Displaying publications 21 - 40 of 298 in total

Abstract:
Sort:
  1. Awaluddin R, Nugrahaningsih DAA, Solikhah EN
    Med J Malaysia, 2020 05;75(Suppl 1):10-13.
    PMID: 32471963
    INTRODUCTION: Diabetes mellitus is known as one of the risk factors for Idiopathic Pulmonary Fibrosis (IPF) development. Recently, metformin, the commonly used antidiabetic medication, is reported to have a therapeutic effect in IPF. However, the benefit of metformin therapy in IPF is still controversial. The study aims to investigate the metformin effect on the fibroblast and macrophage co-culture under lipopolysaccharides (LPS) and high glucose treatment.

    METHOD: The NIH 3T3 and RAW 264.7 co-culture were induced with LPS and high glucose before it was treated with metformin in different concentration. After 24 hours of treatment, the media and the cells were collected for further examination. The collagen expression was measured using Sirius red dye in the media. The IL-6 and TGF β mRNA examination were done using real-time PCR.

    RESULT: Our study showed that NIH 3T3 and RAW 264.7 coculture treated with metformin has higher collagen expression, but lower IL-6 mRNA expression compares to those on co-culture without treatment.

    CONCLUSION: Metformin increases fibrosis markers in LPS and high glucose-induced NIH 3T3 and RAW 264.7 coculture despite its ability to improve IL-6 mRNA expression.

    Matched MeSH terms: Fibroblasts/drug effects*
  2. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Cancer Invest, 2020 Sep;38(8-9):445-462.
    PMID: 32713210 DOI: 10.1080/07357907.2020.1802474
    Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  3. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
    Matched MeSH terms: Fibroblasts/metabolism
  4. Durani LW, Jaafar F, Tan JK, Tajul Arifin K, Mohd Yusof YA, Wan Ngah WZ, et al.
    Clin Ter, 2016;166(6):e365-73.
    PMID: 26794818 DOI: 10.7417/T.2015.1902
    Tocotrienols have been known for their antioxidant properties besides their roles in cellular signalling, gene expression, immune response and apoptosis. This study aimed to determine the molecular mechanism of tocotrienol-rich fraction (TRF) in preventing cellular senescence of human diploid fibroblasts (HDFs) by targeting the genes in senescence-associated signalling pathways.
    Matched MeSH terms: Fibroblasts
  5. Saifullah B, El Zowalaty ME, Arulselvan P, Fakurazi S, Webster TJ, Geilich BM, et al.
    Int J Nanomedicine, 2016;11:3225-37.
    PMID: 27486322 DOI: 10.2147/IJN.S102406
    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  6. Lim YH, Oo CW, Koh RY, Voon GL, Yew MY, Yam MF, et al.
    Drug Dev Res, 2020 Jul 28.
    PMID: 32720715 DOI: 10.1002/ddr.21715
    In recent years, chalcones and their derivatives have become the focus of global scientists due to increasing evidence reported towards their potency in antitumor and anti-cancer. Here, the chalcones designed and synthesized in our present study were derived from the derivatives of naphthaldehyde and acetophenone. Both these precursors have been reported in demonstrating a certain degree of anticancer property. Also, the substituents on these precursors such as hydroxyl, methoxy, prenyl, and chloro were shown able to enhance the anticancer efficiency. Hence, it is the interest of the current study to investigate the anticancer potential of the hybrid molecules (chalcones) consisting of these precursors with different alkoxy substituents and with or without the fluorine moiety. Two series of chalcone derivatives were designed, synthesized, and characterized using the elemental analysis, IR, 1 H and 13 C NMR spectroscopy, subsequently evaluated for their anti-cancer activity. Interestingly, the results showed that the fluorinated chalcones 11-15 exhibited stronger cytotoxic activity towards the breast cancer cell lines (4T1) compared to non-fluorinated chalcone derivatives. Remarkably, the selectivity index obtained for these fluorinated chalcones derivatives against the breast cancer 4T1 cell line was higher than those exhibited by cisplatin, which is one of the most frequently deployed chemotherapy agents in current medical practice. These findings could provide an insight towards the potential of fluorinated chalcones being developed as an anti-cancer agent with moderate activity towards breast cancer cell and low inhibition of fibroblast cell at a concentration of 100 μM.
    Matched MeSH terms: Fibroblasts
  7. Hikmawati D, Maulida HN, Putra AP, Budiatin AS, Syahrom A
    Int J Biomater, 2019;2019:7179243.
    PMID: 31341479 DOI: 10.1155/2019/7179243
    The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.
    Matched MeSH terms: Fibroblasts
  8. Mat Afandi MA, Maarof M, Chowdhury SR, Bt Hj Idrus R
    Tissue Eng Regen Med, 2020 12;17(6):835-845.
    PMID: 32767029 DOI: 10.1007/s13770-020-00283-3
    BACKGROUND: One of the long-standing problems of myoblasts in vitro expansion is slow cell migration and this causes fibroblast population to exceed myoblasts. In this study, we investigated the synergistic effect of laminin and epidermal growth factor (EGF) on co-cultured myoblasts and fibroblasts for cell attachment, proliferation and migration.

    METHODS: Skeletal human muscle cells were cultured in four different conditions; control, EGF, laminin (Lam) and laminin EGF (Lam + EGF). Using live imaging system, their cellular properties; attachment, migration and growth were exposed to Rho kinase inhibitor, Y-27632, and EGF-receptor (EGF-R) inhibitor, gefitinib were measured.

    RESULTS: Myoblast migration and proliferation was enhanced significantly by synergistic stimulation of laminin and EGF (0.61 ± 0.14 µm/min, 0.008 ± 0.001 h-1) compare to that by EGF alone (0.26 ± 0.13 µm/min, 0.004 ± 0.0009 h-1). However, no changes in proliferation and migration were observed for fibroblasts among the culture conditions. Inhibition of Rho kinase resulted in the increase of the myoblast migration on the laminin-coated surface with EGF condition (0.64 ± 0.18 µm/min). Compared to the untreated conditions, myoblasts cultured on the laminin-coated surface and EGF demonstrated elongated morphology, and average cell length increase significantly. In contrast, inhibition of EGF-R resulted in the decrease of myoblast migration on the laminin coated surface with EGF supplemented condition (0.43 ± 0.05 µm/min) in comparison to the untreated control (0.53 ± 0.05 µm/min).

    CONCLUSION: Laminin and EGF preferentially enhance the proliferation and migration of myoblasts, and Rho kinase and EGF-R play a role in this synergistic effect. These results will be beneficial for the propagation of skeletal muscle cells for clinical applications.

    Matched MeSH terms: Fibroblasts
  9. Kumcu E, Unverdi H, Kaymaz E, Oral O, Turkbey D, Hucmenoglu S
    Malays J Pathol, 2018 Aug;40(2):137-142.
    PMID: 30173230
    INTRODUCTION: Breast cancer is still a serious health problem in 21st century and diagnosis, treatment and prognosis of this malignant disease are subject to many research. While cancer research has been focused on tumour cells primarily, recent studies showed that tumour stroma contribute to carcinogenesis as well as tumour cells. Especially fibroblasts adjacent to epithelial tumour cells are not ordinary fibroblasts and play the critical role. Studies showed that these cancer associated fibroblasts (CAFs) have different genetic profile and protein expression. One of the differently expressed molecules recently found is podoplanin. Podoplanin, utilised as a lymphatic endothelial marker, is found to be expressed in CAFs. The aim of this study is to evaluate the relationship between the stromal expression of podoplanin in invasive breast carcinoma and clinicopathological parameters.

    MATERIALS & METHODS: Podoplanin expression was evaluated immunohistochemically in 153 breast cancers. Tumours with ≥ 10% distinct cytoplasmic podoplanin staining in CAFs were considered as positive.

    RESULTS: In 65.3% of analysed tumours, podoplanin expression was found positive in CAFs. According to our results, podoplanin positive CAFs correlated significantly with tumour size (p= 0.012), tumour grade (p= 0.032) and cerbB2 score (p= 0.032).

    DISCUSSION: Our results suggest that podoplanin expression by CAFs could predict poor patient outcome in breast carcinoma.

    Matched MeSH terms: Cancer-Associated Fibroblasts/metabolism; Cancer-Associated Fibroblasts/pathology
  10. Fatimah SS, Tan GC, Chua K, Fariha MM, Tan AE, Hayati AR
    Microvasc Res, 2013 Mar;86:21-9.
    PMID: 23261754 DOI: 10.1016/j.mvr.2012.12.004
    Particular attention has been directed towards human amnion mesenchymal stem cells (HAMCs) due to their accessibility, availability and immunomodulatory properties. Therefore, the aim of the present study was to determine the temporal changes of stemness and angiogenic gene expressions of serial-passage HAMCs.
    Matched MeSH terms: Fibroblasts/cytology
  11. Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I
    Oncotarget, 2016 Jun 14;7(24):36719-36732.
    PMID: 27167341 DOI: 10.18632/oncotarget.9165
    Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
    Matched MeSH terms: Cancer-Associated Fibroblasts/metabolism
  12. Yusof NZ, Abd Gani SS, Azizul Hasan ZA, Idris Z
    Int J Toxicol, 2018 05 07;37(4):335-343.
    PMID: 29734825 DOI: 10.1177/1091581818773979
    Many types of phytochemicals have been found to be present in oil palm leaf and could potentially be used as functional ingredients for skincare product. However, as of today, there is no published report on hazard identification and safety assessment of oil palm ( Elaeis guineensis) leaf extract (OPLE), particularly on skin and eye irritation. In this study, potential hazard of OPLE on skin and eye irritation was evaluated as an initial step to the safety assessment of OPLE. In vitro cell viability study of OPLE on normal human dermal fibroblasts showed that OPLE was nontoxic to the cells with percentage viability more than 90% after 24 and 48 hours of incubation. Skin irritation potential of OPLE was evaluated using in vitro SkinEthic reconstructed human epidermis (RHE) model (Organization for Economic Cooperation and Development [OECD] Test Guideline 439, 2015), while eye irritation potential was evaluated using in vitro SkinEthic Human corneal epithelium (HCE) model (OECD test guideline 492, 2017). Hazard identification results showed that OPLE at 1%, 5%, and 10% (wt/wt) was classified as nonirritant to the skin and eye where mean tissue viabilities of SkinEthic RHE and SkinEthic HCE were more than 50% and 60%, respectively. Therefore, we recommend a further safety assessment, such as human patch testing, to confirm the nonirritant of OPLE.
    Matched MeSH terms: Fibroblasts
  13. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: Fibroblasts/drug effects*; Fibroblasts/metabolism; Fibroblasts/pathology
  14. Musa M
    Adv Med Sci, 2020 Mar;65(1):163-169.
    PMID: 31972467 DOI: 10.1016/j.advms.2019.12.001
    Besides malignant cells, the tumour microenvironment consists of various stromal cells such as cancer-associated fibroblasts (CAFs) and myofibroblasts. Accumulation of heterogeneous populations of stromal cells in solid tumours is associated with lower survival rates and cancer recurrence in patients. Certain limitations presented by conventional experimental designs and techniques in cancer research have led to poor understanding of the fundamental basis of cancer niche. Recent developments in single-cell techniques allow more in-depth studies of the tumour microenvironment. Analyses at the single-cell level enables the detection of rare cell types, characterization of intra-tumour cellular heterogeneity and analysis of the lineage output of malignant cells. This subsequently, provides valuable insights on better diagnostic methods and treatment avenues for cancer. This review explores the recent advancements and applications of single-cell technologies in cancer research pertaining to the study of stromal fibroblasts in the microenvironment of solid tumours.
    Matched MeSH terms: Cancer-Associated Fibroblasts/metabolism; Cancer-Associated Fibroblasts/pathology*
  15. Seet WT, Manira M, Maarof M, Khairul Anuar K, Chua KH, Ahmad Irfan AW, et al.
    PLoS One, 2012;7(8):e40978.
    PMID: 22927903 DOI: 10.1371/journal.pone.0040978
    Skin plays an important role in defense against infection and other harmful biological agents. Due to its fragile structure, skin can be easily damaged by heat, chemicals, traumatic injuries and diseases. An autologous bilayered human skin equivalent, MyDerm™, was engineered to provide a living skin substitute to treat critical skin loss. However, one of the disadvantages of living skin substitute is its short shelf-life, hence limiting its distribution worldwide. The aim of this study was to evaluate the shelf-life of MyDerm™ through assessment of cell morphology, cell viability, population doubling time and functional gene expression levels before transplantation. Skin samples were digested with 0.6% Collagenase Type I followed by epithelial cells dissociation with TrypLE Select. Dermal fibroblasts and keratinocytes were culture-expanded to obtain sufficient cells for MyDerm™ construction. MyDerm™ was constructed with plasma-fibrin as temporary biomaterial and evaluated at 0, 24, 48 and 72 hours after storage at 4°C for its shelf-life determination. The morphology of skin cells derived from MyDerm™ remained unchanged across storage times. Cells harvested from MyDerm™ after storage appeared in good viability (90.5%±2.7% to 94.9%±1.6%) and had short population doubling time (58.4±8.7 to 76.9±19 hours). The modest drop in cell viability and increased in population doubling time at longer storage duration did not demonstrate a significant difference. Gene expression for CK10, CK14 and COL III were also comparable between different storage times. In conclusion, MyDerm™ can be stored in basal medium at 4°C for at least 72 hours before transplantation without compromising its functionality.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects; Fibroblasts/metabolism
  16. Man RC, Idrus RBH, Ibrahim WIW, Saim AB, Lokanathan Y
    Adv Exp Med Biol, 2024;1450:59-76.
    PMID: 37247133 DOI: 10.1007/5584_2023_777
    Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.
    Matched MeSH terms: Fibroblasts
  17. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Fibroblasts/metabolism; Fibroblasts/pathology
  18. Vannas A, Hogan MJ, Wood I
    Am J Ophthalmol, 1975 Feb;79(2):211-9.
    PMID: 46719
    Eleven corneal specimens from nine patients with Salzmann's nodular degeneration of the cornea, together with all available clinical information, were collected for this study. The specimens were examined by light and electron microscopy. An antecedent keratitis was diagnosed by history and microscopic findings in every case. The corneal epithelium showed degenerative changes, its thickness varied, and in nodular areas it often consisted of only a single layer of flattened epithelial cells by light microscopy. Bowman's membrane was missing over the nodules, and in this zone there was excessive secretion of a basement membrane-like material. Hyaline degeneration of collagen, cellular debris, and electron-dense hyaline deposits were seen in the collagen of the nodules. The number of fibrocytes in the nodules varied from many that were active to a few that were degenerating. External irritation because of poor epithelial protection was interpreted as a causative factor, although other tissue repair mechanisms may also have played a role.
    Matched MeSH terms: Fibroblasts/ultrastructure
  19. Maarof M, Mh Busra MF, Lokanathan Y, Bt Hj Idrus R, Rajab NF, Chowdhury SR
    Drug Deliv Transl Res, 2019 02;9(1):144-161.
    PMID: 30547385 DOI: 10.1007/s13346-018-00612-z
    Skin substitutes are one of the main treatments for skin loss, and a skin substitute that is readily available would be the best treatment option. However, most cell-based skin substitutes require long production times, and therefore, patients endure long waiting times. The proteins secreted from the cells and tissues play vital roles in promoting wound healing. Thus, we aimed to develop an acellular three-dimensional (3D) skin patch with dermal fibroblast conditioned medium (DFCM) and collagen hydrogel for immediate treatment of skin loss. Fibroblasts from human skin samples were cultured using serum-free keratinocyte-specific media (KM1 or KM2) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2, and DFCM-FM, respectively. The acellular 3D skin patch was soft, semi-solid, and translucent. Collagen mixed with DFCM-KM1 and DFCM-KM2 showed higher protein release compared to collagen plus DFCM-FM. In vitro and in vivo testing revealed that DFCM and collagen hydrogel did not induce an immune response. The implantation of the 3D skin patch with or without DFCM on the dorsum of BALB/c mice demonstrated a significantly faster healing rate compared to the no-treatment group 7 days after implantation, and all groups had complete re-epithelialization at day 17. Histological analysis confirmed the structure and integrity of the regenerated skin, with positive expression of cytokeratin 14 and type I collagen in the epidermal and dermal layer, respectively. These findings highlight the possibility of using fibroblast secretory factors together with collagen hydrogel in an acellular 3D skin patch that can be used allogeneically for immediate treatment of full-thickness skin loss.
    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/chemistry
  20. Law JX, Chowdhury SR, Aminuddin BS, Ruszymah BHI
    Cell Tissue Bank, 2017 Dec;18(4):585-595.
    PMID: 28748415 DOI: 10.1007/s10561-017-9645-2
    Fibrin has excellent biocompatibility and biological properties to support tissue regeneration and promote wound healing. However, the role of diluted fibrin in wound healing has yet to be elucidated as it is commonly used in high concentration. This study was aimed to examine the effects of diluted plasma-derived fibrin (PDF) on keratinocyte and fibroblast wound healing in term of cell proliferation, migration, extracellular matrix (ECM) production and soluble factor secretion. Two PDF concentrations, 10 and 20% (v/v) were tested on keratinocytes and fibroblasts indirectly co-cultured in the transwell system. The control group was cultured with 5% FBS. Results showed that PDF reduced the keratinocyte growth rate and fibroblast migration, and increased the fibroblast ECM gene expression whereby significant differences were found between the 20% PDF group and the 5% FBS group. Similar trend was seen for the 10% PDF group but the differences were not significant. Comparison of the soluble factors between the PDF groups demonstrated that the level of growth-related oncogene alpha, interleukin-8 and epithelial neutrophil-activating peptide-78 were significantly higher in the 10% PDF group, whilst interleukin-1 alpha and granulocyte-macrophage colony stimulating factor were significantly more concentrated in the 20% PDF group. Our results suggested that PDF selectively elevated the expression of collagen type 1 and collagen type 3 in fibroblasts but slowed down the migration in concentration-dependent manner. These novel findings provide new insight into the role of PDF in wound healing and may have important implications for the use of fibrin in skin tissue engineering.
    Matched MeSH terms: Fibroblasts/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links