Displaying publications 21 - 40 of 114 in total

Abstract:
Sort:
  1. Siti Hafizan Hassan, Hamidi Abdul Aziz, Mohd Samsudin Abdul Hamid, Siti Rashidah Mohd Nasir, Suhailah Mohamed Noor
    ESTEEM Academic Journal, 2019;15(2):11-23.
    MyJurnal
    The effect of unmanageable construction waste is an unstable land settlement and groundwater pollution. In addition to environmental pollution, construction waste could incur construction cost. The most construction waste is the material used at sites and tile is also a part of the waste generated in construction. The objectives of this study are to determine the tile waste generated in construction stages and linear regression analysis for the amount of tile waste generated. The method used in this study was the Linear Regression Model. The regression model established in the sample data reported an R2 value of 0.793; therefore, the model can predict approximately 79.3% of the factor (area) of tile waste generation. The linear regressions can be applied as tools to predict the tile waste generated at construction sites and help the contractor to track the sources of missing waste.
    Matched MeSH terms: Groundwater
  2. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Fakharian K
    Environ Monit Assess, 2014 Sep;186(9):5797-815.
    PMID: 24891071 DOI: 10.1007/s10661-014-3820-8
    In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol-Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75% of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p > 0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.
    Matched MeSH terms: Groundwater/analysis*; Groundwater/chemistry
  3. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Juahir H, Fakharian K
    ScientificWorldJournal, 2014;2014:419058.
    PMID: 24523640 DOI: 10.1155/2014/419058
    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na(+)/Cl(-), Mg(2+)/Ca(2+), and Cl(-)/HCO3 (-) ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area.
    Matched MeSH terms: Groundwater/analysis; Groundwater/chemistry*
  4. Sheikhy Narany T, Aris AZ, Sefie A, Keesstra S
    Sci Total Environ, 2017 Dec 01;599-600:844-853.
    PMID: 28501010 DOI: 10.1016/j.scitotenv.2017.04.171
    The conversions of forests and grass land to urban and farmland has exerted significant changes on terrestrial ecosystems. However, quantifying how these changes can affect the quality of water resources is still a challenge for hydrologists. Nitrate concentrations can be applied as an indicator to trace the link between land use changes and groundwater quality due to their solubility and easy transport from their source to the groundwater. In this study, 25year records (from 1989 to 2014) of nitrate concentrations are applied to show the impact of land use changes on the quality of groundwater in Northern Kelantan, Malaysia, where large scale deforestation in recent decades has occurred. The results from the integration of time series analysis and geospatial modelling revealed that nitrate (NO3-N) concentrations significantly increased with approximately 8.1% and 3.89% annually in agricultural and residential wells, respectively, over 25years. In 1989 only 1% of the total area had a nitrate value greater than 10mg/L; and this value increased sharply to 48% by 2014. The significant increase in nitrate was only observed in a shallow aquifer with a 3.74% annual nitrate increase. Based on the result of the Autoregressive Integrated Moving Average (ARIMA) model the nitrate contamination is expected to continue to rise by about 2.64% and 3.9% annually until 2030 in agricultural and residential areas. The present study develops techniques for detecting and predicting the impact of land use changes on environmental parameters as an essential step in land and water resource management strategy development.
    Matched MeSH terms: Groundwater
  5. Sheikhy Narany T, Sefie A, Aris AZ
    Sci Total Environ, 2018 Jul 15;630:931-942.
    PMID: 29499548 DOI: 10.1016/j.scitotenv.2018.02.190
    In many regions around the world, there are issues associated with groundwater resources due to human and natural factors. However, the relation between these factors is difficult to determine due to the large number of parameters and complex processes required. In order to understand the relation between land use allocations, the intrinsic factors of the aquifer, climate change data and groundwater chemistry in the multilayered aquifer system in Malaysia's Northern Kelantan Basin, twenty-two years hydrogeochemical data set was used in this research. The groundwater salinisation in the intermediate aquifer, which mainly extends along the coastal line, was revealed through the hydrogeochemical investigation. Even so, there had been no significant trend detected on groundwater salinity from 1989 to 2011. In contrast to salinity, as seen from the nitrate contaminations there had been significantly increasing trends in the shallow aquifer, particularly in the central part of the study area. Additionally, a strong association between high nitrate values and the areas covered with palm oil cultivations and mixed agricultural have been detected by a multiple correspondence analysis (MCA), which implies that the increasing nitrate concentrations are associated with nitrate loading from the application of N-fertilisers. From the process of groundwater salinisation in the intermediate aquifer, could be seen that it has a strong correlation the aquifer lithology, specifically marine sediments which are influenced by the ancient seawater trapped within the sediments.
    Matched MeSH terms: Groundwater
  6. Seyed Reza Saghravani, Ismail Yusoff, Sa’ari Mustapha, Seyed Fazlollah Saghravani
    Sains Malaysiana, 2013;42:553-560.
    Estimation and forecast of groundwater recharge and capacity of aquifer are essential issues in water resources investigation. In the current research, groundwater recharge, recharge coefficient and effective rainfall were determined through a case study using empirical methods applicable to the tropical zones. The related climatological data between January 2000 and December 2010 were collected in Selangor, Malaysia. The results showed that groundwater recharge was326.39 mm per year, effective precipitation was 1807.97 mm per year and recharge coefficient was 18% for the study area. In summary, the precipitation converted to recharge, surface runoff and evapotranspiration are 12, 32 and 56% of rainfall, respectively. Correlation between climatic parameters and groundwater recharge showed positive and negative relationships. The highest correlation was found between precipitation and recharge. Linear multiple regressions between
    recharge and measured climatologic data proved significant relationship between recharge and rainfall and wind speed. It was also proven that the proposed model provided an accurate estimation for similar projects.
    Matched MeSH terms: Groundwater
  7. Sangok FE, Maie N, Melling L, Watanabe A
    Sci Total Environ, 2017 Jun 01;587-588:381-388.
    PMID: 28242223 DOI: 10.1016/j.scitotenv.2017.02.165
    To understand the variations in the decomposability of tropical peat soil following deforestation for an oil palm plantation, a field incubation experiment was conducted in Sarawak, Malaysia. Peat soils collected from three types of primary forest, namely Mixed Peat Swamp (MPS; Gonystylus-Dactylocladus-Neoscrotechinia association), Alan Batu (ABt; Shorea albida-Gonstylus-Strenonurus association), and Alan Bunga (ABg; Shorea albida association), were packed in polyvinyl chloride pipes and installed in an oil palm plantation. Carbon dioxide (CO2) and methane (CH4) fluxes from soil were monthly measured for 3years. Environmental variables including soil temperature, soil moisture content, and groundwater table were also monitored. The pH, loss on ignition, and total carbon (C) content were similar among the three soils, while total N content was larger in the MPS than in the ABg soils. Based on13C nuclear magnetic resonance (NMR) spectroscopy, C composition of the MPS and ABg soils was characterized by the largest proportion of C present as alkyl C and O-alkyl C, respectively. The C composition of the ABt soil was intermediate between the MPS and ABg soils. The CO2fluxes from the three soils ranged from 78 to 625mgCm-2h-1with a negative correlation to groundwater level. The CH4fluxes ranged from -67 to 653μgCm-2h-1. Both total CO2and CH4fluxes were larger in the order ABg>ABt>MPS (P<0.05). Annual rate of peat decomposition as was estimated from cumulative C loss differed up to 2 times, and the rate constant in exponential decay model was 0.033y-1for the MPS soil and 0.066y-1for the ABg soil. The field incubation results of the three forest peat soils seem to reflect the difference in the labile organic matter content, represented by polysaccharides.
    Matched MeSH terms: Groundwater
  8. S C, M V P, S V, M N, K P, Panda B, et al.
    Environ Res, 2022 03;204(Pt A):111729.
    PMID: 34478727 DOI: 10.1016/j.envres.2021.111729
    This study was focused on identifying the region suitable for agriculture-based, using new irrigation groundwater quality plot and its spatio-temporal variation with fuzzy logic technique in a geographic information system (GIS) platform. Six hundred and eighty groundwater samples were collected during pre, southwest, northeast, and post monsoon periods. A new ternary plot was also attempted to determine the irrigation suitability of water by considering four essential parameters such as sodium adsorption ratio (SAR), permeability index (PI), Sodium percentage (Na %), and electrical conductivity (EC). The derived ternary plot was the most beneficial over other available plots, as it incorporated four parameters, and it differs from the US Salinity Laboratory (USSL) plot, such that the groundwater with higher EC could also be used for irrigation purposes, depending on the Na%. The ternary plot revealed that the groundwater predominantly manifested good to moderate category during post, northeast, and southwest monsoons. The assessment with the amount of fertilizer used during the study period showed that the NPK fertilizers were effectively used for irrigation during monsoon periods. Spatial maps on EC, Kelly's ratio, Mg hazard, Na%, PI, potential salinity (PS), SAR, residual sodium carbonate (RSC), and soluble sodium percentage (SSP) were prepared for each season using fuzzy membership values, integrated for each season. A final suitability map derived by an overlay of all the seasonal outputs has identified that the groundwater in the western and the eastern part of the study area are suitable for agriculture. The study recommends cultivation of groundwater-dependent short-term crops, along the western and northern regions of the study area during the pre-monsoon season.
    Matched MeSH terms: Groundwater*
  9. Rizeei HM, Azeez OS, Pradhan B, Khamees HH
    Environ Monit Assess, 2018 Oct 04;190(11):633.
    PMID: 30288624 DOI: 10.1007/s10661-018-7013-8
    Groundwater hazard assessments involve many activities dealing with the impacts of pollution on groundwater, such as human health studies and environment modelling. Nitrate contamination is considered a hazard to human health, environment and ecosystem. In groundwater management, the hazard should be assessed before any action can be taken, particularly for groundwater pollution and water quality. Thus, pollution due to the presence of nitrate poses considerable hazard to drinking water, and excessive nutrient loads deteriorate the ecosystem. The parametric IPNOA model is one of the well-known methods used for evaluating nitrate content. However, it cannot predict the effect of soil and land use/land cover (LULC) types on calculations relying on parametric well samples. Therefore, in this study, the parametric model was trained and integrated with the multivariate data-driven model with different levels of information to assess groundwater nitrate contamination in Saladin, Iraq. The IPNOA model was developed with 185 different well samples and contributing parameters. Then, the IPNOA model was integrated with the logistic regression (LR) model to predict the nitrate contamination levels. Geographic information system techniques were also used to assess the spatial prediction of nitrate contamination. High-resolution SPOT-5 satellite images with 5 m spatial resolution were processed by object-based image analysis and support vector machine algorithm to extract LULC. Mapping of potential areas of nitrate contamination was examined using receiver operating characteristic assessment. Results indicated that the optimised LR-IPNOA model was more accurate in determining and analysing the nitrate hazard concentration than the standalone IPNOA model. This method can be easily replicated in other areas that have similar climatic condition. Therefore, stakeholders in planning and environmental decision makers could benefit immensely from the proposed method of this research, which can be potentially used for a sustainable management of urban, industrialised and agricultural sectors.
    Matched MeSH terms: Groundwater/analysis; Groundwater/chemistry*
  10. Rathinasamy V, Mohamad ET, Komoo I, Legiman MKA, Romanah NA, Hanapi MNB
    Environ Monit Assess, 2023 Jun 16;195(7):850.
    PMID: 37326879 DOI: 10.1007/s10661-023-11453-w
    Jurong Formation underlies part of Southern Johor Bahru which comprises well cemented and consolidated volcanic-sedimentary rocks. The study aims to assess quality and hydrogeochemistry of rock aquifer in Jurong Formation at Southern Johor Bahru which is mainly overlain by rhyolitic tuff. It also evaluates the differences in quality and hydrogeochemistry of rhyolitic tuff aquifer found in source and floodplain zones of South-West Johor Rivers Basin. In this study, a total of nine samples from four wells, namely TW1-TW4, were collected at foothills of Gunung Pulai (TW1) and Iskandar Puteri (TW2-TW4) in Southern Johor Bahru. The samples were examined for physiochemical parameters. The groundwater in the study area is fresh and non-saline with hardness of soft to hard. The pH of groundwater in source zone is significantly higher than in floodplain zone. Meanwhile, the hardness of groundwater in source zone is significantly lower than in other deep wells in floodplain zone as more calcite mineral is present. The concentration of manganese, iron and zinc is lower at source zone than floodplain zone. Three facies of water types were encountered during the study such as CaNaHCO3 in TW2, CaHCO3 in TW1 and TW3 and CaCl2 in TW4. The deep wells in floodplain zone are susceptible to saline intrusion. Finally, the groundwater quality in the study area is found to control by rock weathering especially silicates and carbonates, rainfall and proximity to seawater. This suggests the major control on groundwater chemistry is due to leaching of volcanic rocks and dissolution on calcite infillings. In conclusion, the groundwater is clean and safe in general although pH value is slightly acidic closer to straits and magnesium's presence in higher concentration at TW2.
    Matched MeSH terms: Groundwater*
  11. Rathi BS, Kumar PS, Show PL
    J Hazard Mater, 2021 05 05;409:124413.
    PMID: 33183841 DOI: 10.1016/j.jhazmat.2020.124413
    Wastewater is water that has already been contaminated by domestic, industrial and commercial activity that needs to be treated before it could be discharged into some other water bodies to avoid even more groundwater contamination supplies. It consists of various contaminants like heavy metals, organic pollutants, inorganic pollutants and Emerging contaminants. Research has been doing on all types of contaminates more than a decade, but this emerging contaminants is the contaminants which arises mostly from pharmaceuticals, personal care products, hormones and fertilizer industries. The majority of emerging contaminants did not have standardized guidelines, but may have adverse effects on human and marine organisms, even at smaller concentrations. Typically, extremely low doses of emerging contaminants are found in the marine environment and cause a potential risk to the aquatic animals living there. When contaminants emerge in the marine world, they are potentially toxic and pose many risks to the health of both man and livestock. The aim of this article is to review the Emerging contaminate sources, detection methods and treatment methods. The purpose of this study is to consider the adsorption as a beneficial treatment of emerging contaminants also advanced and cost effective emerging contaminates treatment methods.
    Matched MeSH terms: Groundwater
  12. Ramesh M, Malathi N, Ramesh K, Aruna RM, Kuruvilla S
    J Pharm Bioallied Sci, 2017 Nov;9(Suppl 1):S88-S91.
    PMID: 29284943 DOI: 10.4103/jpbs.JPBS_77_17
    Background: High levels of fluoride in the drinking water, especially ground water, results in skeletal fluorosis which involves the bone and major joints. This study was conducted to assess the prevalence of skeletal fluorosis to compare with dental fluorosis in an endemically fluorosed population in the District of Salem, Tamil Nadu.

    Materials and Methods: Institutional ethical clearance was obtained. A total of 206 patients who reported to the Department of Hematology for blood investigations were the participants in this study. Age, sex, place, weight, height, dental fluorosis, and skeletal complaints were noted down. Body mass index was calculated, and statistical analysis was performed.

    Results: Dental fluorosis was present in 63.1% and absent in 36.9% of the samples reported. Skeletal fluorosis was present in 24.8% and was absent in 75.2%. A large number of the patients had knee pain and difficulty in bending. Chi-square test was used for statistical analysis. Skeletal fluorosis and age were compared and P value was 0.00 and was significant. Dental fluorosis and skeletal fluorosis were compared and P value was found to be 0.000 and significant.

    Discussion and Conclusion: There is a need to take measures to prevent dental and skeletal fluorosis among the residents of Salem district. Calcium balance should be maintained, and fluoride intake should be minimized to reduce the symptoms. The government should provide water with low fluoride level for drinking and cooking. Once the symptoms develop, treatment largely remains symptomatic, using analgesics and physiotherapy.

    Matched MeSH terms: Groundwater
  13. Rajendiran T, Sabarathinam C, Chandrasekar T, Keesari T, Senapathi V, Sivaraman P, et al.
    Environ Sci Pollut Res Int, 2019 Oct;26(28):29173-29190.
    PMID: 31392611 DOI: 10.1007/s11356-019-05962-w
    This study considered the temporal variations in rainfall and water level patterns as governing factors, which influence the geochemical process of coastal aquifer around Pondicherry, South India. Rainfall and water level data were collected from 2006 to 2016, which showed that the amount of rainfall from 2006 to 2011 was higher than that of 2011 to 2016. To understand the geochemical process governing groundwater, samples were collected during 2006 (n = 54), followed by 2011 (n = 93), and during 2016 (n = 63) as part of continuous observation. The major ions and stable isotopes (δ18O and δD) were analyzed in the samples to determine the geochemical variations. The predominant types were noted as Na-HCO3 and Na-Cl; Ca-HCO3 and Ca-Mg-Cl; and Na-Cl and Ca-Mg-Cl in 2006, 2011, and 2016, respectively. Saturation states of sulfate and carbonate minerals were compared for the study periods and it indicates that the saturation index (SI) values were increased from 2006 to 2011, but decreased from 2011 to 2016. PHREEQC inverse modeling revealed the predominance for the dissolution and leaching of carbonate minerals during increased rainy periods, and the increase of halite saturation during lesser rainfall period. AQUACHEM mixing studies suggested that geochemical signatures of 2006 and 2011 were preserved in samples of 2016 in different proportions. Considering the major factors, the main processes prevailing in the study area were inferred to be dissolution and leaching during 2006~2011 years and seawater intrusion along with ion exchange during 2011~2016 years. In all these periods of study, anthropogenic impact was also identified in the groundwater samples. Hence, this study revealed that the rainfall and water level gave a significant variation in the geochemical process of groundwater in the coastal aquifer system.
    Matched MeSH terms: Groundwater/analysis*; Groundwater/chemistry*
  14. Rahmati O, Choubin B, Fathabadi A, Coulon F, Soltani E, Shahabi H, et al.
    Sci Total Environ, 2019 Oct 20;688:855-866.
    PMID: 31255823 DOI: 10.1016/j.scitotenv.2019.06.320
    Although estimating the uncertainty of models used for modelling nitrate contamination of groundwater is essential in groundwater management, it has been generally ignored. This issue motivates this research to explore the predictive uncertainty of machine-learning (ML) models in this field of study using two different residuals uncertainty methods: quantile regression (QR) and uncertainty estimation based on local errors and clustering (UNEEC). Prediction-interval coverage probability (PICP), the most important of the statistical measures of uncertainty, was used to evaluate uncertainty. Additionally, three state-of-the-art ML models including support vector machine (SVM), random forest (RF), and k-nearest neighbor (kNN) were selected to spatially model groundwater nitrate concentrations. The models were calibrated with nitrate concentrations from 80 wells (70% of the data) and then validated with nitrate concentrations from 34 wells (30% of the data). Both uncertainty and predictive performance criteria should be considered when comparing and selecting the best model. Results highlight that the kNN model is the best model because not only did it have the lowest uncertainty based on the PICP statistic in both the QR (0.94) and the UNEEC (in all clusters, 0.85-0.91) methods, but it also had predictive performance statistics (RMSE = 10.63, R2 = 0.71) that were relatively similar to RF (RMSE = 10.41, R2 = 0.72) and higher than SVM (RMSE = 13.28, R2 = 0.58). Determining the uncertainty of ML models used for spatially modelling groundwater-nitrate pollution enables managers to achieve better risk-based decision making and consequently increases the reliability and credibility of groundwater-nitrate predictions.
    Matched MeSH terms: Groundwater
  15. Rahman MNIA, Jeofry H, Basarian MS
    Data Brief, 2020 Oct;32:106194.
    PMID: 32904202 DOI: 10.1016/j.dib.2020.106194
    The survey data on potential aquifer was collected at two sites located in Banggi Island (i.e. Laksian Primary School [LPS] and Padang Primary School [PPS]), Malaysia on 25 and 26 April 2013. Both locations are geologically surrounded by various types of lithologies, namely, sandstone, mudstone, siltstone, shale, chert, conglomerate, lignite, tuff, limestone, terrace sand, gravel and coral. The resistivity data consisted of six-line pole-dipole short arrays and were recorded in-situ using SAS 4000 ABEM Lund Imaging System, together with a relay switching unit (Electrode Selector ES 464), six multiconductor cables, steel rod electrodes and jumpers. The data, namely electrode spacing, depth of investigation, subsurface resistivity, type of material and horizontal data coverage were used to assess the characteristics of the potential aquifer. The recorded data were then processed using RES2DINV software to obtain 2-D inversion model of the subsurface. The data were also equipped with six models of inverse resistivity section for both areas. The data obtained can be used by the government and stakeholders for groundwater exploration and extraction in order to provide water supplies for local communities, especially since access to these resources from the surrounding water treatment plants on the island is limited.
    Matched MeSH terms: Groundwater
  16. Rahim F, Abdullah SRS, Hasan HA, Kurniawan SB, Mamat A, Yusof KA, et al.
    Sci Total Environ, 2022 Mar 25;814:152799.
    PMID: 34982990 DOI: 10.1016/j.scitotenv.2021.152799
    A reedbed system planted with Phragmites australis was implemented to treat chlorinated hydrocarbon-contaminated groundwater in an industrial plant area. Reedbed commissioning was conducted from July 2016 to November 2016 to treat contaminated groundwater via a pump-and-treat mechanism. Combination of horizontal and vertical reedbed systems was applied to treat 1,2-dichloroethane (1,2 DCA) under four parallel installations. The 2-acre horizontal and vertical reedbed systems were designed to treat approximately 305 m3/day of pumped groundwater. Initial concentration of 1,2 DCA was observed at 0.362 mg/L to 4320 mg/L, and the reedbed system successfully reduced the concentration up to 67.9%. The average outlet concentration was measured to be 2.08 mg/L, which was lower than the site-specific target level of 156 mg/L. Natural attenuation analysis was conducted using first-order decay kinetics, showing an average natural attenuation rate of 0.00372/year. Natural attenuation of 1,2 DCA was observed in shallow monitoring wells, which was indicated by the reduction trend of 1,2 DCA concentration, thereby confirming that the reedbed system worked well to remove 1.2 DCA from contaminated groundwater at the shallow profile.
    Matched MeSH terms: Groundwater*
  17. Praveena SM, Cheema MS, Guo HR
    Ecotoxicol Environ Saf, 2019 Apr 15;170:699-707.
    PMID: 30580164 DOI: 10.1016/j.ecoenv.2018.12.048
    Generally, non-nutritive artificial sweeteners are widely utilized as sugar substitute in various applications. With various applications, non-nutritive artificial sweeteners are now being recognized as emerging contaminants with high water persistence and are chemically stable in environment. Although non-nutritive artificial sweeteners were documented on their occurrence in environment, yet their potential impacts to environment and human health remain ambiguous. Therefore, this review was prepared to provide a more comprehensive insight of non-nutritive artificial sweeteners in environment matrixes by highlighting special concerns on human health and environmental risks. Precisely, this review monitors the exploration of non-nutritive artificial sweeteners occurrences as an emerging contaminants in environment worldwide and their associated risks to human as well as environment. At present, there are a total of 24 non-nutritive artificial sweeteners' studies with regards to their occurrence in the environment from 38 locations globally, spanning across Europe including United Kingdoms, Canada, United States and Asia. Overall, the quantitative findings suggested that the occurrence of non-nutritive artificial sweeteners is present in surface water, tap water, groundwater, seawater, lakes and atmosphere. Among these environmental matrixes, surface water was found as the most studied matrix involving non-nutritive artificial sweeteners. However, findings on non-nutritive artificial sweeteners impacts on human health and environment are limited to understanding its overall potential impacts and risks. Additionally, this review also serves as a framework for future monitoring plans and environmental legislative to better control these emerging contaminants in environment.
    Matched MeSH terms: Groundwater/chemistry*
  18. Pillai P, Dharaskar S, Khalid M
    Chemosphere, 2021 Dec;284:131317.
    PMID: 34216929 DOI: 10.1016/j.chemosphere.2021.131317
    The current novel work presents the optimization of factors affecting defluoridation by Al doped ZnO nanoparticles using response surface methodology (RSM). Al doped ZnO nanoparticles were synthesized by the sol-gel method and validated by FTIR, XRD, TEM/EDS, TGA, BET, and particle size analysis. Moreover, a central composite design (CCD) was developed for the experimental study to know the interaction between Al doped ZnO adsorbent dosage, initial concentration of fluoride, and contact time on fluoride removal efficiency (response) and optimization of the process. Analysis of variance (ANOVA) was achieved to discover the importance of the individual and the effect of variables on the response. The model predicted that the response significantly correlated with the experimental response (R2 = 0.97). Among the factors, the effect of adsorbent dose and contact time was considered to have more influence on the response than the concentration. The optimized process parameters by RSM presented the adsorbent dosage: 0.005 g, initial concentration of fluoride: 1.5 g/L, and contact time: 5 min, respectively. Kinetic, isotherm, and thermodynamic studies were also investigated. The co-existing ions were also studied. These results demonstrated that Al doped ZnO could be a promising adsorbent for effective defluoridation for water.
    Matched MeSH terms: Groundwater*
  19. Phan K, Kim KW, Hashim JH
    Environ Res, 2014 Nov;135:37-41.
    PMID: 25262072 DOI: 10.1016/j.envres.2014.07.031
    We investigated relationship of arsenicosis symptoms with total blood arsenic (BAs) and serum albumin (SAlb) of residents in the Mekong River basin of Cambodia. We found that arsenicosis patients had significantly higher BAs and lower SAlb than asymptomatic villagers (Mann-Whitney U test, p<0.01). Arsenicosis symptoms were found to be 76.4% (1.764 times) more likely to develop among individuals having an SAlb≤44.3gL(-1) than among those who had an SAlb>44.3gL(-1) (OR=1.764, 95% CI=0.999-3.114) and 117.6% (2.176 times) as likely to occur among those with BAs>5.73µgL(-1) than for those having BAs≤5.73µgL(-1) (OR=2.176, 95% CI=1.223-3.872). Furthermore, a significant negative correlation was also found between BAs and SAlb (rs (199)=-0.354, p<0.0001). As such, this study suggests that people with low SAlb and/or high BAs are likely to rapidly develop arsenicosis symptoms.
    Matched MeSH terms: Groundwater/chemistry*
  20. Phan K, Kim KW, Huoy L, Phan S, Se S, Capon AG, et al.
    Environ Geochem Health, 2016 Jun;38(3):763-72.
    PMID: 26298061 DOI: 10.1007/s10653-015-9759-z
    To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.
    Matched MeSH terms: Groundwater/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links