Displaying publications 21 - 40 of 231 in total

Abstract:
Sort:
  1. Li Z, Li L, Sokolova I, Shang Y, Huang W, Khor W, et al.
    Mar Pollut Bull, 2024 Feb;199:115979.
    PMID: 38171167 DOI: 10.1016/j.marpolbul.2023.115979
    Coastal habitats are exposed to increasing pressure of nanopollutants commonly combined with warming due to the seasonal temperature cycles and global climate change. To investigate the toxicological effects of TiO2 nanoparticles (TiO2 NPs) and elevated temperature on the intestinal health of the mussels (Mytilus coruscus), the mussels were exposed to 0.1 mg/L TiO2 NPs with different crystal structures for 14 days at 20 °C and 28 °C, respectively. Compared to 20 °C, the agglomeration of TiO2 NPs was more serious at 28 °C. Exposure to TiO2 NPs led to elevated mortality of M. coruscus and modified the intestinal microbial community as shown by 16S rRNA sequence analysis. Exposure to TiO2 NPs changed the relative abundance of Bacteroidetes, Proteobacteria and Firmicutes. The relative abundances of putative mutualistic symbionts Tenericutes and Fusobacteria increased in the gut of M. coruscus exposed to anatase, which have contributed to the lower mortality in this group. LEfSe showed the combined stress of warming and TiO2 NPs increased the risk of M. coruscus being infected with potential pathogenic bacteria. This study emphasizes the toxicity differences between crystal structures of TiO2 NPs, and will provides an important reference for analyzing the physiological and ecological effects of nanomaterial pollution on bivalves under the background of global climate change.
    Matched MeSH terms: Gastrointestinal Microbiome*
  2. Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, et al.
    Sci Total Environ, 2024 Apr 01;919:170924.
    PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924
    Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
    Matched MeSH terms: Gastrointestinal Microbiome*
  3. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Apr 04;25(7).
    PMID: 38612834 DOI: 10.3390/ijms25074024
    The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
    Matched MeSH terms: Gastrointestinal Microbiome*
  4. Yap PSX, Chong CW, Ahmad Kamar A, Yap IKS, Choo YM, Lai NM, et al.
    Sci Rep, 2021 01 14;11(1):1353.
    PMID: 33446779 DOI: 10.1038/s41598-020-80278-1
    Emerging evidence has shown a link between the perturbations and development of the gut microbiota in infants with their immediate and long-term health. To better understand the assembly of the gut microbiota in preterm infants, faecal samples were longitudinally collected from the preterm (n = 19) and term (n = 20) infants from birth until month 12. 16S rRNA gene sequencing (n = 141) and metabolomics profiling (n = 141) using nuclear magnetic resonance spectroscopy identified significant differences between groups in various time points. A panel of amino acid metabolites and central metabolism intermediates significantly correlated with the relative abundances of 8 species of bacteria were identified in the preterm group. In contrast, faecal metabolites of term infants had significantly higher levels of metabolites which are commonly found in milk such as fucose and β-hydroxybutyrate. We demonstrated that the early-life factors such as gestational age, birth weight and NICU exposures, exerted a sustained effect to the dynamics of gut microbial composition and metabolism of the neonates up to one year of age. Thus, our findings suggest that intervention at this early time could provide 'metabolic rescue' to preterm infants from aberrant initial gut microbial colonisation and succession.
    Matched MeSH terms: Gastrointestinal Microbiome*
  5. R Muralitharan R, Marques FZ
    J Hum Hypertens, 2021 02;35(2):162-169.
    PMID: 32733062 DOI: 10.1038/s41371-020-0388-3
    Advances in sequencing technology have increased our understanding of the composition of the gut microbiota and their contribution to health and disease states, including in cardiovascular diseases such as hypertension. The gut microbiota is heavily influenced by diet and produce metabolites such as short-chain fatty acids (SCFAs) and trimethylamine-N-oxide (TMAO) from various food sources. SCFAs, such as acetate, propionate, and butyrate, have been shown to have blood pressure, cardiac hypertrophy, and fibrosis lowering properties, while TMAO has been associated with increased risk of major cardiovascular adverse events and mortality. Some of these metabolites have known ligands (for example, SCFA receptors such as GPR41, GPR43, GPR109a, and Olf78 in mice/OR51E2 in humans) which could potentially be manipulated as therapeutic targets for hypertension. In this review, we discuss several types of diet-related gut microbial metabolites and their sensing mechanisms that are relevant for hypertension, and the future directions for the field.
    Matched MeSH terms: Gastrointestinal Microbiome*
  6. Chong CW, Wong LC, Teh CSJ, Ismail NH, Chan PQ, Lim CS, et al.
    J Food Biochem, 2020 12;44(12):e13535.
    PMID: 33103260 DOI: 10.1111/jfbc.13535
    Coffee is rich in antioxidant and has been shown to confer various health benefits. Here, we investigated the effect of single-dose coffee consumption in healthy human subjects. About 30 healthy volunteers were recruited and given a serving of sugar free black coffee. Urine and fecal samples were collected and analyzed. Significant changes in urinary metabolites relating to coffee, gut microbial and host energy metabolisms were observed post-coffee consumption. Clear sex differences were also observed in the urinary metabolic profiles pre- and post-coffee consumption. Sex differences in richness and composition of gut microbiota were observed, however, the effect of single-dose coffee consumption on host gut microbiota were unremarkable. These findings indicated that single-dose coffee consumption affects sex-specific host metabolic responses that relates to gut-microbe and energy metabolism. This study demonstrated the utility of systems biology tools to unravel complexity of host-diet biology and gut microbial responses. PRACTICAL APPLICATIONS: This study demonstrated that integrated systems biology approach enabled efficient extractions of host biochemical and microbial information that allows food industry to ascertain the impact of diet and longitudinal assessment of potential functional food in humans.
    Matched MeSH terms: Gastrointestinal Microbiome*
  7. Nakkarach A, Foo HL, Song AA, Mutalib NEA, Nitisinprasert S, Withayagiat U
    Microb Cell Fact, 2021 Feb 05;20(1):36.
    PMID: 33546705 DOI: 10.1186/s12934-020-01477-z
    BACKGROUND: Extracellular metabolites of short chain fatty acids (SCFA) excreted by gut microbiota have been reported to play an important role in the regulation of intestinal homeostasis. Apart from supplying energy, SCFA also elicit immune stimulation in animal and human cells. Therefore, an attempt was conducted to isolate SCFA producing bacteria from healthy human microbiota. The anti-cancer and anti-inflammatory effects of extracellular metabolites and individual SFCA were further investigated by using breast, colon cancer and macrophage cells. Toxin, inflammatory and anti-inflammatory cytokine gene expressions were investigated by RT-qPCR analyses in this study.

    RESULTS: Escherichia coli KUB-36 was selected in this study since it has the capability to produce seven SCFA extracellularly. It produced acetic acid as the main SCFA. It is a non-exotoxin producer and hence, it is a safe gut microbiota. The IC50 values indicated that the E. coli KUB-36 metabolites treatment elicited more potent cytotoxicity effect on MCF7 breast cancer cell as compared to colon cancer and leukemia cancer cells but exhibited little cytotoxic effects on normal breast cell. Furthermore, E. coli KUB-36 metabolites and individual SCFA could affect inflammatory responses in lipopolysaccharide-induced THP-1 macrophage cells since they suppressed inflammatory cytokines IL-1β, IL-6, IL-8 and TNF-α well as compared to the control, whilst inducing anti-inflammatory cytokine IL-10 expression.

    CONCLUSION: SCFA producing E. coli KUB-36 possessed vast potential as a beneficial gut microbe since it is a non-exotoxin producer that exhibited beneficial cytotoxic effects on cancer cells and elicited anti-inflammatory activity simultaneously. However, the probiotic characteristic of E. coli KUB-36 should be further elucidated using in vivo animal models.

    Matched MeSH terms: Gastrointestinal Microbiome*
  8. Shansky Y, Bespyatykh J
    Molecules, 2022 Nov 13;27(22).
    PMID: 36431930 DOI: 10.3390/molecules27227830
    Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
    Matched MeSH terms: Gastrointestinal Microbiome*
  9. Snelson M, R Muralitharan R, Dinakis E, Nakai M, Jama HA, Shihata WA, et al.
    Hypertension, 2021 06;77(6):e53-e55.
    PMID: 33866801 DOI: 10.1161/HYPERTENSIONAHA.121.17039
    Matched MeSH terms: Gastrointestinal Microbiome/physiology*
  10. Liu J, Chen J, Wang S, Xie J, Wang Y, Chai TT, et al.
    Food Chem, 2022 May 30;377:132000.
    PMID: 34999460 DOI: 10.1016/j.foodchem.2021.132000
    The aim of this study was to investigate the digestion and fermentation properties of fish protein fermented by Monascus. Semi-dried fish was fermented by applying Monascus purpureus Went M 3.439. Our results show that the Monascus fermentation of the fish protein enriched the free amino acids and achieved a relatively higher glutamate content than the control group. The Monascus treatment promoted the decomposition of the fish protein during in vitro digestion, reduced the ammonia and indole content and tended to increase the propionic acid content during in vitro fermentation. The Monascus treatment considerably changed the gut microbiota composition, and particularly increased the relative abundance of Parabacteroides in the in vitro fermentation model of human distal colon. Consumption of Monascus fermented fish protein could result in positive changes in fermentation metabolites and gut microbiota, which brings potential health benefits.
    Matched MeSH terms: Gastrointestinal Microbiome*
  11. Rashidah NH, Lim SM, Neoh CF, Majeed ABA, Tan MP, Khor HM, et al.
    Ageing Res Rev, 2022 Dec;82:101744.
    PMID: 36202312 DOI: 10.1016/j.arr.2022.101744
    This systematic review appraised previous findings on differential gut microbiota composition and intestinal permeability markers between frail and healthy older adults. A literature search was performed using PubMed, Scopus, ScienceDirect and the Cochrane Library. Relevant studies were shortlisted based on inclusion and exclusion criteria as well as assessed for risk of bias. The primary outcome was the differential composition of gut microbiota and/ or intestinal permeability markers between frail and healthy older adults. A total of 10 case-control studies and one cohort study were shortlisted. Based on consistent findings reported by more than one shortlisted study, the microbiota of frail older adults was characterised by decreased phylum Firmicutes, with Dialister, Lactobacillus and Ruminococcus being the prominent genera. Healthy controls, on the other hand, exhibited higher Eubacterium at the genera level. In terms of intestinal permeability, frail older adults were presented with increased serum zonulin, pro-inflammatory cytokines (TNF-α, HMGB-1, IL-6, IL1-ra, MIP-1β) and amino acids (aspartic acid and phosphoethanolamine) when compared to healthy controls. Altogether, frail elderlies had lower gut microbiota diversity and lower abundance of SCFA producers, which may have led to leaky guts, upregulated pro-inflammatory cytokines, frailty and sarcopenia.
    Matched MeSH terms: Gastrointestinal Microbiome*
  12. Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H
    Technol Cancer Res Treat, 2023;22:15330338221149799.
    PMID: 36624625 DOI: 10.1177/15330338221149799
    Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
    Matched MeSH terms: Gastrointestinal Microbiome*
  13. Dong L, Li Y, Chen Q, Liu Y, Qiao Z, Sang S, et al.
    Food Chem, 2023 Aug 15;417:135861.
    PMID: 36906946 DOI: 10.1016/j.foodchem.2023.135861
    Advanced glycosylation end products (AGEs) are a series of complex compounds which generate in the advanced phase of Maillard reaction, which can pose a non-negligible risk to human health. This article systematically encompasses AGEs in milk and dairy products under different processing conditions, influencing factors, inhibition mechanism and levels among the different categories of dairy products. In particular, it describes the effects of various sterilization techniques on the Maillard reaction. Different processing techniques have a significant effect on AGEs content. In addition, it clearly articulates the determination methods of AGEs and even discusses its immunometabolism via gut microbiota. It is observed that the metabolism of AGEs can affect the composition of the gut microbiota, which further has an impact on intestinal function and the gut-brain axis. This research also provides a suggestion for AGEs mitigation strategies, which are beneficial to optimize the dairy production, especially innovative processing technology application.
    Matched MeSH terms: Gastrointestinal Microbiome*
  14. Lau NS, Ting SY, Sam KK, M J, Wong SC, Wu X, et al.
    Microb Ecol, 2023 Jul;86(1):575-588.
    PMID: 35618944 DOI: 10.1007/s00248-022-02046-0
    Although numerous studies in aquatic organisms have linked lipid metabolism with intestinal bacterial structure, the possibility of the gut microbiota participating in the biosynthesis of beneficial long-chain polyunsaturated fatty acid (LC-PUFA) remains vague. We profiled the gut microbiota of the mud crab Scylla olivacea fed with either a LC-PUFA rich (FO) or a LC-PUFA-poor but C18-PUFA substrate-rich (LOCO) diet. Additionally, a diet with a similar profile as LOCO but with the inclusion of an antibiotic, oxolinic acid (LOCOAB), was also used to further demarcate the possibility of LC-PUFA biosynthesis in gut microbiota. Compared to diet FO treatment, crabs fed diet LOCO contained a higher proportion of Proteobacteria, notably two known taxonomy groups with PUFA biosynthesis capacity, Vibrio and Shewanella. Annotation of metagenomic datasets also revealed enrichment in the KEGG pathway of unsaturated fatty acid biosynthesis and polyketide synthase-like system sequences with this diet. Intriguingly, diet LOCOAB impeded the presence of Vibrio and Shewanella and with it, the function of unsaturated fatty acid biosynthesis. However, there was an increase in the function of short-chain fatty acid production, accompanied by a shift towards the abundance of phyla Bacteroidota and Spirochaetota. Collectively, these results exemplified bacterial communities and their corresponding PUFA biosynthesis pathways in the microbiota of an aquatic crustacean species.
    Matched MeSH terms: Gastrointestinal Microbiome*
  15. Han M, Zhu C, Tang S, Liang J, Li D, Guo Y, et al.
    Aquat Toxicol, 2023 Sep;262:106644.
    PMID: 37549485 DOI: 10.1016/j.aquatox.2023.106644
    Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.
    Matched MeSH terms: Gastrointestinal Microbiome*
  16. Wojciech L, Png CW, Koh EY, Kioh DYQ, Deng L, Wang Z, et al.
    EMBO J, 2023 Nov 02;42(21):e112963.
    PMID: 37743772 DOI: 10.15252/embj.2022112963
    The large intestine harbors microorganisms playing unique roles in host physiology. The beneficial or detrimental outcome of host-microbiome coexistence depends largely on the balance between regulators and responder intestinal CD4+ T cells. We found that ulcerative colitis-like changes in the large intestine after infection with the protist Blastocystis ST7 in a mouse model are associated with reduction of anti-inflammatory Treg cells and simultaneous expansion of pro-inflammatory Th17 responders. These alterations in CD4+ T cells depended on the tryptophan metabolite indole-3-acetaldehyde (I3AA) produced by this single-cell eukaryote. I3AA reduced the Treg subset in vivo and iTreg development in vitro by modifying their sensing of TGFβ, concomitantly affecting recognition of self-flora antigens by conventional CD4+ T cells. Parasite-derived I3AA also induces over-exuberant TCR signaling, manifested by increased CD69 expression and downregulation of co-inhibitor PD-1. We have thus identified a new mechanism dictating CD4+ fate decisions. The findings thus shine a new light on the ability of the protist microbiome and tryptophan metabolites, derived from them or other sources, to modulate the adaptive immune compartment, particularly in the context of gut inflammatory disorders.
    Matched MeSH terms: Gastrointestinal Microbiome*
  17. D T, Venkatesh MP
    Presse Med, 2023 Dec;52(4):104204.
    PMID: 37944641 DOI: 10.1016/j.lpm.2023.104204
    Fecal microbiota transplantation (FMT) is a medical treatment which involves the transfer of feces from a healthy donor to a recipient to restore the balance of gut microbiota and improve clinical outcomes. FMT has gained recognition in recent years due to its effectiveness in treating recurrent Clostridioides difficile infections (rCDI) and other gastrointestinal disorders. Additionally, it has been studied as an intervention for some other conditions, like inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). This review covers regulatory considerations related to FMT, including the current state of FMT regulation and the need for further research to fully understand the safety and efficacy of this treatment. For transplantation of fecal microbiota, the Food and Drug Administration (FDA) classifies the treatment as an investigational new drug (IND), which typically requires physicians and scientists to submit an IND application. Ethical issues surrounding FMT, including the necessity of informed consent from donors and recipients and the potential transmission of infectious agents, are also discussed. Overall, FMT has the potential to offer significant therapeutic benefits, but it also raises regulatory and ethical considerations that require careful consideration. Further research is necessary to fully comprehend risks and benefits of FMT and to develop guidelines for its use in clinical practice.
    Matched MeSH terms: Gastrointestinal Microbiome*
  18. K VK, Bhat RG, Rao BK, R AP
    Reprod Sci, 2023 Dec;30(12):3443-3455.
    PMID: 37418220 DOI: 10.1007/s43032-023-01289-7
    Uterine fibroid is a common gynecological disorder that affects women of reproductive age and has emerged as a major public health concern. The symptoms have a negative influence on both their physical health and quality of life. The cost of treatment has a significant impact on the disease's burden. Even though its origin is uncertain, estrogen is thought to be a key player in fibroid pathophysiology. Many theories, including those based on genetic and environmental factors, explain what causes hyper-estrogenic condition in fibroid patients. One such possibility that is currently being explored is the hypothesis that an altered gut microbiome can contribute to the development of diseases characterized by estrogen dominance. Gut dysbiosis is often a "hot area" in the health sciences. According to a recent study, uterine fibroid patients have altered gut microbiome. A variety of risk factors influence both fibroid development and gut homeostasis. Diet, lifestyle, physical activity, and environmental contaminants have an impact on estrogen and the gut flora. A better understanding of uterine fibroids' pathophysiology is required to develop effective preventative and treatment options. A few ways by which the gut microbiota contributes to UF include estrogen, impaired immune function, inflammation, and altered gut metabolites. Therefore, in the future, while treating fibroid patients, various strategies to deal with changes in the gut flora may be advantageous. For developing suggestions for clinical diagnosis and therapy, we reviewed the literature on the relationship between uterine fibroids and the gut microbiota.
    Matched MeSH terms: Gastrointestinal Microbiome*
  19. Hussein N, Rajasuriar R, Khan AM, Lim YA, Gan GG
    Mol Cancer Res, 2024 Jan 02;22(1):7-20.
    PMID: 37906201 DOI: 10.1158/1541-7786.MCR-23-0080
    Humans are in a complex symbiotic relationship with a wide range of microbial organisms, including bacteria, viruses, and fungi. The evolution and composition of the human microbiome can be an indicator of how it may affect human health and susceptibility to diseases. Microbiome alteration, termed as dysbiosis, has been linked to the pathogenesis and progression of hematological cancers. A variety of mechanisms, including epithelial barrier disruption, local chronic inflammation response trigger, antigen dis-sequestration, and molecular mimicry, have been proposed to be associated with gut microbiota. Dysbiosis may be induced or worsened by cancer therapies (such as chemotherapy and/or hematopoietic stem cell transplantation) or infection. The use of antibiotics during treatment may also promote dysbiosis, with possible long-term consequences. The aim of this review is to provide a succinct summary of the current knowledge describing the role of the microbiome in hematological cancers, as well as its influence on their therapies. Modulation of the gut microbiome, involving modifying the composition of the beneficial microorganisms in the management and treatment of hematological cancers is also discussed. Additionally discussed are the latest developments in modeling approaches and tools used for computational analyses, interpretation and better understanding of the gut microbiome data.
    Matched MeSH terms: Gastrointestinal Microbiome*
  20. Ang XY, Roslan NS, Ahmad N, Yusof SM, Abdullah N, Nik Ab Rahman NN, et al.
    Benef Microbes, 2023 Nov 23;14(5):421-431.
    PMID: 38350486 DOI: 10.1163/18762891-20220103
    The development of probiotics has now included the areas along the gut-vaginal axis. We thus aimed to investigate the effects of lactobacilli probiotic to modulate and restore vaginal and gut microbiota of pregnant women with vaginal candidiasis (VC). A randomised, double-blind and placebo-controlled study was performed in 78 pregnant women with VC. Patients were randomised to either the probiotic (SynForU-HerCare) or placebo which were administered at baseline and continued for 8-weeks (two capsules/day of 9.5 log cfu/capsule). Microbiota profiles were assessed at time points of weeks-0, 4 and 8 for high vaginal swab and faecal samples. Shannon diversity index showed that after 8-weeks amid VC, a shift in microbial community compositional changes occurred in the high vaginal region at both genus (P=0.025) and species (P=0.044) levels, where the administration of probiotic prevented such a shift. These changes were mainly attributed to a decreased in abundance of Lactobacillus (P=0.042) accompanied by increased abundance of Prevotella (P=0.002) and Atopobium (P=0.002) in the placebo group while the probiotic group remained unchanged over time. The administration of probiotics also prevented a reduced abundance of faecal phylum Firmicutes after 8-weeks as seen in the placebo group (P<0.0001), which also showed reduction at subsequent taxonomic levels of class, family, genera and species. VC has not only altered the microbiota of vagina regions but also gut microbiota profiles, causing lessening of gut microbiota that are crucial for gut nutrient availability, protection and immunity. The administration of lactobacilli probiotics has prevented such a shift, leading to better modulated gut and vaginal microenvironment amid VC. The study was registered at ClinicalTrials.gov: identifier number NCT03940612.
    Matched MeSH terms: Gastrointestinal Microbiome*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links