP2C9 alleles.
    METHOD: Genomic DNA was extracted from blood obtained from 40 unrelated healthy Malaysian Indian volunteers. The DNA was subjected to a first PCR that was used to amplify both exons 3 and 7 simultaneously in one reaction tube and a second PCR that was used to detect the polymorphic sites of CYP2C9 alleles using allele-specific primers. Sequencing was performed to validate the test results.
    RESULTS: We were successful in amplifying the fragments of interest from the DNA samples. The method was also reproducible and specific. The amplified sequences showed 100% homology to CYP2C9 sequence.
    CONCLUSION: This is the first nested allele-specific multiplex PCR method reported to allow for the simultaneously detection of five CYP2C9 alleles.
    Matched MeSH terms: DNA Primers/genetics
  6. Chook JB, Teo WL, Ngeow YF, Tee KK, Ng KP, Mohamed R
    J Clin Microbiol, 2015 Jun;53(6):1831-5.
    PMID: 25788548 DOI: 10.1128/JCM.03449-14
    Hepatitis B virus (HBV) has been divided into 10 genotypes, A to J, based on an 8% nucleotide sequence divergence between genotypes. The conventional practice of using a single set of primers to amplify a near-complete HBV genome is hampered by its low analytical sensitivity. The current practice of using overlapping conserved primer sets to amplify a complete HBV genome in a clinical sample is limited by the lack of pan-primers to detect all HBV genotypes. In this study, we designed six highly conserved, overlapping primer sets to cover the complete HBV genome. We based our design on the sequences of 5,154 HBV genomes of genotypes A to I downloaded from the GenBank nucleotide database. These primer sets were tested on 126 plasma samples from Malaysia, containing genotypes A to D and with viral loads ranging from 20 to >79,780,000 IU/ml. The overall success rates for PCR amplification and sequencing were >96% and >94%, respectively. Similarly, there was 100% amplification and sequencing success when the primer sets were tested on an HBV reference panel of genotypes A to G. Thus, we have established primer sets that gave a high analytical sensitivity for PCR-based detection of HBV and a high rate of sequencing success for HBV genomes in most of the viral genotypes, if not all, without prior known sequence data for the particular genotype/genome.
    Matched MeSH terms: DNA Primers/genetics*
  7. Divis PC, Shokoples SE, Singh B, Yanow SK
    Malar J, 2010 Nov 30;9:344.
    PMID: 21114872 DOI: 10.1186/1475-2875-9-344
    BACKGROUND: The misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.

    METHODS: A hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.

    RESULTS: Analytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.

    CONCLUSIONS: This test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.

    Matched MeSH terms: DNA Primers/genetics
  8. Budiati T, Rusul G, Wan-Abdullah WN, Chuah LO, Ahmad R, Thong KL
    J Food Prot, 2016 Apr;79(4):659-65.
    PMID: 27052872 DOI: 10.4315/0362-028X.JFP-15-372
    A total of 43 Salmonella enterica isolates belonging to different serovars (Salmonella Albany, Salmonella Agona, Salmonella Corvallis, Salmonella Stanley, Salmonella Typhimurium, Salmonella Mikawasima, and Salmonella Bovismorbificans) were isolated from catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from nine wet markets and eight ponds in Penang, Malaysia. Thirteen, 19, and 11 isolates were isolated from 9 of 32 catfish, 14 of 32 tilapia, and 11 of 44 water samples, respectively. Fish reared in ponds were fed chicken offal, spoiled eggs, and commercial fish feed. The genetic relatedness of these Salmonella isolates was determined by random amplified polymorphic DNA PCR (RAPD-PCR) using primer OPC2, repetitive extragenic palindromic PCR (REP-PCR), and pulsed-field gel electrophoresis (PFGE). Composite analysis of the RAPD-PCR, REP-PCR, and PFGE results showed that the Salmonella serovars could be differentiated into six clusters and 15 singletons. RAPD-PCR differentiated the Salmonella isolates into 11 clusters and 10 singletons, while REP-PCR differentiated them into 4 clusters and 1 singleton. PFGE differentiated the Salmonella isolates into seven clusters and seven singletons. The close genetic relationship of Salmonella isolates from catfish or tilapia obtained from different ponds, irrespective of the type of feed given, may be caused by several factors, such as the quality of the water, density of fish, and size of ponds.
    Matched MeSH terms: DNA Primers/genetics
  9. Perera D, Shimizu H, Yoshida H, Tu PV, Ishiko H, McMinn PC, et al.
    J Med Virol, 2010 Apr;82(4):649-57.
    PMID: 20166171 DOI: 10.1002/jmv.21652
    The VP4, VP2, and VP1 gene regions were evaluated for their usefulness in typing human enteroviruses. Three published RT-PCR primers sets targeting separately these three gene regions were used. Initially, from a total of 86 field isolates (36 HEV-A, 40 HEV-B, and 10 HEV-C) tested, 100% concordance in HEV-A was identified from all three gene regions (VP4, VP2, and VP1). However, for HEV-B and HEV-C viruses, only the VP2 and VP1 regions, and not VP4, showed 100% concordance in typing these viruses. To evaluate further the usefulness of VP4 in typing HEV-A enteroviruses, 55 Japanese and 203 published paired VP4 and VP1 nucleotide sequences were also examined. In each case, typing by VP4 was 100% in concordance with typing using VP1. Given these results, it is proposed that for HEV-A enteroviruses, all three gene regions (VP4, VP2, and VP1), would be useful for typing these viruses. These options would enhance the capability of laboratories in identifying these viruses and would greatly help in outbreaks of hand, foot, and mouth disease.
    Matched MeSH terms: DNA Primers/genetics
  10. Mohamed Zahidi J, Bee Yong T, Hashim R, Mohd Noor A, Hamzah SH, Ahmad N
    Diagn Microbiol Infect Dis, 2015 Apr;81(4):227-33.
    PMID: 25641125 DOI: 10.1016/j.diagmicrobio.2014.12.012
    Molecular approaches have been investigated to overcome difficulties in identification and differentiation of Brucella spp. using conventional phenotypic methods. In this study, high-resolution melt (HRM) analysis was used for rapid identification and differentiation of members of Brucella genus. A total of 41 Brucella spp. isolates from human brucellosis were subjected to HRM analysis using 4 sets of primers, which identified 40 isolates as Brucella melitensis and 1 as Brucella canis. The technique utilized low DNA concentration and was highly reproducible. The assay is shown to be a useful diagnostic tool, which can rapidly differentiate Brucella up to species level.
    Matched MeSH terms: DNA Primers/genetics
  11. Furusawa G, Lau NS, Shu-Chien AC, Jaya-Ram A, Amirul AA
    Mar Genomics, 2015 Feb;19:39-44.
    PMID: 25468060 DOI: 10.1016/j.margen.2014.10.006
    The genus Aureispira consisting of two species, Aureispira marina and Aureispira maritima is an arachidonic acid-producing bacterium and produces secondary metabolites. In this study, we isolated a new Aureispira strain, Aureispira sp. CCB-QB1 from coastal area of Penang, Malaysia and the genome sequence of this strain was determined. The draft genome of this strain is composed of 185 contigs for 7,370,077 bases with 35.6% G+C content and contains 5911 protein-coding genes and 76 RNA genes. Linoleoyl-CoA desaturase, the key gene in arachidonic acid biosynthesis, is present in the genome. It was found that this strain uses mevalonate pathway for the synthesis of geranylgeranyl diphosphate (GGPP), which is precursor of diterpenoid, and novel pathway via futalosine for the synthesis of menaquinones. This is the first draft genome sequence of a member of the genus Aureispira.
    Matched MeSH terms: DNA Primers/genetics
  12. Abdulsalam AM, Ithoi I, Al-Mekhlafi HM, Al-Mekhlafi AM, Ahmed A, Surin J
    PLoS One, 2013;8(12):e84372.
    PMID: 24376805 DOI: 10.1371/journal.pone.0084372
    BACKGROUND: Blastocystis is a genetically diverse and a common intestinal parasite of humans with a controversial pathogenic potential. This study was carried out to identify the Blastocystis subtypes and their association with demographic and socioeconomic factors among outpatients living in Sebha city, Libya.

    METHODS/FINDINGS: Blastocystis in stool samples were cultured followed by isolation, PCR amplification of a partial SSU rDNA gene, cloning, and sequencing. The DNA sequences of isolated clones showed 98.3% to 100% identity with the reference Blastocystis isolates from the Genbank. Multiple sequence alignment showed polymorphism from one to seven base substitution and/or insertion/deletion in several groups of non-identical nucleotides clones. Phylogenetic analysis revealed three assemblage subtypes (ST) with ST1 as the most prevalent (51.1%) followed by ST2 (24.4%), ST3 (17.8%) and mixed infections of two concurrent subtypes (6.7%).

    BLASTOCYSTIS: ST1 infection was significantly associated with female (P = 0.009) and low educational level (P = 0.034). ST2 was also significantly associated with low educational level (P= 0.008) and ST3 with diarrhoea (P = 0.008).

    CONCLUSION: Phylogenetic analysis of Libyan Blastocystis isolates identified three different subtypes; with ST1 being the predominant subtype and its infection was significantly associated with female gender and low educational level. More extensive studies are needed in order to relate each Blastocystis subtype with clinical symptoms and potential transmission sources in this community.

    Matched MeSH terms: DNA Primers/genetics
  13. Abdullah J, Saffie N, Sjasri FA, Husin A, Abdul-Rahman Z, Ismail A, et al.
    Braz J Microbiol, 2014;45(4):1385-91.
    PMID: 25763045
    An in-house loop-mediated isothermal amplification (LAMP) reaction was established and evaluated for sensitivity and specificity in detecting the presence of Salmonella Typhi (S. Typhi) isolates from Kelantan, Malaysia. Three sets of primers consisting of two outer and 4 inner were designed based on locus STBHUCCB_38510 of chaperone PapD of S. Typhi genes. The reaction was optimised using genomic DNA of S. Typhi ATCC7251 as the template. The products were visualised directly by colour changes of the reaction. Positive results were indicated by green fluorescence and negative by orange colour. The test was further evaluated for specificity, sensitivity and application on field samples. The results were compared with those obtained by gold standard culture method and Polymerase Chain Reaction (PCR). This method was highly specific and -10 times more sensitive in detecting S. Typhi compared to the optimised conventional polymerase chain reaction (PCR) method.
    Matched MeSH terms: DNA Primers/genetics
  14. Syed-Shabthar SM, Rosli MK, Mohd-Zin NA, Romaino SM, Fazly-Ann ZA, Mahani MC, et al.
    Mol Biol Rep, 2013 Aug;40(8):5165-76.
    PMID: 23686165 DOI: 10.1007/s11033-013-2619-y
    Bali cattle is a domestic cattle breed that can be found in Malaysia. It is a domestic cattle that was purely derived from a domestication event in Banteng (Bos javanicus) around 3,500 BC in Indonesia. This research was conducted to portray the phylogenetic relationships of the Bali cattle with other cattle species in Malaysia based on maternal and paternal lineage. We analyzed the cytochrome c oxidase I (COI) mitochondrial gene and SRY of Y chromosome obtained from five species of the Bos genus (B. javanicus, Bos gaurus, Bos indicus, Bos taurus, and Bos grunniens). The water buffalo (Bubalus bubalis) was used as an outgroup. The phylogenetic relationships were observed by employing several algorithms: Neighbor-Joining (PAUP version 4.0), Maximum parsimony (PAUP version 4.0) and Bayesian inference (MrBayes 3.1). Results from the maternal data showed that the Bali cattle formed a monophyletic clade, and together with the B. gaurus clade formed a wild cattle clade. Results were supported by high bootstrap and posterior probability values together with genetic distance data. For the paternal lineage, the sequence variation is low (with parsimony informative characters: 2/660) resulting an unresolved Neighbor-Joining tree. However, Bali cattle and other domestic cattle appear in two monophyletic clades distinct from yak, gaur and selembu. This study expresses the potential of the COI gene in portraying the phylogenetic relationships between several Bos species which is important for conservation efforts especially in decision making since cattle is highly bred and hybrid breeds are often formed. Genetic conservation for this high quality beef cattle breed is important by maintaining its genetic characters to prevent extinction or even decreased the genetic quality.
    Matched MeSH terms: DNA Primers/genetics
  15. Ngui R, Lim YA, Chua KH
    PLoS One, 2012;7(7):e41996.
    PMID: 22844538 DOI: 10.1371/journal.pone.0041996
    Hookworm infections are still endemic in low and middle income tropical countries with greater impact on the socioeconomic and public health of the bottom billion of the world's poorest people. In this study, a real-time polymerase chain reaction (PCR) coupled with high resolution melting-curve (HRM) analysis was evaluated for an accurate, rapid and sensitive tool for species identification focusing on the five human hookworm species.
    Matched MeSH terms: DNA Primers/genetics
  16. Lau YL, Fong MY, Mahmud R, Chang PY, Palaeya V, Cheong FW, et al.
    Malar J, 2011;10:197.
    PMID: 21774805 DOI: 10.1186/1475-2875-10-197
    The emergence of Plasmodium knowlesi in humans, which is in many cases misdiagnosed by microscopy as Plasmodium malariae due to the morphological similarity has contributed to the needs of detection and differentiation of malaria parasites. At present, nested PCR targeted on Plasmodium ssrRNA genes has been described as the most sensitive and specific method for Plasmodium detection. However, this method is costly and requires trained personnel for its implementation. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method was developed for the clinical detection of P. knowlesi. The sensitivity and specificity of LAMP was evaluated in comparison to the results obtained via microscopic examination and nested PCR.
    Matched MeSH terms: DNA Primers/genetics
  17. Suppiah J, Thimma JS, Cheah SH, Vadivelu J
    FEMS Microbiol Lett, 2010 May;306(1):9-14.
    PMID: 20345378 DOI: 10.1111/j.1574-6968.2010.01923.x
    Molecular-based techniques are becoming desirable as tools for identification of infectious diseases. Amongst the Burkholderia spp., there is a need to differentiate Burkholderia pseudomallei from Burkholderia cepacia, as misidentification could lead to false treatment of patients. In this study, conventional PCR assay targeting three genes was developed. Primers were designed for the amplification of Burkholderia genus-specific groEL gene, B. pseudomallei-specific mprA gene and B. cepacia-specific zmpA gene. The specificity and sensitivity of the assay was tested with 15 negative control strains and 71 Burkholderia spp. isolates including positive controls B. pseudomallei K96243 and ATCC B. cepacia strain. All B. pseudomallei strains were positive for groEL (139 bp) and mprA (162 bp), indicating a sensitivity of 100%. All B. cepacia strains produced amplicons for detection of groEL and zmpA (147 bp). Specificity using negative strains was 100%. In this study, a PCR assay specific for the detection of Burkholderia spp. and differentiation of the genus B. pseudomallei and B. cepacia was developed. The conventional assay has to be performed separately for each species due to the similar size of the PCR products amplified. This format may therefore be recommended for use as a diagnostic tool in laboratories where real-time PCR machines are not available. However, the real-time PCR was able to detect and differentiate the genus and species in single duplex assay.
    Matched MeSH terms: DNA Primers/genetics
  18. Lim BK, Thong KL
    J Infect Dev Ctries, 2009 Jul 01;3(6):420-8.
    PMID: 19762954
    BACKGROUND: Differentiation of Salmonella enterica into its serogroups is important for epidemiological study. The objective of the study was to apply a multiplex PCR targeting serogroups A, B, C1, D, E and Vi-positive strains of Salmonella enterica commonly found in Malaysia. A separate H-typing multiplex PCR which identified flagellar antigen "a", "b" or "d" was also optimized to confirm clinical serotypes, S. Paratyphi A and S. Typhi.

    METHODOLOGY: Sixty-seven laboratory Salmonella enterica strains were tested. Six sets of primers targeting defined regions of the O antigen synthesis genes (rfb gene cluster) and Vi antigen gene (viaB) were selected and combined into a multiplex PCR for O-grouping. Four primers (H-for, Ha-rev, Hb-rev and Hd-rev) were used in the second step multiplex PCR for H-typing. The optimized mPCR assays were further evaluated with 58 blind-coded Salmonella strains.

    RESULTS: The multiplex PCR results obtained showed 100% concordance to the conventionally typed serogroups. Validation with 58 blind coded Salmonella strains yield 100% accuracy and specificity.

    CONCLUSION: Based on this study, PCR serogrouping proved to be a rapid, alternative method for further differentiation of Salmonella enterica.

    Matched MeSH terms: DNA Primers/genetics
  19. Tan TC, Ong SC, Suresh KG
    Parasitol Res, 2009 Oct;105(5):1283-6.
    PMID: 19603182 DOI: 10.1007/s00436-009-1551-5
    This represents the first study to determine the genetic diversity of Blastocystis sp. among cancer and HIV/AIDS patients. Forty Blastocystis sp. isolates obtained from 20 cancer and 20 HIV/AIDS patients were genotyped by PCR using seven pairs of known sequenced-tagged site primers. Out of the 40 isolates, 38 were identified as one of the known genotypes and two isolates were negative with all the STS primers. Blastocystis sp. subtype 3 which is reported to be associated with disease was found to be predominant among the study subjects.
    Matched MeSH terms: DNA Primers/genetics
  20. Guzmán-Franco AW, Atkins SD, Alderson PG, Pell JK
    Mycol. Res., 2008 Oct;112(Pt 10):1227-40.
    PMID: 18693001 DOI: 10.1016/j.mycres.2008.04.006
    Species-specific primers for Zoophthora radicans and Pandora bluckii were developed. To achieve this, partial sequences of DNA that encode for rRNA, more specifically, the ITS region (rDNA-ITS) were obtained from different isolates and analysed. Seven Z. radicans isolates (four from P. xylostella, and three from other lepidopteran hosts) and one P. blunckii isolate (from P. xylostella) were used. These isolates were selected based on PCR-RFLP patterns obtained from 22 isolates of P. blunckii and 39 isolates of Z. radicans. All P. blunckii isolates were from the same host (P. xylostella); 20 isolates were from Mexico, one from the Philippines, and one from Germany. The Z. radicans isolates were more diverse in geographical origin (Mexico, Kenya, Japan, New Zealand, Australia, Taiwan, Philippines, Malaysia, Uruguay, France, USA, Poland, Indonesia, Switzerland, Israel, China, and Denmark) and host origin (Lepidoptera, Hemiptera, Hymentoptera, and Diptera). Using conventional PCR, each pair of species-specific primers successfully detected each species of fungus from DNA extracted from infected host larvae either single- or dual-inoculated with both fungal species. The PCR-RFLP analysis also showed that Z. radicans was genetically more diverse than P. blunckii, although only a limited number of P. blunckii isolates from one country were considered. There was no direct relationship between genetic diversity and host or geographical origin. The relationship between genetic variation within both fungal species and host specificity or ecological adaptation is discussed.
    Matched MeSH terms: DNA Primers/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links