Displaying publications 21 - 40 of 193 in total

Abstract:
Sort:
  1. Shi J, Sun J, Hu N, Hu Y
    Infect Genet Evol, 2020 11;85:104442.
    PMID: 32622923 DOI: 10.1016/j.meegid.2020.104442
    Little is known about the genetic features of Nipah virus (NiV) associated with virulence and transmission. Herein, phylogenetic and genetic analyses for all available NiV strains revealed sequence variations between the two genetic lineages of NiV with pathogenic differences, as well as among different strains within Bangladesh lineage. A total of 143 conserved amino acid differences, distributed among viral nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F) and glycoprotein (G), were revealed. Structural modeling revealed one key substitution (S3554N) in the viral G protein that might mediate a 12-amino-acid structural change from a loop into a β sheet. Multiple key amino acids substitutions in viral G protein were observed, which may alter viral fitness and transmissibility from bats to humans.
    Matched MeSH terms: Evolution, Molecular
  2. Ong JS, Liu YW, Liong MT, Choi SB, Tsai YC, Low WY
    Genomics, 2020 11;112(6):3915-3924.
    PMID: 32629096 DOI: 10.1016/j.ygeno.2020.06.052
    The role of microbiota in gut-brain communication has led to the development of probiotics promoting brain health. Here we report a genomic study of a Lactobacillus fermentum PS150 and its patented bioactive protein, elongation factor Tu (EF-Tu), which is associated with cognitive improvement in rats. The L. fermentum PS150 circular chromosome is 2,238,401 bp and it consists of 2281 genes. Chromosome comparisons with other L. fermentum strains highlighted a cluster of glycosyltransferases as potential candidate probiotic factors besides EF-Tu. Molecular evolutionary analyses on EF-Tu genes (tuf) in 235 bacteria species revealed one to three copies of the gene per genome. Seven tuf pseudogenes were found and three species only possessed pseudogenes, which is an unprecedented finding. Protein variability analysis of EF-Tu showed five highly variable residues (40 K, 41G, 42 L, 44 K, and 46E) on the protein surface, which warrant further investigation regarding their potential roles as binding sites.
    Matched MeSH terms: Evolution, Molecular*
  3. Jamaludin NA, Mohd-Arshaad W, Mohd Akib NA, Zainal Abidin DH, Nghia NV, Nor SM
    PMID: 32744461 DOI: 10.1080/24701394.2020.1799996
    The Japanese scad Decapterus maruadsi (Carangidae) is an economically important marine species in Asia but its exploitation shows signs of overfishing. To document its stock structure, a population genetic and phylogeographic study of several populations of this species from the central part of the Indo-West Pacific region was conducted using the mitochondrial cytochrome b gene. Genetic homogeneity within the Sundaland region's population, including Rosario (the Philippines) and Ranong (Andaman Sea) populations was revealed with low nucleotide diversity (π = 0.001-0.003) but high haplotype diversity (h = 0.503-0.822). In contrast, a clear genetic structure was observed between this group and the northern Vietnam populations as revealed by FST, AMOVA and SAMOVA, while the central Vietnam population of Khanh Hoa is an admixed group between the two differentiated regional populations. The neutrality and mismatch distribution analyses supported a demographic expansion of D. maruadsi in between last Pleistocene to early Holocene period which influenced present day distribution pattern. Contemporary factors such as oceanic currents and different life history traits are also believed to play significant roles in the observed population structure and biogeographical pattern. Based on these results, recommendations on how stocks of the Japanese scad should be managed are offered.
    Matched MeSH terms: Evolution, Molecular
  4. Saad N, Alcalá-Briseño RI, Polston JE, Olmstead JW, Varsani A, Harmon PF
    Sci Rep, 2020 Jul 21;10(1):12043.
    PMID: 32694553 DOI: 10.1038/s41598-020-68654-3
    A growing number of metagenomics-based approaches have been used for the discovery of viruses in insects, cultivated plants, and water in agricultural production systems. In this study, sixteen blueberry root transcriptomes from eight clonally propagated blueberry plants of cultivar 'Emerald' (interspecific hybrid of Vaccinium corymbosum and V. darrowi) generated as part of a separate study on varietal tolerance to soil salinity were analyzed for plant viral sequences. The objective was to determine if the asymptomatic plants harbored the latent blueberry red ringspot virus (BRRV) in their roots. The only currently known mechanism of transmission of BRRV is through vegetative propagation; however, the virus can remain latent for years with some plants of 'Emerald' never developing red ringspot symptoms. Bioinformatic analyses of 'Emerald' transcriptomes using de novo assembly and reference-based mapping approaches yielded eight complete viral genomes of BRRV (genus Soymovirus, family Caulimoviridae). Validation in vitro by PCR confirmed the presence of BRRV in 100% of the 'Emerald' root samples. Sequence and phylogenetic analyses showed 94% to 97% nucleotide identity between BRRV genomes from Florida and sequences from Czech Republic, Japan, Poland, Slovenia, and the United States. Taken together, this study documented the first detection of a complete BRRV genome from roots of asymptomatic blueberry plants and in Florida through in silico analysis of plant transcriptomes.
    Matched MeSH terms: Evolution, Molecular
  5. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
    Matched MeSH terms: Evolution, Molecular*
  6. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Evolution, Molecular*
  7. Cros E, Chattopadhyay B, Garg KM, Ng NSR, Tomassi S, Benedick S, et al.
    Mol Ecol, 2020 07;29(14):2692-2706.
    PMID: 32542783 DOI: 10.1111/mec.15509
    Quaternary climate oscillations are a well-known driver of animal diversification, but their effects are most well studied in areas where glaciations lead to habitat fragmentation. In large areas of the planet, however, glaciations have had the opposite effect, but here their impacts are much less well understood. This is especially true in Southeast Asia, where cyclical changes in land distribution have generated enormous land expansions during glacial periods. In this study, we selected a panel of five songbird species complexes covering a range of ecological specificities to investigate the effects Quaternary land bridges have had on the connectivity of Southeast Asian forest biota. Specifically, we combined morphological and bioacoustic analysis with an arsenal of population genomic and modelling approaches applied to thousands of genome-wide DNA markers across a total of more than 100 individuals. Our analyses show that species dependent on forest understorey exhibit deep differentiation between Borneo and western Sundaland, with no evidence of gene flow during the land bridges accompanying the last 1-2 ice ages. In contrast, dispersive canopy species and habitat generalists have experienced more recent gene flow. Our results argue that there remains much cryptic species-level diversity to be discovered in Southeast Asia even in well-known animal groups such as birds, especially in nondispersive forest understorey inhabitants. We also demonstrate that Quaternary land bridges have not been equally suitable conduits of gene flow for all species complexes and that life history is a major factor in predicting relative population divergence time across Quaternary climate fluctuations.
    Matched MeSH terms: Evolution, Molecular*
  8. Wang Y, Li Y, Yang Y, Peng C, Fu X, Gu X, et al.
    Exp Ther Med, 2020 Jul;20(1):543-549.
    PMID: 32537012 DOI: 10.3892/etm.2020.8728
    The aim of the present study was to analyze the sequence of the VP1 gene in enterovirus 71 (EV71) isolates and to explore their genetic evolution, so as to provide a scientific basis for the clinical prevention and treatment of hand, foot and mouth disease. The fecal samples of 590 patients with suspected hand, foot and mouth disease treated at Yan'an Hospital (Kunming, China) between January 2015 and December 2016 were collected and EV71 nucleic acid was detected by fluorescence PCR. The viral RNA of EV71-positive samples was extracted, the VP1 gene was amplified by PCR and the products were sequenced. The VP1 gene sequence was analyzed using DNAMAN and MEGA (version 4.0) software and homologous modeling was performed using Pymol software. A total of 50 EV71-positive samples were identified and the detection rate was 8.47% (50/590 cases). All of the 50 EV71 strains were of the C4 subtype. The genetic distance between the strains detected in the present study and EV71 strains detected in Beijing, Anhui and Malaysia was 0.01-0.03, while that between the strains detected in the present study and Australian strains was 2.11. Homologous modeling indicated that the amino acid sequence of the VP1 gene of the detected strains had a H144Y mutation. There was no significant genetic variation in the EV71 strain within the 2-year period. In conclusion, the EV71 strains detected in the present study was similar to that detected in Beijing, Anhui and Malaysia but different to that from Australia. A point mutation was present in the amino acid sequence of the VP1 gene.
    Matched MeSH terms: Evolution, Molecular
  9. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 May 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
    Matched MeSH terms: Evolution, Molecular*
  10. Goh GK, Dunker AK, Foster JA, Uversky VN
    Microb Pathog, 2020 Apr;141:103976.
    PMID: 31940461 DOI: 10.1016/j.micpath.2020.103976
    The Nipah Virus (NiV) was first isolated during a 1998-9 outbreak in Malaysia. The outbreak initially infected farm pigs and then moved to humans from pigs with a case-fatality rate (CFR) of about 40%. After 2001, regular outbreaks occurred with higher CFRs (~71%, 2001-5, ~93%, 2008-12). The spread arose from drinking virus-laden palm date sap and human-to-human transmission. Intrinsic disorder analysis revealed strong correlation between the percentage of disorder in the N protein and CFR (Regression: r2 = 0.93, p molecular analytical tools to contain outbreaks.
    Matched MeSH terms: Evolution, Molecular
  11. Meng Z, Han J, Lin Y, Zhao Y, Lin Q, Ma X, et al.
    Theor Appl Genet, 2020 Jan;133(1):187-199.
    PMID: 31587087 DOI: 10.1007/s00122-019-03450-w
    KEY MESSAGE: A novel tetraploid S. spontaneum with basic chromosome x = 10 was discovered, providing us insights in the origin and evolution in Saccharum species. Sugarcane (Saccharum spp., Poaceae) is a leading crop for sugar production providing 80% of the world's sugar. However, the genetic and genomic complexities of this crop such as its high polyploidy level and highly variable chromosome numbers have significantly hindered the studies in deciphering the genomic structure and evolution of sugarcane. Here, we developed the first set of oligonucleotide (oligo)-based probes based on the S. spontaneum genome (x = 8), which can be used to simultaneously distinguish each of the 64 chromosomes of octaploid S. spontaneum SES208 (2n = 8x = 64) through fluorescence in situ hybridization (FISH). By comparative FISH assay, we confirmed the chromosomal rearrangements of S. spontaneum (x = 8) and S. officinarum (2n = 8x = 80), the main contributors of modern sugarcane cultivars. In addition, we examined a S. spontaneum accession, Np-X, with 2n = 40 chromosomes, and we found that it was a tetraploid with the unusual basic chromosome number of x = 10. Assays at the cytological and DNA levels demonstrated its close relationship with S. spontaneum with basic chromosome number x = 8 (the most common accessions in S. spontaneum), confirming its S. spontaneum identity. Population genetic structure and phylogenetic relationship analyses between Np-X and 64 S. spontaneum accessions revealed that Np-X belongs to the ancient Pan-Malaysia group, indicating a close relationship to S. spontaneum with basic chromosome number of x = 8. This finding of a tetraploid S. spontaneum with basic chromosome number of x = 10 suggested a parallel evolution path of genomes and polyploid series in S. spontaneum with different basic chromosome numbers.
    Matched MeSH terms: Evolution, Molecular*
  12. Setiawan AB, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T
    Cytogenet Genome Res, 2020;160(9):554-564.
    PMID: 33171461 DOI: 10.1159/000511119
    Mobile elements are major regulators of genome evolution through their effects on genome size and chromosome structure in higher organisms. Non-long terminal repeat (non-LTR) retrotransposons, one of the subclasses of transposons, are specifically inserted into repetitive DNA sequences. While studies on the insertion of non-LTR retrotransposons into ribosomal RNA genes and other repetitive DNA sequences have been reported in the animal kingdom, studies in the plant kingdom are limited. Here, using FISH, we confirmed that Menolird18, a member of LINE (long interspersed nuclear element) in non-LTR retrotransposons and found in Cucumis melo, was inserted into ITS and ETS (internal and external transcribed spacers) regions of 18S rDNA in melon and cucumber. Beside the 18S rDNA regions, Menolird18 was also detected in all centromeric regions of melon, while it was located at pericentromeric and sub-telomeric regions in cucumber. The fact that FISH signals of Menolird18 were found in centromeric and rDNA regions of mitotic chromosomes suggests that Menolird18 is a rDNA and centromere-specific non-LTR retrotransposon in melon. Our findings are the first report on a non-LTR retrotransposon that is highly conserved in 2 different plant species, melon and cucumber. The clear distinction of chromosomal localization of Menolird18 in melon and cucumber implies that it might have been involved in the evolutionary processes of the melon (C. melo) and cucumber (C. sativus) genomes.
    Matched MeSH terms: Evolution, Molecular
  13. Menchaca A, Rossi NA, Froidevaux J, Dias-Freedman I, Caragiulo A, Wultsch C, et al.
    BMC Genet, 2019 12 27;20(1):100.
    PMID: 31881935 DOI: 10.1186/s12863-019-0801-5
    BACKGROUND: Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize.

    RESULTS: We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern.

    CONCLUSIONS: The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.

    Matched MeSH terms: Evolution, Molecular
  14. Chong LC, Khan AM
    BMC Genomics, 2019 Dec 24;20(Suppl 9):921.
    PMID: 31874646 DOI: 10.1186/s12864-019-6311-z
    BACKGROUND: The sequence diversity of dengue virus (DENV) is one of the challenges in developing an effective vaccine against the virus. Highly conserved, serotype-specific (HCSS), immune-relevant DENV sequences are attractive candidates for vaccine design, and represent an alternative to the approach of selecting pan-DENV conserved sequences. The former aims to limit the number of possible cross-reactive epitope variants in the population, while the latter aims to limit the cross-reactivity between the serotypes to favour a serotype-specific response. Herein, we performed a large-scale systematic study to map and characterise HCSS sequences in the DENV proteome.

    METHODS: All reported DENV protein sequence data for each serotype was retrieved from the NCBI Entrez Protein (nr) Database (txid: 12637). The downloaded sequences were then separated according to the individual serotype proteins by use of BLASTp search, and subsequently removed for duplicates and co-aligned across the serotypes. Shannon's entropy and mutual information (MI) analyses, by use of AVANA, were performed to measure the diversity within and between the serotype proteins to identify HCSS nonamers. The sequences were evaluated for the presence of promiscuous T-cell epitopes by use of NetCTLpan 1.1 and NetMHCIIpan 3.2 server for human leukocyte antigen (HLA) class I and class II supertypes, respectively. The predicted epitopes were matched to reported epitopes in the Immune Epitope Database.

    RESULTS: A total of 2321 nonamers met the HCSS selection criteria of entropy  0.8. Concatenating these resulted in a total of 337 HCSS sequences. DENV4 had the most number of HCSS nonamers; NS5, NS3 and E proteins had among the highest, with none in the C and only one in prM. The HCSS sequences were immune-relevant; 87 HCSS sequences were both reported T-cell epitopes/ligands in human and predicted epitopes, supporting the accuracy of the predictions. A number of the HCSS clustered as immunological hotspots and exhibited putative promiscuity beyond a single HLA supertype. The HCSS sequences represented, on average, ~ 40% of the proteome length for each serotype; more than double of pan-DENV sequences (conserved across the four serotypes), and thus offer a larger choice of sequences for vaccine target selection. HCSS sequences of a given serotype showed significant amino acid difference to all the variants of the other serotypes, supporting the notion of serotype-specificity.

    CONCLUSION: This work provides a catalogue of HCSS sequences in the DENV proteome, as candidates for vaccine target selection. The methodology described herein provides a framework for similar application to other pathogens.

    Matched MeSH terms: Evolution, Molecular
  15. Amin OM, Chaudhary A, Heckmann RA, Ha NV, Singh HS
    Acta Parasitol, 2019 Dec;64(4):779-796.
    PMID: 31332657 DOI: 10.2478/s11686-019-00102-3
    BACKGROUND: Most (82%) of the 46 recognized species of Acanthogyrus (Acanthosentis) Verma and Datta, 1929 are known from Asian freshwater fishes. Only three species of Acanthosentis are known from marine or brackish water fishes from India and Pakistan. We have discovered another marine species of Acanthosentis in the Pacific Ocean, off Vietnam.

    PURPOSE: The purpose is to describe the new species morphologically and molecularly and provide new information of its evolutionally relationships with other species of the subgenus.

    METHODS: Standard methods of collection and examination of marine hosts, processing and illustrating of specimens, and taxonomic identification of parasites using the extensive collection of the lead author were used. Specimens were further studied using energy-dispersive X-ray analysis and ion sectioning of hooks, SEM analysis, and molecular sequencing. Type specimens were deposited at the Harold W. Manter Lab. collection, Lincoln, Nebraska.

    RESULTS: Acanthogyrus (Acanthosentis) fusiformis n. sp. is described from the catfish, Arius sp. (Ariidae: Siluriformes) off the Pacific Coast of Vietnam at Bac Lieu in the Gulf of Thailand. The three other marine Indian species include A. (A.) arii Bilqees, 1971 which is also described from a similar catfish, Arius serratus Day off the Karachi coast in the Arabian Sea, Indian Ocean. Our new species from Vietnam is distinguished from the other 46 species by a combination of characters including a small fusiform trunk, complete circles of small hollow spines covering the entire trunk, prominent double apical organs often extending posteriorly past posterior hooks, middle and posterior hooks of equal size slightly smaller than anterior hooks, large neck continuous with the outline of the proboscis without distinct separation, big drop-shaped cephalic ganglion, extension of the proboscis receptacle anteriorly past the base of the proboscis up to the insertion point of the posterior hooks, presence of two para-receptacle structures (PRSs), free unattached thick lemnisci, short female reproductive system with filamentous attachment of the distal end of the uterine bell to the ventral body wall, and small narrowly ellipsoid eggs with thickened polar ends. Partial sequences of the 18S and internal transcribed spacers (ITS1-5.8S-ITS2) of ribosomal RNA were generated and used for phylogenetic analyses to confirm the taxonomic identity of Acanthogyrus (Acanthosentis) fusiformis n. sp.

    CONCLUSIONS: We describe unique morphological features of A. fusiformis never before known in the subgenus Acanthosentis. The uniqueness of A. fusiformis is further demonstrated by its EDXA fingerprint characterized by high levels of calcium and phosphorous in hooks. The zoogeography of species of Acanthosentis is elucidated in the Indian subcontinent, the Caribbean, China, and Africa. Molecular data have been available only in few species of Acanthogyrus (Acanthosentis) to date on GenBank database. For 18S, only two sequences from unknown Acanthosentis sp. from India are available, while for the ITS1-5.8S-ITS2 region, only sequences of A. cheni from China and of two unidentified species from Malaysia are available. Additional studies of species of Acanthosentis based on morphological and molecular genetic data will be needed to reconstruct the evolutionary history and phylogenetic affinities of this group of acanthocephalans.

    Matched MeSH terms: Evolution, Molecular
  16. Ismail SNFB, Baharum SN, Fazry S, Low CF
    J Fish Dis, 2019 Dec;42(12):1761-1772.
    PMID: 31637743 DOI: 10.1111/jfd.13093
    Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
    Matched MeSH terms: Evolution, Molecular
  17. Lind CE, Agyakwah SK, Attipoe FY, Nugent C, Crooijmans RPMA, Toguyeni A
    Sci Rep, 2019 11 14;9(1):16767.
    PMID: 31727970 DOI: 10.1038/s41598-019-53295-y
    Nile tilapia (Oreochromis niloticus) is a globally significant aquaculture species rapidly gaining status as a farmed commodity. In West Africa, wild Nile tilapia genetic resources are abundant yet knowledge of fine-scale population structure and patterns of natural genetic variation are limited. Coinciding with this is a burgeoning growth in tilapia aquaculture in Ghana and other countries within the region underpinned by locally available genetic resources. Using 192 single nucleotide polymorphism (SNP) markers this study conducted a genetic survey of Nile tilapia throughout West Africa, sampling 23 wild populations across eight countries (Benin, Burkina Faso, Côte d'Ivoire, Ghana, Togo, Mali, Gambia and Senegal), representing the major catchments of the Volta, Niger, Senegal and Gambia River basins. A pattern of isolation-by-distance and significant spatial genetic structure was identified throughout West Africa (Global FST = 0.144), which largely corresponds to major river basins and, to a lesser extent, sub-basins. Two populations from the Gambia River (Kudang and Walekounda), one from the western Niger River (Lake Sélingué) and one from the upper Red Volta River (Kongoussi) showed markedly lower levels of diversity and high genetic differentiation compared to all other populations, suggesting genetically isolated populations occurring across the region. Genetic structure within the Volta Basin did not always follow the pattern expected for sub-river basins. This study identifies clear genetic structuring and differentiation amongst West African Nile tilapia populations, which concur with broad patterns found in previous studies. In addition, we provide new evidence for fine-scale genetic structuring within the Volta Basin and previously unidentified genetic differences of populations in Gambia. The 192 SNP marker suite used in this study is a useful tool for differentiating tilapia populations and we recommend incorporating this marker suite into future population screening of O. niloticus. Our results form the basis of a solid platform for future research on wild tilapia genetic resources in West Africa, and the identification of potentially valuable germplasm for use in ongoing breeding programs for aquaculture.
    Matched MeSH terms: Evolution, Molecular
  18. Zhang C, Gao Y, Ning Z, Lu Y, Zhang X, Liu J, et al.
    Genome Biol, 2019 10 22;20(1):215.
    PMID: 31640808 DOI: 10.1186/s13059-019-1838-5
    Despite the tremendous growth of the DNA sequencing data in the last decade, our understanding of the human genome is still in its infancy. To understand the implications of genetic variants in the light of population genetics and molecular evolution, we developed a database, PGG.SNV ( https://www.pggsnv.org ), which gives much higher weight to previously under-investigated indigenous populations in Asia. PGG.SNV archives 265 million SNVs across 220,147 present-day genomes and 1018 ancient genomes, including 1009 newly sequenced genomes, representing 977 global populations. Moreover, estimation of population genetic diversity and evolutionary parameters is available in PGG.SNV, a unique feature compared with other databases.
    Matched MeSH terms: Evolution, Molecular
  19. Mandary MB, Masomian M, Poh CL
    Int J Mol Sci, 2019 Sep 19;20(18).
    PMID: 31546962 DOI: 10.3390/ijms20184657
    RNA viruses are known to replicate by low fidelity polymerases and have high mutation rates whereby the resulting virus population tends to exist as a distribution of mutants. In this review, we aim to explore how genetic events such as spontaneous mutations could alter the genomic organization of RNA viruses in such a way that they impact virus replications and plaque morphology. The phenomenon of quasispecies within a viral population is also discussed to reflect virulence and its implications for RNA viruses. An understanding of how such events occur will provide further evidence about whether there are molecular determinants for plaque morphology of RNA viruses or whether different plaque phenotypes arise due to the presence of quasispecies within a population. Ultimately this review gives an insight into whether the intrinsically high error rates due to the low fidelity of RNA polymerases is responsible for the variation in plaque morphology and diversity in virulence. This can be a useful tool in characterizing mechanisms that facilitate virus adaptation and evolution.
    Matched MeSH terms: Evolution, Molecular*
  20. Shi W, Louzada S, Grigorova M, Massaia A, Arciero E, Kibena L, et al.
    Hum Mol Genet, 2019 Aug 15;28(16):2785-2798.
    PMID: 31108506 DOI: 10.1093/hmg/ddz101
    Human RBMY1 genes are located in four variable-sized clusters on the Y chromosome, expressed in male germ cells and possibly associated with sperm motility. We have re-investigated the mutational background and evolutionary history of the RBMY1 copy number distribution in worldwide samples and its relevance to sperm parameters in an Estonian cohort of idiopathic male factor infertility subjects. We estimated approximate RBMY1 copy numbers in 1218 1000 Genomes Project phase 3 males from sequencing read-depth, then chose 14 for valid ation by multicolour fibre-FISH. These fibre-FISH samples provided accurate calibration standards for the entire panel and led to detailed insights into population variation and mutational mechanisms. RBMY1 copy number worldwide ranged from 3 to 13 with a mode of 8. The two larger proximal clusters were the most variable, and additional duplications, deletions and inversions were detected. Placing the copy number estimates onto the published Y-SNP-based phylogeny of the same samples suggested a minimum of 562 mutational changes, translating to a mutation rate of 2.20 × 10-3 (95% CI 1.94 × 10-3 to 2.48 × 10-3) per father-to-son Y-transmission, higher than many short tandem repeat (Y-STRs), and showed no evidence for selection for increased or decreased copy number, but possible copy number stabilizing selection. An analysis of RBMY1 copy numbers among 376 infertility subjects failed to replicate a previously reported association with sperm motility and showed no significant effect on sperm count and concentration, serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone levels or testicular and semen volume. These results provide the first in-depth insights into the structural rearrangements underlying RBMY1 copy number variation across diverse human lineages.
    Matched MeSH terms: Evolution, Molecular*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links