Displaying publications 21 - 40 of 64 in total

Abstract:
Sort:
  1. Crona BI, Wassénius E, Jonell M, Koehn JZ, Short R, Tigchelaar M, et al.
    Nature, 2023 Apr;616(7955):104-112.
    PMID: 36813964 DOI: 10.1038/s41586-023-05737-x
    Blue foods, sourced in aquatic environments, are important for the economies, livelihoods, nutritional security and cultures of people in many nations. They are often nutrient rich1, generate lower emissions and impacts on land and water than many terrestrial meats2, and contribute to the health3, wellbeing and livelihoods of many rural communities4. The Blue Food Assessment recently evaluated nutritional, environmental, economic and justice dimensions of blue foods globally. Here we integrate these findings and translate them into four policy objectives to help realize the contributions that blue foods can make to national food systems around the world: ensuring supplies of critical nutrients, providing healthy alternatives to terrestrial meat, reducing dietary environmental footprints and safeguarding blue food contributions to nutrition, just economies and livelihoods under a changing climate. To account for how context-specific environmental, socio-economic and cultural aspects affect this contribution, we assess the relevance of each policy objective for individual countries, and examine associated co-benefits and trade-offs at national and international scales. We find that in many African and South American nations, facilitating consumption of culturally relevant blue food, especially among nutritionally vulnerable population segments, could address vitamin B12 and omega-3 deficiencies. Meanwhile, in many global North nations, cardiovascular disease rates and large greenhouse gas footprints from ruminant meat intake could be lowered through moderate consumption of seafood with low environmental impact. The analytical framework we provide also identifies countries with high future risk, for whom climate adaptation of blue food systems will be particularly important. Overall the framework helps decision makers to assess the blue food policy objectives most relevant to their geographies, and to compare and contrast the benefits and trade-offs associated with pursuing these objectives.
    Matched MeSH terms: Fatty Acids, Omega-3
  2. Amirul Alam M, Juraimi AS, Rafii MY, Hamid AA, Kamal Uddin M, Alam MZ, et al.
    Mol Biol Rep, 2014 Nov;41(11):7395-411.
    PMID: 25085039 DOI: 10.1007/s11033-014-3628-1
    Common purslane (Portulaca oleracea), also known as pigweed, fatweed, pusle, and little hogweed, is an annual succulent herb in the family Portulacaceae that is found in most corners of the globe. From the ancient ages purslane has been treated as a major weed of vegetables as well as other crops. However, worldwide researchers and nutritionists have studied this plant as a potential vegetable crop for humans as well as animals. Purslane is a nutritious vegetable with high antioxidant properties and recently has been recognized as the richest source of α-linolenic acid, essential omega-3 and 6 fatty acids, ascorbic acid, glutathione, α-tocopherol and β-carotene. The lack of vegetable sources of ω-3 fatty acids has resulted in a growing level of attention to introduce purslane as a new cultivated vegetable. In the rapid-revolutionizing worldwide atmosphere, the ability to produce improved planting material appropriate to diverse and varying rising conditions is a supreme precedence. Though various published reports on morphological, physiological, nutritional and medicinal aspects of purslane are available, research on the genetic improvement of this promising vegetable crop are scant. Now it is necessary to conduct research for the genetic improvement of this plant. Genetic improvement of purslane is also a real scientific challenge. Scientific modernization of conventional breeding with the advent of advance biotechnological and molecular approaches such as tissue culture, protoplast fusion, genetic transformation, somatic hybridization, marker-assisted selection, qualitative trait locus mapping, genomics, informatics and various statistical representation have opened up new opportunities of revising the relationship between genetic diversity, agronomic performance and response to breeding for varietal improvement. This review is an attempt to amalgamate the assorted scientific information on purslane propagation, cultivation, varietal improvement, nutrient analyses, medicinal uses and to describe prospective research especially for genetic improvement of this crop.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  3. Baker EJ, Yusof MH, Yaqoob P, Miles EA, Calder PC
    Mol Aspects Med, 2018 12;64:169-181.
    PMID: 30102930 DOI: 10.1016/j.mam.2018.08.002
    Endothelial cells (ECs) play a role in the optimal function of blood vessels. When endothelial function becomes dysregulated, the risk of developing atherosclerosis increases. Specifically, upregulation of adhesion molecule expression on ECs promotes the movement of leukocytes, particularly monocytes, into the vessel wall. Here, monocytes differentiate into macrophages and may become foam cells, contributing to the initiation and progression of an atherosclerotic plaque. The ability of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) to influence the expression of adhesion molecules by ECs and to modulate leukocyte-endothelial adhesion has been studied in cell culture using various types of ECs, in animal feeding studies and in human trials; the latter have tended to evaluate soluble forms of adhesion molecules that circulate in the bloodstream. These studies indicate that n-3 PUFAs (both eicosapentaenoic acid and docosahexaenoic acid) can decrease the expression of key adhesion molecules, such as vascular cell adhesion molecule 1, by ECs and that this results in decreased adhesive interactions between leukocytes and ECs. These findings suggest that n-3 PUFAs may lower leukocyte infiltration into the vascular wall, which could contribute to reduced atherosclerosis and lowered risk of cardiovascular disease.
    Matched MeSH terms: Fatty Acids, Omega-3
  4. Chua CS, Huang SY, Cheng CW, Bai CH, Hsu CY, Chiu HW, et al.
    Medicine (Baltimore), 2017 Dec;96(49):e9094.
    PMID: 29245334 DOI: 10.1097/MD.0000000000009094
    Abdominal pain is one of the key symptoms of irritable bowel syndrome (IBS). Studies have indicated an increase in the incidence of IBS in Asia. However, yet the pathophysiology of this disease remains unknown. Women are more likely to develop the condition than men, especially the constipation-predominant type. Essential fatty acid (EFA) malnutrition is one of several theories discussing the mechanism of IBS.The authors hypothesized that significant EFA deficiency may cause abdominal pain in patients with IBS. However, because patterns in the oral intake of EFAs differ between cultures, the authors narrowed this study to examine the nutritional status of Asian female patients with IBSThe authors investigated Asian female patients with IBS and compared them with a group of healthy controls. Thirty patients with IBS and 39 healthy individuals were included in this study. The participants' age, height, weight, and waist size were recorded. The 24-item Hamilton Depression Rating Scale was documented. Both erythrocyte and plasma fatty acid content were analyzed through gas-liquid chromatography.The authors found that patients with IBS exhibited significantly higher scores for depression, higher proportions of plasma saturated fatty acids and monounsaturated fatty acids, and lower proportions of docosahexaenoic acid and total omega-3 polyunsaturated fatty acids in plasma are associated with IBS in Asian female patients. Further study is indicated to confirm the causality of this association.
    Matched MeSH terms: Fatty Acids, Omega-3/blood
  5. Md Amin R, Koski M, Båmstedt U, Vidoudez C
    Mar Biol, 2011;158(9):1965-1980.
    PMID: 24391269
    Three strains of the chain-forming diatom Skeletonema marinoi, differing in their production of polyunsaturated aldehydes (PUA) and nutritional food components, were used in experiments on feeding, egg production, hatching success, pellet production, and behavior of three common planktonic copepods: Acartia tonsa, Pseudocalanus elongatus, and Temora longicornis. The three different diatom strains (9B, 1G, and 7J) induced widely different effects on Acartia tonsa physiology, and the 9B strain induced different effects for the three copepods. In contrast, different strains induced no or small alterations in the distribution, swimming behavior, and turning frequency of the copepods. 22:6(n-3) fatty acid (DHA) and sterol content of the diet typically showed a positive effect on either egg production (A. tonsa) or hatching success (P. elongatus), while other measured compounds (PUA, other long-chain polyunsaturated fatty acids) of the algae had no obvious effects. Our results demonstrate that differences between strains of a given diatom species can generate effects on copepod physiology, which are as large as those induced by different algae species or groups. This emphasizes the need to identify the specific characteristics of local diatoms together with the interacting effects of different mineral, biochemical, and toxic compounds and their potential implications on different copepod species.
    Matched MeSH terms: Fatty Acids, Omega-3
  6. Ng, T.K.W.
    Malays J Nutr, 2006;12(2):181-188.
    MyJurnal
    Omega-3 fatty acid nutrition is widely recognised as essential to health and general well-being. However, health professionals and the general public in Malaysia may lack knowledge on the sources or the amounts of these essential fat components in foods. This paper attempts to correct this scenario by identifying the potential sources of omega-3 fatty acids [a-linolenic acid (ALA), or eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] in the Malaysian diet and calculating the amounts of these “nutrients” provided per serving of a wide variety of foods. The information generated provides Malaysian health professionals and consumers with options in food choices or meal planning with the goal towards achieving the recommended nutrient intakes for omega-3 fatty acids. The findings in the present study revealed that the potential sources of omega-3 fatty acids in the Malaysian diet in decreasing order are: edible oils (ALA), fish and fish products (EPA+DHA), vegetables (ALA), meat and eggs (EPA+DHA), and milk/milk products (EPA+DHA). Edible oils which are exceptionally high in ALA such as flaxseed oil and perilla oil are presently unavailable at local retail outlets and supermarkets. However, consumers can still meet the recommended nutrient intakes (RNIs) for omega-3 fatty acids of 0.3 to 1.2% energy (equivalent to 0.67g-2.67g) by choosing a wellbalanced diet prepared preferably with a cooking oil blend containing ALA, and one or more servings daily from at least three of the following food groups: (i) fish (“jelawat”, “siakap”, sardines, tuna, mackerel, salmon)/seafoods (shrimps, crab)/meat, (ii) vegetables/soybean/ soybean-based products/beans and peas, (iii) omega-3 enriched/fortified foods (eg. “omega-3 eggs”), and (iv) ready-to-drink omega-3 milk preparations/soybean milk.
    Matched MeSH terms: Fatty Acids, Omega-3
  7. Ong HT
    Malays Fam Physician, 2006;1(2):65-66.
    PMID: 27570590 MyJurnal
    Evidence thus far still supports the contention that fish derived omega-3 fatty acids, EPA and DHA, are good for heart patients. But this controversy tells us something about the medical research, and the acquisition and application of medical knowledge. Being scientists, doctors try to perform studies as rigorously as possible with randomised, placebo-controlled trials and using tests of statistical significance. But since the studies are on humans, with all their individual differing habits and inconsistencies, different results are produced by different researchers. And so while medicine is a science, in that the trials are scientifically conducted, the interpretation of the results, and in particular its application for the individual patient, is very much an art. A good doctor, like the good artist, must spend much time, energy and effort sieving through the good from the not so good data before coming out with the correct picture. Only by keeping an unbiased, inquisitive mind can the evidence be reviewed to solve the problem at hand. Almost always, the balance of data will favour a particular stand. In this day when newspapers are full of medical articles, a family physician has to be educated, interested and inquisitive to be a source of accurate and relevant information for the patients.
    Matched MeSH terms: Fatty Acids, Omega-3
  8. Muhammad Danial Che Ramli, Nur Amira Sumari, Neni Widiasmoro Selamat, Hussin Muhammad, Junedah Sanusi
    MyJurnal
    Introduction: Peripheral nerve injuries (PNI) are a disabling injury as it often results in motor and sensory deficit with cognitive impairment. Flaxseed oil provides a good source of omega-3 fatty acid and it is believed to be able to protect the damaged nerve cell for successful nerve recovery. This study aimed to investigate a potential neuro-re- generation properties of flaxseed oil in treating the PNI. Methods: A total of 65 rats were separated into 4 groups: Group 1: Normal group (n=5), Group 2: Negative group (n=20), Group 3: Experimental group (n=20) and Group 4: Positive control (n=20), all the group were further divided into 4 groups (post-operative 7, 14, 21, 28 days, n=5 for each days). The functional restoration was assessed by walking track analysis (Sciatic Functional Index analysis-SFI) and toe spreading reflex (grading score). Electron microscope studies were performed on sciatic nerve to evaluate the regenerative process through morphologic and morphometric changes. Results: Oral administration of flaxseed oil (experimental group) at 1000 mg/kg body weight/day showed better recovery compared to negative control value. However, there was no significant difference in SFI and toe spreading reflex between positive (mecobalamin) and experimental group (flaxseed oil). Morphological and morphometrical findings indicated increases in the myelin thickness and myelin sheath layer after administration of flaxseed oil. Conclusion: The flaxseed oil supplementation could enhance the neurorestorative capacities of injured sciatic nerve.
    Matched MeSH terms: Fatty Acids, Omega-3
  9. Maroufyan E, Kasim A, Ebrahimi M, Loh TC, Bejo MH, Zerihun H, et al.
    Lipids Health Dis, 2012 Jan 25;11:15.
    PMID: 22273277 DOI: 10.1186/1476-511X-11-15
    BACKGROUND: Infectious bursal disease (IBD) results in economic loss due to mortality, reduction in production efficiency and increasing the usage of antibiotics. This study was carried out to investigate the modulatory roles of dietary n-3 polyunsaturated fatty acids (PUFA) enrichment in immune response and performance of IBD challenged broiler chickens.

    METHODS: A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5) using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded.

    RESULTS: On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment.

    CONCLUSIONS: Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.

    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology; Fatty Acids, Omega-3/therapeutic use*; Fatty Acids, Omega-3/chemistry
  10. Chatchatee P, Lee WS, Carrilho E, Kosuwon P, Simakachorn N, Yavuz Y, et al.
    J Pediatr Gastroenterol Nutr, 2014 Apr;58(4):428-37.
    PMID: 24614142 DOI: 10.1097/MPG.0000000000000252
    OBJECTIVE: The aim of this study was to investigate the effect of growing-up milk (GUM) with added short-chain galacto-oligosaccharides (scGOS)/long-chain fructo-oligosaccharides (lcFOS) (9:1) (Immunofortis) and n-3 long-chain polyunsaturated fatty acids (LCPUFAs) on the occurrence of infections in healthy children attending day care centres.

    METHODS: In a randomised double-blind controlled, parallel, multicountry intervention study, 767 healthy children, ages 11 to 29 months, received GUM with scGOS/lcFOS/LCPUFAs (the active group, n = 388), GUM without scGOS/lcFOS/LCPUFAs (the control group, n = 379), or cow's milk (n = 37) for 52 weeks. The primary outcome measure was the number of episodes of upper respiratory tract infections or gastrointestinal infections based on a combination of subject's illness symptoms reported by the parents during the intervention period.

    RESULTS: Children in the active group compared with the control group had a decreased risk of developing at least 1 infection (299/388 [77%] vs 313/379 [83%], respectively, relative risk 0.93, 95% confidence interval [CI] 0.87-1.00; logistic regression P = 0.03). There was a trend toward a reduction (P = 0.07) in the total number of infections in the active group, which was significant when confirmed by one of the investigators (268/388 [69%] vs 293/379 [77%], respectively, relative risk 0.89, 95% CI 0.82-0.97; P = 0.004, post hoc). More infectious episodes were observed in the cow's milk group, when compared with both GUM groups (34/37 [92%] vs 612/767 [80%], respectively, relative risk 1.15, 95% CI 1.04-1.28).

    CONCLUSIONS: This is the first study in children to show a reduced risk of infection following consumption of GUM supplemented with scGOS/lcFOS/n-3 LCPUFAs. The borderline statistical significance justifies a new study to confirm this finding.

    Matched MeSH terms: Fatty Acids, Omega-3/administration & dosage*
  11. Hashim RB, Jamil EF, Zulkipli FH, Daud JM
    J Oleo Sci, 2015;64(2):205-9.
    PMID: 25748380 DOI: 10.5650/jos.ess14191
    Pangasius micronemus (Black Pangasius sp.) and Pangasius nasutus (Fruit Pangasius sp.) are two species of silver catfish widely consumed in Malaysia. The present study evaluated fatty acid profiles of fish muscles in these two Pangasius sp. from different farms and locations to determine which species or location is better in term of lipid quality. The results showed MUFAs (Monounsaturated fatty acid) content was highest (35.0-44.4%) followed by SFA (Saturated fatty acid) [32.0-41.5%] and PUFAs (polyunsaturated fatty acids) [9.3-19.3%]. P. micronemus of Sg. Kanchong displayed higher palmitic acid (SFA; 29.0%) than P. nasutus from Peramu (23.5%). In contrast, oleic acid (MUFA) revealed highest in P. nasutus (38.1%) while lowest in P. micronemus of Sg. Kanchong (29.7%). Additionally, utmost PUFAs belonged to P. micronemus of Sg. Kanchong (19.3%) and lower most in P. nasutus from Peramu (9.3%). P. micronemus presented with a higher EPA (eicosapentaenoic acid) [1.0-1.4%], DHA (Docosahexaenoic acid) [1.7-2.8%] and LA (Linoleic acid) [11.8-12.0%] than P. nasutus (EPA; 0.3%, DHA; 1.0%, LA; 4.8%). However, P. nasutus established higher GLA (gamma-linolenic acid) [0.4%] than P. micronemus (0.04-0.06%). Both Pangasius sp. can be regarded as good supplies of omega-3 and omega-6. Overall, P. micronemus from Sg. Kanchong is the best choice among all for reason high in EPA and DHA.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis
  12. Rehman K, Mohd Amin MC, Zulfakar MH
    J Oleo Sci, 2014;63(10):961-70.
    PMID: 25252741
    Polymer-Fish oil bigel (hydrogel/oleogel colloidal mixture) was developed by using fish oil and natural (sodium alginate) and synthetic (hydroxypropyl methylcellulose) polymer for pharmaceutical purposes. The bigels were closely monitored and thermal, rheological and mechanical properties were compared with the conventional hydrogels for their potential use as an effective transdermal drug delivery vehicle. Stability of the fish oil fatty acids (especially eicosapentanoic acid, EPA and docosahexanoic acid, DHA) was determined by gas chromatography and the drug content (imiquimod) was assessed with liquid chromatography. Furthermore, in vitro permeation study was conducted to determine the capability of the fish oil-bigels as transdermal drug delivery vehicle. The bigels showed pseudoplastic rheological features, with excellent mechanical properties (adhesiveness, peak stress and hardness), which indicated their excellent spreadability for application on the skin. Bigels prepared with mixture of sodium alginate and fish oil (SB1 and SB2), and the bigels prepared with the mixture of hydroxypropyl methylcellulose and fish oil (HB1-HB3) showed high cumulative permeation and drug flux compared to hydrogels. Addition of fish oil proved to be beneficial in increasing the drug permeation and the results were statistically significant (p < 0.05, one-way Anova, SPSS 20.0). Thus, it can be concluded that bigel formulations could be used as an effective topical and transdermal drug delivery vehicle for pharmaceutical purposes.
    Matched MeSH terms: Fatty Acids, Omega-3
  13. Nehdi IA, Hadj-Kali MK, Sbihi HM, Tan CP, Al-Resayes SI
    J Oleo Sci, 2019;68(11):1041-1049.
    PMID: 31695014 DOI: 10.5650/jos.ess19111
    An optimal ratio of omega-6 to omega-3 (ω-6/ω-3) polyunsaturated fatty acids (PUFA) in the diet prevents the pathogenesis of many inflammatory diseases. This study aimed to synthesize and characterize ternary oil blends with optimal ω-6/ω-3 ratios using olive (OL), sunflower (SU), and cress (CR) oils. The oxidative stability, thermal profile, fatty acid (FA) and tocopherol compositions, and the physicochemical properties of the blends were used to determine their quality. Oil mixtures were prepared with 2, 3, 4, and 5 ω-6/ω-3 ratios. FA composition and tocopherol content were the most important factors affecting the oxidation and thermal stabilities of the oils. All oil mixtures showed good quality indices. Thus, synthetized oil blends with high oxidative stability, high antioxidant content, optimal ω-6/ω-3 ratios, and recommended FA compositions can influence human health. The composition of healthy oil blends with optimal ω-6/ω-3 ratios was expressed mathematically and depicted graphically in a ternary diagram.
    Matched MeSH terms: Fatty Acids, Omega-3/analysis*; Fatty Acids, Omega-3/chemistry
  14. Yakubu A, Azlan A, Loh SP, Md Noor S
    J Obes, 2019;2019:4929131.
    PMID: 31354987 DOI: 10.1155/2019/4929131
    This review article stresses the effective role of dietary fish fillet docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on overweight as a risk factor of cardiovascular disease (CVD) via platelet phospholipid modification. Several reports have demonstrated that saturated fat in overweight evokes systemic inflammation and more importantly predisposes it to cardiovascular disorder. Prospective studies have shown that saturated fat is directly proportional to the level of arachidonic acids (AA), precursor of thromboxane in the platelet phospholipid membrane as omega-6 fatty acid in overweight and obese people. Some literature has demonstrated that omega-3 fatty acid from fish fillet ameliorates inflammation, reduces proinflammatory cytokine, inhibits signaling pathway, and regulates the physical composition of inflammatory leukocytes and free radicals (ROS). Yellow stripe scad (YSS) is a local Malaysian fish that has been shown to contain a comparable level of EPA/DHA content as observed in salmon. This review article will focus on the dietary role of fish fillet that will balance the omega-6 fatty acid/omega-3 fatty acid ratio in platelet phospholipid from YSS to manage and prevent healthy overweight/obesity-related risk factor of CVD and to avoid the risk orthodox drug treatment.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology; Fatty Acids, Omega-3/therapeutic use
  15. Rohani-Ghadikolaei K, Abdulalian E, Ng WK
    J Food Sci Technol, 2012 Dec;49(6):774-80.
    PMID: 24293698 DOI: 10.1007/s13197-010-0220-0
    The proximate, fatty acid and mineral composition were determined for green (Ulva lactuca and Enteromorpha intestinalis), brown (Sargassum ilicifolium and Colpomenia sinuosa) and red (Hypnea valentiae and Gracilaria corticata) seaweeds collected from the Persian Gulf of Iran. Results showed that the seaweeds were high in carbohydrate (31.8-59.1%, dry weight) and ash (12.4-29.9%) but low in lipid content (1.5-3.6%). The protein content of red or green seaweeds was significantly higher (p 3 PUFA content with the lowest n-6/n-3 ratio. Persian Gulf seaweeds contained higher concentrations of all the minerals examined (K, Mg, Fe, Mn, Cu, Zn and Co) compared to terrestrial vegetables. Seaweeds could potentially be used as a food or feed additive in Iran.
    Matched MeSH terms: Fatty Acids, Omega-3
  16. Tevan, R., Jayakumar, Saravanan, Mohd Hasbi Ab. Rahim, Maniam, Gaaty Pragas, Govindan, Natanamurugaraj
    MyJurnal
    The world is facing a problem regarding the use of petroleum fuels that has led to a search for a suitable alternative fuel source. Researchers have come up with the idea of producing biofuel to overcome this problem. In this study, microalgae were explored as a high potential feedstock to produce biofuel. In order to produce a large quantity of biofuel with low cost at a short time, the manipulation of nutrients is a factor in microalgae cultivation. In this study, Iron (II) Chloride (FeCl2) was added to the nutrients to initiate a stressful condition during growth which contributes to the produce of lipid. Isolated microalgae species were identified as Scenedesmus sp. During mass cultivation, the microalgae cultures were scaled up to 2 L of culture. Three flasks of microalgae culture were labelled with S1, S2, and S3. Flask S1 acts as a control without the addition of FeCl2, while another two flasks acted as experimental flasks. Flask S2 was supplemented with 0.5 mg FeCl2 while Flask S3 was supplemented with 1.0 mg of FeCl2. With the addition of Iron (II) Chloride, microalgae entered a stationary phase at day 9 and day 10 as compared to the control flask which enters the stationary phase at day 7. This also affects the dry weight. Flask 3 produces 0.8658 g of microalgae powder compared to Flask 1 and 2 which produced 0.4649 g and 0.5357 g respectively. Lipid analysis was done by using GCMS and GCFID. Flask 3 produced various types of fatty acids which can be used for biodiesel production compared to other cultivates. In Flask 1, docosanoic acid which is a saturated fatty acid was detected. While in Flask 2 (S2), with the addition of 0.5 mg of FeCl2, docosapentaenoic acid was produced. In the last flask which involved the addition of 1.0 mg of FeCl2, more fatty acid was detected. In GC-FID data, 6 types of fatty acids were detected. Linolein acid, linolenic acid, stearidonic acid, docosapentaenoic acid, docosahexaenoic acid and docosanoic acid were produced at different retention times. Most of the fatty acids produced are polyunsaturated fatty acid (PUFA). In transesterification, the fatty acid reacts with methanol and acid catalyst. The reaction produces fatty acid methyl ester. In Flask 1, the control flask, without the addition of FeCl2, no fatty acid methyl esters (FAME) was produced. However, in Flask 2 and 3 which were added 0.5 mg FeCl2 and 1.0 mg FeCl2, n-hexadecanoic acid methyl ester which is also known as palmitic acid was produced. Palmitic fatty acid can be used for biodiesel production.
    Matched MeSH terms: Fatty Acids, Omega-3
  17. Chung, Hung Hui, Azham Zulkharnain
    MyJurnal
    The FADS2 catalyzes the first rate-limiting step in the long chain-polyunsaturated fatty acids
    (LC-PUFAs) biosynthesis pathway by converting -linolenic acid and linoleic acid into
    stearidonic acid and -linolenic acid via the -3 and -6 pathways respectively. In mammals,
    PPAR and SREBP-1c have been implicated in the polyunsaturated fatty acids (PUFAs)
    mediated transcriptional activation of FADS2 promoter. However, in zebrafish, not much is
    known regarding the regulation of fads2 transcriptional regulation. Here, in this study, five
    vectors containing different promoter regions were constructed in order to analyse putative
    promoter activities. Through truncation analysis, it was found that the 1.2 kb promoter was able
    to drive luciferase activity to an approximate 40-fold in HepG2 cells. Upon mutagenesis
    analysis, three sites which are the putative NF-Y, SREBP and PPAR binding sites were found
    to be essential in driving the promoter activity. Lastly, the 1.2 kb fads2 promoter was able to
    direct EGFP expression specifically to the yolk syncytial layer (YSL) when transiently
    expressed in microinjected zebrafish embryos.
    Matched MeSH terms: Fatty Acids, Omega-3
  18. Mohan D, Mente A, Dehghan M, Rangarajan S, O'Donnell M, Hu W, et al.
    JAMA Intern Med, 2021 05 01;181(5):631-649.
    PMID: 33683310 DOI: 10.1001/jamainternmed.2021.0036
    Importance: Cohort studies report inconsistent associations between fish consumption, a major source of long-chain ω-3 fatty acids, and risk of cardiovascular disease (CVD) and mortality. Whether the associations vary between those with and those without vascular disease is unknown.

    Objective: To examine whether the associations of fish consumption with risk of CVD or of mortality differ between individuals with and individuals without vascular disease.

    Design, Setting, and Participants: This pooled analysis of individual participant data involved 191 558 individuals from 4 cohort studies-147 645 individuals (139 827 without CVD and 7818 with CVD) from 21 countries in the Prospective Urban Rural Epidemiology (PURE) study and 43 413 patients with vascular disease in 3 prospective studies from 40 countries. Adjusted hazard ratios (HRs) were calculated by multilevel Cox regression separately within each study and then pooled using random-effects meta-analysis. This analysis was conducted from January to June 2020.

    Exposures: Fish consumption was recorded using validated food frequency questionnaires. In 1 of the cohorts with vascular disease, a separate qualitative food frequency questionnaire was used to assess intake of individual types of fish.

    Main Outcomes and Measures: Mortality and major CVD events (including myocardial infarction, stroke, congestive heart failure, or sudden death).

    Results: Overall, 191 558 participants with a mean (SD) age of 54.1 (8.0) years (91 666 [47.9%] male) were included in the present analysis. During 9.1 years of follow-up in PURE, compared with little or no fish intake (≤50 g/mo), an intake of 350 g/wk or more was not associated with risk of major CVD (HR, 0.95; 95% CI, 0.86-1.04) or total mortality (HR, 0.96; 0.88-1.05). By contrast, in the 3 cohorts of patients with vascular disease, the HR for risk of major CVD (HR, 0.84; 95% CI, 0.73-0.96) and total mortality (HR, 0.82; 95% CI, 0.74-0.91) was lowest with intakes of at least 175 g/wk (or approximately 2 servings/wk) compared with 50 g/mo or lower, with no further apparent decrease in HR with consumption of 350 g/wk or higher. Fish with higher amounts of ω-3 fatty acids were strongly associated with a lower risk of CVD (HR, 0.94; 95% CI, 0.92-0.97 per 5-g increment of intake), whereas other fish were neutral (collected in 1 cohort of patients with vascular disease). The association between fish intake and each outcome varied by CVD status, with a lower risk found among patients with vascular disease but not in general populations (for major CVD, I2 = 82.6 [P = .02]; for death, I2 = 90.8 [P = .001]).

    Conclusions and Relevance: Findings of this pooled analysis of 4 cohort studies indicated that a minimal fish intake of 175 g (approximately 2 servings) weekly is associated with lower risk of major CVD and mortality among patients with prior CVD but not in general populations. The consumption of fish (especially oily fish) should be evaluated in randomized trials of clinical outcomes among people with vascular disease.

    Matched MeSH terms: Fatty Acids, Omega-3/metabolism; Fatty Acids, Omega-3/therapeutic use
  19. Sopian NF, Ajat M, Shafie NI, Noor MH, Ebrahimi M, Rajion MA, et al.
    Int J Mol Sci, 2015;16(7):15800-10.
    PMID: 26184176 DOI: 10.3390/ijms160715800
    Dietary omega-3 fatty acids have been recognized to improve brain cognitive function. Deficiency leads to dysfunctional zinc metabolism associated with learning and memory impairment. The objective of this study is to explore the effect of short-term dietary omega-3 fatty acids on hippocampus gene expression at the molecular level in relation to spatial recognition memory in mice. A total of 24 male BALB/c mice were randomly divided into four groups and fed a standard pellet as a control group (CTL, n = 6), standard pellet added with 10% (w/w) fish oil (FO, n = 6), 10% (w/w) soybean oil (SO, n = 6) and 10% (w/w) butter (BT, n = 6). After 3 weeks on the treatment diets, spatial-recognition memory was tested on a Y-maze. The hippocampus gene expression was determined using a real-time PCR. The results showed that 3 weeks of dietary omega-3 fatty acid supplementation improved cognitive performance along with the up-regulation of α-synuclein, calmodulin and transthyretin genes expression. In addition, dietary omega-3 fatty acid deficiency increased the level of ZnT3 gene and subsequently reduced cognitive performance in mice. These results indicate that the increased the ZnT3 levels caused by the deficiency of omega-3 fatty acids produced an abnormal zinc metabolism that in turn impaired the brain cognitive performance in mice.
    Matched MeSH terms: Fatty Acids, Omega-3/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links