Displaying publications 21 - 40 of 84 in total

Abstract:
Sort:
  1. Reid MJC
    Am J Primatol, 2020 08;82(8):e23161.
    PMID: 32583538 DOI: 10.1002/ajp.23161
    Year 2020 has brought the greatest global pandemic to hit the world since the end of the First World War. The severe acute respiratory syndrome coronavirus 2 and the resulting disease named coronavirus disease 2019 has brought the world to its knees both financially and medically. The American Society of Primatologists has postponed their annual meetings from the end of May 2020 until the end of September 2020, while the International Primatological Society have postponed their biennial congress from August 2020 to August 2021, which has also resulted in their 2022 meetings in Malaysia being pushed back until 2023. Here, I explore the potential dangers of pursuing any primate fieldwork during this pandemic on our study species, their ecosystems, and local peoples. I believe that the risk of bringing this virus into our study ecosystems is too great and that primatologists should cancel all field research until the pandemic ends or a vaccine/reliable treatment is widely available. This is the year we all must become One Health practitioners!
    Matched MeSH terms: Endangered Species*
  2. Thayale Purayil F, Rajashekar B, S Kurup S, Cheruth AJ, Subramaniam S, Hassan Tawfik N, et al.
    Genes (Basel), 2020 06 10;11(6).
    PMID: 32531994 DOI: 10.3390/genes11060640
    Haloxylon persicum is an endangered western Asiatic desert plant species, which survives under extreme environmental conditions. In this study, we focused on transcriptome analysis of H. persicum to understand the molecular mechanisms associated with drought tolerance. Two different periods of polyethylene glycol (PEG)-induced drought stress (48 h and 72 h) were imposed on H. persicum under in vitro conditions, which resulted in 18 million reads, subsequently assembled by de novo method with more than 8000 transcripts in each treatment. The N50 values were 1437, 1467, and 1524 for the control sample, 48 h samples, and 72 h samples, respectively. The gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis resulted in enrichment of mitogen-activated protein kinase (MAPK) and plant hormone signal transduction pathways under PEG-induced drought conditions. The differential gene expression analysis (DGEs) revealed significant changes in the expression pattern between the control and the treated samples. The KEGG analysis resulted in mapping transcripts with 138 different pathways reported in plants. The differential expression of drought-responsive transcription factors depicts the possible signaling cascades involved in drought tolerance. The present study provides greater insight into the fundamental transcriptome reprogramming of desert plants under drought.
    Matched MeSH terms: Endangered Species
  3. Moore BC, Fitri WN, Augustine L
    Anat Histol Embryol, 2020 May;49(3):390-401.
    PMID: 32154618 DOI: 10.1111/ahe.12542
    As wild population threats for the endangered false gharial (Tomistoma schlegelii) persist, conservation breeding programs, including developing semen collection techniques for subsequent artificial insemination, are becoming important species conservation measures. Developing reproductive biology understanding of a species is important to developing best practices and hopefully maximizing reproductive successes. However, information on crocodylians functional copulatory anatomy in general is lacking. To that end, zoological facilities and conservation centres have the exceptional opportunity to contribute new understandings that may not otherwise be attainable regarding crocodylian reproductive anatomy, particularly during routine physical examinations or post-mortem necropsies. Therefore, to better understand T. schlegelii reproductive biology, to contribute knowledge in support of zoo breeding conservation efforts and to contribute to what is known overall about crocodylian reproduction, we investigated phallic anatomy of adult male Tomistoma from two zoological populations, the St. Louis Zoo, USA and Sungai Dusun Wildlife Reserve, Peninsular Malaysia. Here, we present the gross anatomical features and histological analysis of underlying tissue-level details in pursuit of a better understanding of copulatory function and associated gamete transfer mechanisms. While much of the overall Tomistoma phallic morphology and inferred function corresponds to that of other crocodylian species and speaks to conserved aspects of functional anatomy across taxa, species-specific aspects of glans and glans tip morphology are also identified. These novelties are discussed in a general function and overall broader evolutionary contexts.
    Matched MeSH terms: Endangered Species
  4. Lim QL, Tan YL, Ng WL, Yong CSY, Ismail A, Rovie-Ryan JJ, et al.
    Sci Rep, 2020 03 04;10(1):3973.
    PMID: 32132572 DOI: 10.1038/s41598-020-60552-y
    A molecular sexing method by polymerase chain reaction (PCR) amplification of a portion of the sex-determining region Y (SRY) and the zinc finger (ZF) gene, as well as six equine Y-chromosome-specific microsatellite markers, were tested in the Malayan tapir (Tapirus indicus). While the microsatellite markers did not yield any male-specific amplicons for sex-typing, the SRY/ZF marker system produced reliable molecular sexing results by accurately sex-typing 31 reference Malayan tapirs, using whole blood, dried blood spot (DBS), or tissue samples as materials for DNA extraction. The marker system was also tested on 16 faecal samples, and the results were in general consistent with the pre-determined sexes of the animals, despite some amplification failures. A preliminary estimation of wild Malayan tapir population sex ratio was estimated from the Wildlife Genomic Resource Bank (WGRB) database of the Malaysian Department of Wildlife and National Parks (PERHILITAN), zoos, and the Sungai Dusun Wildlife Conservation Centre (WCC), as well as from the results of molecular sexing 12 samples of unknown sex. The overall sex ratio favoured females, but the deviation from parity was statistically not significant when tested using the binomial test (p > 0.05), which may be due to reduced statistical power caused by small sample sizes.
    Matched MeSH terms: Endangered Species/statistics & numerical data*
  5. Ahmad AK, Nur-Hazwani MNR, Aisyah Syed Omar S, Aweng ER, Taweel A
    Pak J Biol Sci, 2020 Jan;23(11):1374-1379.
    PMID: 33274864 DOI: 10.3923/pjbs.2020.1374.1379
    BACKGROUND AND OBJECTIVE: Malaysia reported experiencing serious invasive species intrusion in various rivers and threatening some local species to distinct. A study was undertaken to estimate and compare their composition and species richness in two pristine and two disturbed freshwater ecosystems.

    MATERIALS AND METHODS: Invasive and local species growth pattern was also estimated using length-weight analysis. Sampling was conducted using cast net and electric shock in each river twice in 12 months. Fish collected were identified, photo captured and measured for their weight and length. The growth pattern was also estimated using length-weight analysis.

    RESULTS: A total of 188 fishes were caught, comprises of 8 families and 15 species (ten local species with 119 individuals and five alien species with 69 individuals). Sistomus binotatus was the most dominant local species, whereas Tilapia nilotica was the most dominant alien species. There is no significant difference in composition between local and invasive species occur indicates the raise of alien species in those ecosystems even local species still dominated. The growth pattern for Sistomus binotatus and Clarias batrachus is isometric in the pristine ecosystem but negative isometric in disturbed rivers. Contrary, Tilapia nilotica has isometric for both ecosystems.

    CONCLUSION: This study concluded the capability and potential of colonization of alien species in stress ecosystem especially Tilapia nilotica. Thus, there is potential colonization of alien in Malaysia freshwater systems and a threat to local species due to food competition, site preferences and survival ability.

    Matched MeSH terms: Endangered Species*
  6. Mashkour N, Jones K, Kophamel S, Hipolito T, Ahasan S, Walker G, et al.
    PLoS One, 2020;15(10):e0230760.
    PMID: 33095793 DOI: 10.1371/journal.pone.0230760
    The impact of a range of different threats has resulted in the listing of six out of seven sea turtle species on the IUCN Red List of endangered species. Disease risk analysis (DRA) tools are designed to provide objective, repeatable and documented assessment of the disease risks for a population and measures to reduce these risks through management options. To the best of our knowledge, DRAs have not previously been published for sea turtles, although disease is reported to contribute to sea turtle population decline. Here, a comprehensive list of health hazards is provided for all seven species of sea turtles. The possible risk these hazards pose to the health of sea turtles were assessed and "One Health" aspects of interacting with sea turtles were also investigated. The risk assessment was undertaken in collaboration with more than 30 experts in the field including veterinarians, microbiologists, social scientists, epidemiologists and stakeholders, in the form of two international workshops and one local workshop. The general finding of the DRA was the distinct lack of knowledge regarding a link between the presence of pathogens and diseases manifestation in sea turtles. A higher rate of disease in immunocompromised individuals was repeatedly reported and a possible link between immunosuppression and environmental contaminants as a result of anthropogenic influences was suggested. Society based conservation initiatives and as a result the cultural and social aspect of interacting with sea turtles appeared to need more attention and research. A risk management workshop was carried out to acquire the insights of local policy makers about management options for the risks relevant to Queensland and the options were evaluated considering their feasibility and effectiveness. The sea turtle DRA presented here, is a structured guide for future risk assessments to be used in specific scenarios such as translocation and head-starting programs.
    Matched MeSH terms: Endangered Species
  7. Kiew R, Chung-Lu L
    PhytoKeys, 2020;166:57-77.
    PMID: 33199961 DOI: 10.3897/phytokeys.166.55778
    The Klang Gates Quartz Ridge (KGQR) is proposed for protection as National Heritage and as a UNESCO World Heritage Site because of its spectacular size, exceptional beauty and significant biodiversity. The checklist of vascular plants documents 314 species that comprise a unique combination that grows on lowland quartz and that is distinct from the surrounding lowland equatorial rain forest by the absence of orchids, palms, gingers and tree canopy families. The Rubiaceae, Gramineae, Moraceae, Apocynaceae, Melastomataceae and Polypodiaceae are the most speciose families. The summit vegetation at 200-400 m elevation is dominated by Baeckea frutescens (Myrtaceae) and Rhodoleia championii (Hamamelidaceae) and shows similarities to the plant community on rocky mountain peaks above 1500 m. About 11% of its species are endemic in Peninsular Malaysia and four are endemic to KGQR: Aleisanthia rupestris (Rubiaceae), Codonoboea primulina (Gesneriaceae), Spermacoce pilulifera (Rubiaceae), and Ilex praetermissa (Aquifoliaceae). All four are provisionally assessed as Critically Endangered. Two, Eulalia milsumi (Gramineae) and Sonerila prostrata (Melastomataceae), are endemic to KGQR and a few neighbouring smaller quartz dykes. They are assessed as Endangered. The KGQR is a fragile habitat and conservation management is urgently required to halt the spread of the aggressive alien grass, Pennisetum polystachion and to prevent further habitat degradation from visitors. Based on KGQR being a threatened habitat, its biodiverse flora, and endangered species, it qualifies as an Important Plant Area.
    Matched MeSH terms: Endangered Species
  8. Kongrit C, Markviriya D, Laithong P, Khudamrongsawat J
    Folia Primatol., 2020;91(1):1-14.
    PMID: 31593962 DOI: 10.1159/000500007
    Confiscated slow lorises (Nycticebus spp.) at Bangpra Water-Bird Breeding Center (BWBC) in Thailand provided an opportunity to demonstrate the application of noninvasive genetic approaches for species identification when morphology of the animals was ambiguous. The slow lorises at BWBC had been assigned to either N. bengalensis or N. pygmaeus, based on body size. However, the morphology of N. bengalensis is highly variable and overlaps with that of N. coucang (sensu stricto). Phylogenetic analysis of cytochrome b and d-loop mitochondrial regions placed all confiscated N. pygmaeus with the published sequences of N. pygmaeus and distinguished them from other Nycticebus. All other confiscated individuals formed a monophyletic clade, most individuals grouping with published N. bengalensis sequences from wild populations in Vietnam and distinct from Peninsular Malaysian and Sumatran N. coucang, Javan N. javanicus and Bornean N. menagensis. Six individuals within the N. bengalensis clade formed a separate subgroup that did not group with any reference material as indicated by phylogenetic and haplotype network analyses. Whether these trafficked individuals are undiscovered wild populations will require further investigation. Additional genetic studies of wild slow loris populations in different regions are therefore urgently required for reference to aid the protection and conservation of these threatened species.
    Matched MeSH terms: Endangered Species/statistics & numerical data*
  9. D MR, Linkie M
    PLoS One, 2020;15(12):e0243932.
    PMID: 33315909 DOI: 10.1371/journal.pone.0243932
    Across the tropics, large-bodied mammals have been affected by selective logging in ways that vary with levels of timber extraction, collateral damage, species-specific traits and secondary effects of hunting, as facilitated by improved access through logging roads. In Peninsular Malaysia, 3.0 million hectares or 61 percent of its Permanent Reserved Forests is officially assigned for commercial selective logging. Understanding how wildlife adapts and uses logged forest is critical for its management and, for threatened species, their conservation. In this study, we quantify the population status of four tropical ungulate species in a large selectively logged forest reserve and an adjacent primary forest protected area. We then conduct finer scale analyses to identify the species-specific factors that determine their occurrence. A combined indirect sign-camera trapping approach with a large sampling effort (2,665 km and 27,780 trap nights surveyed) covering a wide area (560 km2) generated species-specific detection probabilities and site occupancies. Populations of wild boar were widespread across both logged and primary forests, whereas sambar and muntjac occupancy was lower in logged forest (48.4% and 19.2% respectively), with gaur showing no significant difference. Subsequent modelling revealed the importance of conserving lower elevation habitat in both habitat types, particularly <1,000 m asl, for which occupancies of sambar, muntjac and gaur were typically higher. This finding is important because 75 percent (~13,400 km2) of Peninsular Malaysia's Main Range Forest (Banjaran Titiwangsa) is under 1,000 m asl and therefore at risk of being converted to industrial timber plantations, which calls for renewed thinking around forest management planning.
    Matched MeSH terms: Endangered Species*
  10. Alamgir M, Campbell MJ, Sloan S, Engert J, Word J, Laurance WF
    PLoS One, 2020;15(3):e0229614.
    PMID: 32126070 DOI: 10.1371/journal.pone.0229614
    The forests of Borneo-the third largest island on the planet-sustain some of the highest biodiversity and carbon storage in the world. The forests also provide vital ecosystem services and livelihood support for millions of people in the region, including many indigenous communities. The Pan-Borneo Highway and several hydroelectric dams are planned or already under construction in Sarawak, a Malaysian state comprising part of the Borneo. This development seeks to enhance economic growth and regional connectivity, support community access to services, and promote industrial development. However, the implications of the development of highway and dams for forest integrity, biodiversity and ecosystem services remained largely unreported. We assessed these development projects using fine-scale biophysical and environmental data and found several environmental and socioeconomic risks associated with the projects. The highway and hydroelectric dam projects will impact 32 protected areas including numerous key habitats of threatened species such as the proboscis monkey (Nasalis larvatus), Sarawak surili (Presbytis chrysomelas), Bornean orangutans (Pongo pygmaeus) and tufted ground squirrel (Rheithrosciurus macrotis). Under its slated development trajectory, the local and trans-national forest connectivity between Malaysian Borneo and Indonesian Borneo would also be substantially diminished. Nearly ~161 km of the Pan-Borneo Highway in Sarawak will traverse forested landscapes and ~55 km will traverse carbon-rich peatlands. The 13 hydroelectric dam projects will collectively impact ~1.7 million ha of forest in Sarawak. The consequences of planned highway and hydroelectric dams construction will increase the carbon footprint of development in the region. Moreover, many new road segments and hydroelectric dams would be built on steep slopes in high-rainfall zones and forested areas, increasing both construction and ongoing maintenance costs. The projects would also alter livelihood activities of downstream communities, risking their long-term sustainability. Overall, our findings identify major economic, social and environmental risks for several planned road segments in Sarawak-such as those between Telok Melano and Kuching; Sibu and Bintulu; and in the Lambir, Limbang and Lawas regions-and dam projects-such as Tutoh, Limbang, Lawas, Baram, Linau, Ulu Air and Baleh dams. Such projects need to be reviewed to ensure they reflect Borneo's unique environmental and forest ecosystem values, the aspirations of local communities and long-term sustainability of the projects rather than being assessed solely on their short-term economic returns.
    Matched MeSH terms: Endangered Species
  11. Khalil I, Yehye WA, Julkapli NM, Rahmati S, Sina AA, Basirun WJ, et al.
    Biosens Bioelectron, 2019 Apr 15;131:214-223.
    PMID: 30844598 DOI: 10.1016/j.bios.2019.02.028
    Surface-enhanced Raman scattering (SERS) based DNA biosensors have considered as excellent, fast and ultrasensitive sensing technique which relies on the fingerprinting ability to produce molecule specific distinct spectra. Unlike conventional fluorescence based strategies SERS provides narrow spectral bandwidths, fluorescence quenching and multiplexing ability, and fitting attribute with short length probe DNA sequences. Herein, we report a novel and PCR free SERS based DNA detection strategy involving dual platforms and short DNA probes for the detection of endangered species, Malayan box turtle (MBT) (Cuora amboinensis). In this biosensing feature, the detection is based on the covalent linking of the two platforms involving graphene oxide-gold nanoparticles (GO-AuNPs) functionalized with capture probe 1 and gold nanoparticles (AuNPs) modified with capture probe 2 and Raman dye (Cy3) via hybridization with the corresponding target sequences. Coupling of the two platforms generates locally enhanced electromagnetic field 'hot spot', formed at the junctions and interstitial crevices of the nanostructures and consequently provide significant amplification of the SERS signal. Therefore, employing the two SERS active substrates and short-length probe DNA sequences, we have managed to improve the sensitivity of the biosensors to achieve a lowest limit of detection (LOD) as low as 10 fM. Furthermore, the fabricated biosensor exhibited sensitivity even for single nucleotide base-mismatch in the target DNA as well as showed excellent performance to discriminate closely related six non-target DNA sequences. Although the developed SERS biosensor would be an attractive platform for the authentication of MBT from diverse samples including forensic and/or archaeological specimens, it could have universal application for detecting gene specific biomarkers for many diseases including cancer.
    Matched MeSH terms: Endangered Species
  12. Mazlan N, Abd-Rahman MR, Tingga RCT, Abdullah MT, Khan FAA
    Folia Primatol., 2019;90(3):139-152.
    PMID: 30870855 DOI: 10.1159/000496022
    The proboscis monkey, Nasalis larvatus, is an endemic species to the island of Borneo. It is listed in the IUCN Red List as Endangered with a decreasing population trend. Nevertheless, biological information, especially on the genetic diversity of the species, is still incomplete. Its fragmented distribution poses difficulties in gathering genetic samples along with its widespread distribution across Borneo. This study aims to determine the genetic variation and structure of N. larvatus with an emphasis on Malaysian Borneo populations to elucidate its gene flow. The genetic variation and structure of N. larvatus were examined using 50 sequences of the 1,434-bp cytochrome oxidase subunit I (COI) gene region of mitochondrial DNA. The COI sequences revealed low genetic variation among N. larvatus populations in Malaysian Borneo. This low genetic variability could be the result of inbreeding pressure that may have occurred due to the absence of population expansion in this species over the last 30,000 years. This is supported in our analysis of molecular variance, which showed that groups of N. larvatus are significantly differentiated possibly due to natural geographic barriers. This study provides baseline information on the genetic diversity among proboscis monkey populations in Borneo for the future genetic assessment of the species.
    Matched MeSH terms: Endangered Species*
  13. Siti Mariam, M.N, Jivitra, B.
    MyJurnal
    utan Lipur Jeram Linang in Kelantan was carried out within 0.1 ha plot. All vascular plants (except lianas and epiphytes) were enumerated and identified. A total of 255 taxa representing 121 species belonging to 87 genera in 47 families were identified. Among these were 24 species endemic to Peninsular Malaysia and 47 species with medicinal values. Plants were categorized according to growth forms as follows: 67% trees, 17% shrubs, 7% palms, 6% herbs, and 3% ferns. Based on Important value index (IVI), Elateriospermum tapos, Goniothalamus umbrosus, and Monocarpia marginalis were the most dominant species whilst Rubiaceae, Arecaceae and Fabaceae were the three most diverse families. Species diversity was high based on the Shannon-Weiner index with the value of 4.38. In this study, two species from Dipterocarpaceae, which were Dipterocarpus grandiflorus and Shorea collina, were listed as Endangered (E) and Critically Endangered (CE) species respectively according to IUCN Red List. Information gained from this study showed that the forest harbored high plant diversity and endemism, so proper management is needed to protect and conserve this forest for sustainability and development.
    Matched MeSH terms: Endangered Species
  14. Matthew P, Manjaji-Matsumoto BM, Rodrigues KF
    Mitochondrial DNA B Resour, 2018 Oct 12;3(2):943-944.
    PMID: 33474374 DOI: 10.1080/23802359.2018.1473725
    We report here the complete mitochondrial (mt) genomes of six individuals of Cheilinus undulatus (Napoleon Wrasse), an endangered marine fish species. The six mt DNA sequences had an average size of 17,000 kb and encoded 22 tRNA, two sRNA, 13 highly conserved protein coding genes and a control region. The polymorphic variation (control region) in these six individuals suggests their potential use as a specific marker for phylogeographic conservation. Moreover, the sequence polymorphism within the control region (D-loop) suggests that this locus can be applied for phylogenetic studies.
    Matched MeSH terms: Endangered Species
  15. Lopes-Lima M, Bolotov IN, Do VT, Aldridge DC, Fonseca MM, Gan HM, et al.
    Mol Phylogenet Evol, 2018 10;127:98-118.
    PMID: 29729933 DOI: 10.1016/j.ympev.2018.04.041
    Two Unionida (freshwater mussel) families are present in the Northern Hemisphere; the Margaritiferidae, representing the most threatened of unionid families, and the Unionidae, which include several genera of unresolved taxonomic placement. The recent reassignment of the poorly studied Lamprotula rochechouartii from the Unionidae to the Margaritiferidae motivated a new search for other potential species of margaritiferids from members of Gibbosula and Lamprotula. Based on molecular and morphological analyses conducted on newly collected specimens from Vietnam, we here assign Gibbosula crassa to the Margaritiferidae. Additionally, we reanalyzed all diagnostic characteristics of the Margaritiferidae and examined museum specimens of Lamprotula and Gibbosula. As a result, two additional species are also moved to the Margaritiferidae, i.e. Gibbosula confragosa and Gibbosula polysticta. We performed a robust five marker phylogeny with all available margaritiferid species and discuss the taxonomy within the family. The present phylogeny reveals the division of Margaritiferidae into four ancient clades with distinct morphological, biogeographical and ecological characteristics that justify the division of the Margaritiferidae into two subfamilies (Gibbosulinae and Margaritiferinae) and four genera (Gibbosula, Cumberlandia, Margaritifera, and Pseudunio). The systematics of the Margaritiferidae family is re-defined as well as their distribution, potential origin and main biogeographic patterns.
    Matched MeSH terms: Endangered Species*
  16. Smedley CJ, Stanley PA, Qazzaz ME, Prota AE, Olieric N, Collins H, et al.
    Sci Rep, 2018 Jul 13;8(1):10617.
    PMID: 30006510 DOI: 10.1038/s41598-018-28880-2
    The jerantinine family of Aspidosperma indole alkaloids from Tabernaemontana corymbosa are potent microtubule-targeting agents with broad spectrum anticancer activity. The natural supply of these precious metabolites has been significantly disrupted due to the inclusion of T. corymbosa on the endangered list of threatened species by the International Union for Conservation of Nature. This report describes the asymmetric syntheses of (-)-jerantinines A and E from sustainably sourced (-)-tabersonine, using a straight-forward and robust biomimetic approach. Biological investigations of synthetic (-)-jerantinine A, along with molecular modelling and X-ray crystallography studies of the tubulin-(-)-jerantinine B acetate complex, advocate an anticancer mode of action of the jerantinines operating via microtubule disruption resulting from binding at the colchicine site. This work lays the foundation for accessing useful quantities of enantiomerically pure jerantinine alkaloids for future development.
    Matched MeSH terms: Endangered Species
  17. Voigt M, Wich SA, Ancrenaz M, Meijaard E, Abram N, Banes GL, et al.
    Curr Biol, 2018 03 05;28(5):761-769.e5.
    PMID: 29456144 DOI: 10.1016/j.cub.2018.01.053
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.
    Matched MeSH terms: Endangered Species/trends*
  18. Hayashi M, Kawakami F, Roslan R, Hapiszudin NM, Dharmalingam S
    Primates, 2018 Mar;59(2):135-144.
    PMID: 29383576 DOI: 10.1007/s10329-018-0650-2
    The Bukit Merah Orang Utan Island (OUI) Foundation has been conducting behavioral and veterinary research on orangutans as an attempt at ex situ conservation. Since 2010, the Primate Research Institute, Kyoto University has been collaborating with OUI to promote environmental enrichment and infant rearing by biological mothers in addition to the continuous efforts of refining the veterinary management of the endangered species. In 2011, three Bornean orangutans (Pongo pygmaeus pygmaeus) were released on an island, called BJ Island, adjacent to OUI. This island is approximately 5.6 ha in size, and 635 trees belonging to 102 plant species were identified prior to their release. Behavioral monitoring of the released individuals has been conducted to evaluate their behavioral adaptation to the new environment. Two of the three released orangutans were born in the wild, whereas the youngest individual was born on OUI and expected to learn forest survival strategies from the two older individuals. One of the orangutans was pregnant at the time of release and subsequently gave birth to two male infants on BJ Island. The behavioral monitoring indicated that these orangutans traveled more and spent more time on trees following their release onto BJ Island. However, resting was longer for two females both on OUI and BJ Island when compared to other populations. The orangutans consumed some natural food resources on BJ Island. The release into a more naturalistic environment may help the orangutans to develop more naturalistic behavioral patterns that resemble their wild counterparts.
    Matched MeSH terms: Endangered Species
  19. Harihar A, Chanchani P, Borah J, Crouthers RJ, Darman Y, Gray TNE, et al.
    PLoS One, 2018;13(11):e0207114.
    PMID: 30408090 DOI: 10.1371/journal.pone.0207114
    With less than 3200 wild tigers in 2010, the heads of 13 tiger-range countries committed to doubling the global population of wild tigers by 2022. This goal represents the highest level of ambition and commitment required to turn the tide for tigers in the wild. Yet, ensuring efficient and targeted implementation of conservation actions alongside systematic monitoring of progress towards this goal requires that we set site-specific recovery targets and timelines that are ecologically realistic. In this study, we assess the recovery potential of 18 sites identified under WWF's Tigers Alive Initiative. We delineated recovery systems comprising a source, recovery site, and support region, which need to be managed synergistically to meet these targets. By using the best available data on tiger and prey numbers, and adapting existing species recovery frameworks, we show that these sites, which currently support 165 (118-277) tigers, have the potential to harbour 585 (454-739) individuals. This would constitute a 15% increase in the global population and represent over a three-fold increase within these specific sites, on an average. However, it may not be realistic to achieve this target by 2022, since tiger recovery in 15 of these 18 sites is contingent on the initial recovery of prey populations, which is a slow process. We conclude that while sustained conservation efforts can yield significant recoveries, it is critical that we commit our resources to achieving the biologically realistic targets for these sites even if the timelines are extended.
    Matched MeSH terms: Endangered Species*
  20. Ratnayeke S, van Manen FT, Clements GR, Kulaimi NAM, Sharp SP
    PLoS One, 2018;13(4):e0194217.
    PMID: 29617402 DOI: 10.1371/journal.pone.0194217
    Mammalian carnivores play a vital role in ecosystem functioning. However, they are prone to extinction because of low population densities and growth rates, and high levels of persecution or exploitation. In tropical biodiversity hotspots such as Peninsular Malaysia, rapid conversion of natural habitats threatens the persistence of this vulnerable group of animals. Here, we carried out the first comprehensive literature review on 31 carnivore species reported to occur in Peninsular Malaysia and updated their probable distribution. We georeferenced 375 observations of 28 species of carnivore from 89 unique geographic locations using records spanning 1948 to 2014. Using the Getis-Ord Gi*statistic and weighted survey records by IUCN Red List status, we identified hotspots of species that were of conservation concern and built regression models to identify environmental and anthropogenic landscape factors associated with Getis-Ord Gi* z scores. Our analyses identified two carnivore hotspots that were spatially concordant with two of the peninsula's largest and most contiguous forest complexes, associated with Taman Negara National Park and Royal Belum State Park. A cold spot overlapped with the southwestern region of the Peninsula, reflecting the disappearance of carnivores with higher conservation rankings from increasingly fragmented natural habitats. Getis-Ord Gi* z scores were negatively associated with elevation, and positively associated with the proportion of natural land cover and distance from the capital city. Malaysia contains some of the world's most diverse carnivore assemblages, but recent rates of forest loss are some of the highest in the world. Reducing poaching and maintaining large, contiguous tracts of lowland forests will be crucial, not only for the persistence of threatened carnivores, but for many mammalian species in general.
    Matched MeSH terms: Endangered Species*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links