Displaying publications 21 - 40 of 244 in total

Abstract:
Sort:
  1. Nusrat T, Akter N, Rahman NAA, Godman B, D Rozario DT, Haque M
    Hosp Pract (1995), 2020 Aug;48(3):128-136.
    PMID: 32271642 DOI: 10.1080/21548331.2020.1754687
    BACKGROUND: Ventilator-associated pneumonia (VAP) is the most common nosocomial infection in intensive care units (ICU), accounting for 25% of all ICU infections. Antimicrobial resistance is increasing and becoming a significant health problem worldwide, increasing hospital length of stay, mortality and costs. Identifying antibiotic resistance patterns in VAP is important as this can cause outbreaks in ICUs. To date, there have been limited studies assessing this in Bangladesh. Consequently, the primary objective of this research was to study the species of bacterial growth and to determine the antibiotic resistance patterns of Metallo-β-Lactamase (MBL) producing gram-negative bacilli among ICU patients with VAP in a public medical school hospital, Bangladesh. In addition, identify the factors associated with a positive culture to provide future guidance.

    METHOD: Cross-sectional study performed in the Chattogram Medical College Hospital, Bangladesh. Mueller Hinton agar plates were used for antibiotic sensitivity testing by the Kirby-Buer disc diffusion test.

    RESULTS: Among 105 clinically suspected VAP cases, qualitative cultures were positive in 95 (90%) of them. The most common bacteria identified were Acinetobacter spp. (43.2%), Klebsiella spp. (20%) and Pseudomonas spp. (18.9%). A positive culture was not associated with patients' age or gender. Among 41 isolated Acinetobacter spp., 38 (92.7%) were resistant to gentamicin followed by 36 (87.8%) to ceftriaxone. Among 24 isolated Klebsiella spp., 22 (83.3%) were resistant to ceftriaxone. Among 18 isolated Pseudomonas spp., 16 (88.8%) were resistant to ciprofloxacin, and 13 (72.2%) were resistant to ceftriaxone. Among nine isolated E.coli, all were resistant to ceftriaxone and ciprofloxacin. All four Proteus spp. (100%) isolated were resistant to ciprofloxacin. Additionally, phenotype MBL producing was 65.22% and genotype was 45.65% among imipenem resistant pathogens. Imipenem resistant pathogens were sensitive to amoxyclav, amikacin¸ azithromycin, ceftazidime, ceftriaxone, colistin and gentamycin.

    CONCLUSION: A positive culture was detected in 90% of VAP patients, but it was not associated with the patients' age and gender. The most common bacteria identified were Acinetobacter spp., Klebsiella spp. and Pseudomonas spp., where the majority of these were resistant to ceftriaxone. The results are being used to provide future guidance on the empiric management of VAP in this hospital.

    Matched MeSH terms: Drug Resistance, Microbial*
  2. Dassanayake MK, Khoo TJ, An J
    Ann Clin Microbiol Antimicrob, 2021 Dec 02;20(1):79.
    PMID: 34856999 DOI: 10.1186/s12941-021-00485-0
    BACKGROUND AND OBJECTIVES: The chemotherapeutic management of infections has become challenging due to the global emergence of antibiotic resistant pathogenic bacteria. The recent expansion of studies on plant-derived natural products has lead to the discovery of a plethora of phytochemicals with the potential to combat bacterial drug resistance via various mechanisms of action. This review paper summarizes the primary antibiotic resistance mechanisms of bacteria and also discusses the antibiotic-potentiating ability of phytoextracts and various classes of isolated phytochemicals in reversing antibiotic resistance in anthrax agent Bacillus anthracis and emerging superbug bacteria.

    METHODS: Growth inhibitory indices and fractional inhibitory concentration index were applied to evaluate the in vitro synergistic activity of phytoextract-antibiotic combinations in general.

    FINDINGS: A number of studies have indicated that plant-derived natural compounds are capable of significantly reducing the minimum inhibitory concentration of standard antibiotics by altering drug-resistance mechanisms of B. anthracis and other superbug infection causing bacteria. Phytochemical compounds allicin, oleanolic acid, epigallocatechin gallate and curcumin and Jatropha curcas extracts were exceptional synergistic potentiators of various standard antibiotics.

    CONCLUSION: Considering these facts, phytochemicals represents a valuable and novel source of bioactive compounds with potent antibiotic synergism to modulate bacterial drug-resistance.

    Matched MeSH terms: Drug Resistance, Microbial/drug effects
  3. Monowar T, Bhore SJ
    Lancet Infect Dis, 2014 Jul;14(7):549.
    PMID: 24964938 DOI: 10.1016/S1473-3099(14)70799-6
    Matched MeSH terms: Drug Resistance, Microbial*
  4. Odeyemi OA, Ahmad A
    Saudi J Biol Sci, 2017 Jan;24(1):65-70.
    PMID: 28053573 DOI: 10.1016/j.sjbs.2015.09.016
    This study aimed to investigate antibiotics resistance pattern and phenotyping of Aeromonas species isolated from different aquatic sources in Melaka, Malaysia. A total of 53 Aeromonas species were isolated from the following sources: sediment (n = 13), bivalve (n = 10), sea cucumber (n = 16) and sea water (n = 14) and resistance to 12 antibiotics - Tetracycline (30 μg), Kanamycin (30 μg), Oxytetracycline (30 μg), Ampicillin (10 μg), Streptomycin (10 μg), Gentamicin (10 μg), Sulphamethoxazole (25 μg), Nalixidic acid (30 μg), Trimethoprim (1.25 μg), Novobiocin (5 μg), Penicilin (10 μg) and Chloramphenicol (10 μg) was tested. The results obtained from this study reveal multi drug resistance pattern among the isolates. All the isolates were completely resistant to Ampicillin, Novobiocin, Sulphamethoxazole and Trimethoprim, respectively but susceptible to Tetracycline (100%), Kanamycin (5.7%), Gentamicin (5.7%) and Oxytetracycline (24.5%). Antibiotics phenotyping of the bacteria revealed 21 different phenotypes among the isolates.
    Matched MeSH terms: Drug Resistance, Microbial
  5. Banerjee S, Ooi MC, Shariff M, Khatoon H
    ScientificWorldJournal, 2012;2012:130136.
    PMID: 22619583 DOI: 10.1100/2012/130136
    Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.
    Matched MeSH terms: Drug Resistance, Microbial*
  6. Soon SH, Chai Kim Kai
    Med J Malaya, 1969 Dec;24(2):145-6.
    PMID: 4244140
    Matched MeSH terms: Drug Resistance, Microbial*
  7. Lim V
    MyJurnal
    The discovery of antibiotics had been one of the most significant events in the history of medicine. Antibiotics had saved countless number of lives and had contributed significantly to the health of mankind.The emergence of resistance is however a major threat to the continued usefulness of antibiotics. There are now strains of bacteria which are resistant to virtually all available antibiotics and these strains are increasingly being encountered in clinical practice. The development of new agents had not kept pace with resistance and it is unlikely that there will be major breakthroughs in the near future. The world needs to conserve and prolong the useful lives of the existing agents. This can only be achieved through good antibiotic stewardship programmes. As antibiotic resistance is a global threat all major stakeholders have to work together to meet this challenge.
    Matched MeSH terms: Drug Resistance, Microbial
  8. Cheong YM, Jegathesan M, Henrichsen J, Wong YH, Ng AJ, Louis A
    J Trop Pediatr, 1988 08;34(4):182-5.
    PMID: 3172328 DOI: 10.1093/tropej/34.4.182
    Matched MeSH terms: Drug Resistance, Microbial
  9. Tan HS, Ngeow YF, Jamal F
    Med J Malaysia, 1986 Mar;41(1):24-9.
    PMID: 3796343
    55% of a sample of patients in a rural
    community, and 76% of a sample of patients and
    staff in the local district hospital were found to
    be nasal carriers for Staphylococcus aureus. The
    in vitro antibiotic susceptibility patterns of 46
    strains of S. aureus isolated in nasal carriers as
    well as of 43 strains in community-acquired skin
    infections were characterised. High levels of
    resistance were expressed to penicillin (73%),
    cephalexin (64%) and tetracycline (46%).
    Resistance to erythromycin (18%) was moderate.
    A few strains showed resistance to methicillin
    (5 isolates), vancomycin (4), [usidic acid (3),
    cotrimoxazole (1), and none to gentamicin.
    Penicillin can no longer be recommended for
    treating community-acquired S. aureus infections.
    Matched MeSH terms: Drug Resistance, Microbial
  10. Intan Azura Shahdan, Fatimah Zahrah Mohd Sobr, Mohammad Faiz Hizzuan Hanap, Hanani Ahmad Yusof, How, Fiona N.F.
    MyJurnal
    Dental plaque is a structurally and functionally organized biofilm. Modern molecular
    biological techniques have identified about 1000 different bacterial species in the dental biofilm,
    twice as many as can be cultured. Inherent resistance of biofilm bacteria to conventional
    antibiotics is alarming. It induces antibiotic resistance to an order of three or more in magnitude
    greater than those displayed by planktonic bacteria. Staphylococcus aureus is the most dominant
    bacterial species isolated from the saliva and dental plaques. One of the reasons for its
    pathogenicity is its ability to form biofilms. In this study, the resistance of S. aureus biofilms
    against a eries of metal-antibiotics, an alternative to the conventional antibiotics, was
    investigated. (Copied from article).
    Matched MeSH terms: Drug Resistance, Microbial
  11. Di KN, Pham DT, Tee TS, Binh QA, Nguyen TC
    Trop Anim Health Prod, 2021 Jun 05;53(3):340.
    PMID: 34089130 DOI: 10.1007/s11250-021-02780-6
    Inappropriate use of antibiotics in animal production system is one of the major factors leading to the antibiotic resistance (ABR) development. In Vietnam, the ABR situation is crucial as antibiotics have been used indiscriminately for disease prevention and as growth promoters in animals. Thus, a thorough understanding on the ABR in veterinary settings would be beneficial to the Vietnam public health authority in formulating timely interventions. This review aimed to provide information on the current status of antibiotic usage in animal husbandry in Vietnam, identified gaps in research, and suggested possible solutions to tackle ABR. To this end, data on ABR in animals were extracted from 3 major electronic databases (PubMed, Web of Science, and ScienceDirect) in the period of January 2013-December 2020. The review findings were reported according to PRISMA, which highlighted the emergence and persistence of ABR in bacterial isolates, including Escherichia coli, Enterococcus spp., and Salmonella species, obtained from pigs and poultry. The lack of awareness of Vietnamese farmers on the antibiotic utilization guidelines was one of the main causes driving the animal ABR. Hence, this paper calls for interventions to restrict antibiotics use in food-producing animals by national action plan and antibiotics control programs. Additionally, studies to evaluate knowledge, attitude, and practice (KAP) of the community are required to promote rational use of antibiotics in all sectors.
    Matched MeSH terms: Drug Resistance, Microbial
  12. Kamaruzzaman NF, Tan LP, Hamdan RH, Choong SS, Wong WK, Gibson AJ, et al.
    Int J Mol Sci, 2019 Jun 04;20(11).
    PMID: 31167476 DOI: 10.3390/ijms20112747
    Antimicrobial resistance is now considered a major global challenge; compromising medical advancements and our ability to treat infectious disease. Increased antimicrobial resistance has resulted in increased morbidity and mortality due to infectious diseases worldwide. The lack of discovery of novel compounds from natural products or new classes of antimicrobials, encouraged us to recycle discontinued antimicrobials that were previously removed from routine use due to their toxicity, e.g., colistin. Since the discovery of new classes of compounds is extremely expensive and has very little success, one strategy to overcome this issue could be the application of synthetic compounds that possess antimicrobial activities. Polymers with innate antimicrobial properties or that have the ability to be conjugated with other antimicrobial compounds create the possibility for replacement of antimicrobials either for the direct application as medicine or implanted on medical devices to control infection. Here, we provide the latest update on research related to antimicrobial polymers in the context of ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. We summarise polymer subgroups: compounds containing natural peptides, halogens, phosphor and sulfo derivatives and phenol and benzoic derivatives, organometalic polymers, metal nanoparticles incorporated into polymeric carriers, dendrimers and polymer-based guanidine. We intend to enhance understanding in the field and promote further work on the development of polymer based antimicrobial compounds.
    Matched MeSH terms: Drug Resistance, Microbial
  13. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS
    J Pharm Anal, 2021 Apr;11(2):210-219.
    PMID: 34012697 DOI: 10.1016/j.jpha.2020.05.014
    Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
    Matched MeSH terms: Drug Resistance, Microbial
  14. Saleem Z, Hassali MA, Godman B, Hashmi FK, Saleem F
    Int J Clin Pharm, 2019 Oct;41(5):1348-1358.
    PMID: 31273588 DOI: 10.1007/s11096-019-00875-7
    Background Understanding physicians' perception about antimicrobial use and resistance is essential to ensure that the objectives of the Pakistan national action plan on antimicrobial resistance are met. Little is currently known about physicians' perceptions in Pakistan. Objective Assess physicians' perception surrounding antibiotic use and resistance, factors influencing antibiotic prescribing and potential interventions to improve future antibiotic prescribing. Settings The study was conducted in Lahore, the capital of the province of Punjab, which is the second largest and most populous city of Pakistan. Method Qualitative study was conducted with a semi-structured interview guide involving in-depth face-to-face interviews with purposively selected physicians. Audiorecorded interviews were transcribed verbatim and transcripts analyzed by thematic content analysis. Main outcome measures Themes surrounding the perspectives of physicians on issues of antimicrobial use and resistance. Results Five major themes emerged: (1) knowledge and perception of physicians about antimicrobials, (2) antimicrobial prescribing behaviors of physicians, (3) factors influencing prescribing, (4) determinants of antimicrobial resistance, (5) and potential interventions to reduce antimicrobial resistance. The main challenges and issues associated with antibiotic prescribing were the improvement of knowledge, implementation of hygienic measures, access to and clarity of treatment recommendations and minimizing external factors influencing prescribing including pharmaceutical company activities. Suggestions for the future included stricter regulations for prescribing, improved diagnosis, availability of local guidelines and monitoring of prescribing and resistance patterns. Conclusion Identification of concerns regarding inappropriate antimicrobial prescribing will enable specific initiatives and approaches to improve future antimicrobial use and reduce antimicrobial resistance in Pakistan.
    Matched MeSH terms: Drug Resistance, Microbial*
  15. Koh CL, Kok CH
    PMID: 6377513
    Fifteen independent E. coli strains of avian, bovine and porcine origin in Peninsular Malaysia were tested for antibiotic resistance and conjugative R plasmids. Eight (53%) isolates were found to be antibiotic resistant. Among them, 37.5% were mono-resistant and 62.5% were resistant to three or more antibiotics, i.e., multi-resistant. All of them were resistant to Tc and sensitive to Gm and Nx. Three of the eight antibiotic resistant strains were able to transfer all or part of their resistance to an E. coli K12 recipient by conjugation. The transfer frequencies of Km, Sm and Tc resistance of the three donors varied between 4.5 X 10(-8) to 6.8 X 10(-7). Analysis of the plasmid profiles of all the three donors and their respective transconjugants after agarose gel electrophoresis provided conclusive evidence that the transferable resistance traits were plasmid-mediated.
    Matched MeSH terms: Drug Resistance, Microbial
  16. Cheong YM, Lim VK, Jegathesan M, Suleiman AB
    Med J Malaysia, 1994 Dec;49(4):317-26.
    PMID: 7674966
    Knowledge of local antimicrobial resistance patterns of bacteria is a valuable guide to empirical antimicrobial therapy. This paper reports the resistance patterns of more than 36,000 bacteria isolated between August 1991 and July 1992 in six Malaysian hospitals and discusses the implications of the results. A customized menu driven software programme was developed to analyse the results. Generally, resistance to the commonly used antibiotics like ampicillin, cloxacillin, cephalosporins, gentamicin, cotrimoxazole and tetracycline was high. Some differences in resistance rate amongst the six hospitals were also noted. Continuous surveillance of antimicrobial resistance in hospitals is encouraged for the effective control of the emergence of antimicrobial resistance.
    Matched MeSH terms: Drug Resistance, Microbial*
  17. Appelbaum PC
    Clin Infect Dis, 1992 Jul;15(1):77-83.
    PMID: 1617076
    Clinical resistance to penicillin in Streptococcus pneumoniae was first reported by researchers in Boston in 1965; subsequently, this phenomenon was reported from Australia (1967) and South Africa (1977). Since these early reports, penicillin resistance has been encountered with increasing frequency in strains of S. pneumoniae from around the world. In South Africa strains resistant to penicillin and chloramphenicol as well as multiresistant strains have been isolated. Similar patterns of resistance have been reported from Spain. Preliminary evidence points to a high prevalence of resistant pneumococci in Hungary, other countries of Eastern Europe, and some countries in other areas of Europe, notably France. In the United States most reports of resistant pneumococci come from Alaska and the South, but resistance is increasing in other states and in Canada. Pneumococcal resistance has also been described in Zambia, Japan, Malaysia, Pakistan, Bangladesh, Chile, and Brazil; information from other African, Asian, and South American countries is not available. The rising prevalence of penicillin-resistant pneumococci worldwide mandates selective susceptibility testing and epidemiological investigations during outbreaks.
    Matched MeSH terms: Drug Resistance, Microbial
  18. Kuan, C.H., Rukayadi, Y., Ahmad, S. H., Wan Mohamed Radzi, C.W.J., Kuan, C.S., Yeo, S.K., et al.
    MyJurnal
    Listeriosis and salmonellosis are the major foodborne illnesses worldwide. Over the last decade,
    increasing reports about the antibiotic resistance of Listeria monocytogenes and Salmonella from diverse sources have prompted public health concerns, especially in developing countries with over reliance or misuse of antibiotic drugs in the treatment of humans and animals. In this study, antibiotic susceptibility profiles of 58 L. monocytogenes and 12 Salmonella Enteritidis strains from vegetable farms and retail markets in Malaysia were testedby the standard disk diffusion method. Listeria monocytogenes isolates were found to exhibit 100% resistance to penicillin G. Also, high resistance patterns were observed for meropenem (70.7%) and rifampicin (41.4%). The multiple antibiotic resistance (MAR) index of L. monocytogenes isolates ranged from 0.11 to 0.56. Besides, the antibiogram results revealed that multidrugresistant (MDR) S. Enteritidis were detected and all the S. Enteritidis isolates demonstrated resistance to at least four antibiotics. Ampicillin, amoxicillin, and trimethoprim failed to inhibit all the S. Enteritidis strains. Salmonella Enteritidis isolates also displayed high resistance to nalidixic acid (75.0%), trimethoprim-sulfamethoxazole (75.0%), and chloramphenicol (66.7%). Findings in this study indicated that vegetables could be potential sources of multidrug resistance of L. monocytogenes and S. Enteritidis, which can be a serious issue and a major concern for public health. Thus, there is a great need for surveillance programs in Malaysia to continuously monitor the antibiotic resistance profiles of important pathogens.
    Matched MeSH terms: Drug Resistance, Microbial
  19. Aarestrup FM, Lertworapreecha M, Evans MC, Bangtrakulnonth A, Chalermchaikit T, Hendriksen RS, et al.
    J Antimicrob Chemother, 2003 Oct;52(4):715-8.
    PMID: 12972453
    This study was conducted to investigate the occurrence of antimicrobial resistance among Salmonella Weltevreden isolates from different sources in South-East Asia (Indonesia, Laos, Malaysia, Taiwan, Thailand, Vietnam), Australia, Denmark, New Zealand and the USA.
    Matched MeSH terms: Drug Resistance, Microbial/genetics*
  20. Yazid AM, Ali AM, Shuhaimi M, Kalaivaani V, Rokiah MY, Reezal A
    Lett Appl Microbiol, 2000 Jul;31(1):57-62.
    PMID: 10886616
    Eighteen Bifidobacterium strains were tested for their susceptibility to a range of antimicrobial agents. All the strains tested, including the reference culture Lactobacillus acidophilus CH2, were susceptible to several groups of antimicrobial agents, they were cephalosporin (cefamandole, cefazolin, cefaperazone, cefoxitin), polypeptide (bacitracin), macrolide (erythromycin), penicillin (amoxicillin), phenicol (chloramphenicol) and beta-lactam (imipenem). Fourteen strains were resistant to more than 10 antibiotics. The reference culture was resistant to only three antibiotics. The results showed that bifidobacteria are resistant to a wide range of antimicrobial agents.
    Matched MeSH terms: Drug Resistance, Microbial*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links