Displaying publications 21 - 40 of 737 in total

Abstract:
Sort:
  1. Akhbar MFA
    Comput Methods Programs Biomed, 2023 Apr;231:107361.
    PMID: 36736133 DOI: 10.1016/j.cmpb.2023.107361
    BACKGROUND AND OBJECTIVE: Conventional surgical drill bits suffer from several drawbacks, including extreme heat generation, breakage, jam, and undesired breakthrough. Understanding the impacts of drill margin on bone damage can provide insights that lay the foundation for improvement in the existing surgical drill bit. However, research on drill margins in bone drilling is lacking. This work assesses the influences of margin height and width on thermomechanical damage in bone drilling.

    METHODS: Thermomechanical damage-maximum bone temperature, osteonecrosis diameter, osteonecrosis depth, maximum thrust force, and torque-were calculated using the finite element method under various margin heights (0.05-0.25 mm) and widths (0.02-0.26 mm). The simulation results were validated with experimental tests and previous research data.

    RESULTS: The effect of margin height in increasing the maximum bone temperature, osteonecrosis diameter, and depth were at least 19.1%, 41.9%, and 59.6%, respectively. The thrust force and torque are highly sensitive to margin height. A higher margin height (0.21-0.25 mm) reduced the thrust force by 54.0% but increased drilling torque by 142.2%. The bone temperature, osteonecrosis diameter, and depth were 16.5%, 56.5%, and 81.4% lower, respectively, with increasing margin width. The minimum thrust force (11.1 N) and torque (41.9 Nmm) were produced with the highest margin width (0.26 mm). The margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 produced the highest sum of weightage.

    CONCLUSIONS: A surgical drill bit with a margin height of 0.05-0.13 mm and a margin width of 0.22-0.26 mm can produce minimum thermomechanical damage in cortical bone drilling. The insights regarding the suitable ranges for margin height and width from this study could be adopted in future research devoted to optimizing the margin of the existing surgical drill bit.

    Matched MeSH terms: Hot Temperature
  2. Setyawan D, Amrillah T, Abdullah CAC, Ilhami FB, Dewi DMM, Mumtazah Z, et al.
    J Drug Target, 2023 Apr;31(4):369-389.
    PMID: 36721905 DOI: 10.1080/1061186X.2023.2175833
    The development of two-dimensional (2D) materials for biomedical applications has accelerated exponentially. Contrary to their bulk counterparts, the exceptional properties of 2D materials make them highly prospective for contrast agents for bioimage, drug, and heat delivery in biomedical treatment. Nevertheless, empty space in the integration and utilisation of 2D materials in living biological systems, potential toxicity, as well as required complicated synthesis and high-cost production limit the real application of 2D materials in those advance medical treatments. On the other hand, green technology appears to be one of strategy to shed a light on the blurred employment of 2D in medical applications, thus, with the increasing reports of green technology that promote advanced technologies, here, we compile, summarise, and synthesise information on the biomedical technology of 2D materials through green technology point of view. Beginning with a fundamental understanding, of crystal structures, the working mechanism, and novel properties, this article examines the recent development of 2D materials. As well as 2D materials made from natural and biogenic resources, a recent development in green-related synthesis was also discussed. The biotechnology and biomedical-related application constraints are also discussed. The challenges, solutions, and prospects of the so-called green 2D materials are outlined.
    Matched MeSH terms: Hot Temperature
  3. Tao H, Hashim BM, Heddam S, Goliatt L, Tan ML, Sa'adi Z, et al.
    Environ Sci Pollut Res Int, 2023 Mar;30(11):30984-31034.
    PMID: 36441299 DOI: 10.1007/s11356-022-24153-8
    Urban areas are quickly established, and the overwhelming population pressure is triggering heat stress in the metropolitan cities. Climate change impact is the key aspect for maintaining the urban areas and building proper urban planning because spreading of the urban area destroyed the vegetated land and increased heat variation. Remote sensing-based on Landsat images are used for investigating the vegetation circumstances, thermal variation, urban expansion, and surface urban heat island or SUHI in the three megacities of Iraq like Baghdad, Erbil, and Basrah. Four satellite imageries are used aimed at land use and land cover (LULC) study from 1990 to 2020, which indicate the land transformation of those three major cities in Iraq. The average annually temperature is increased during  30 years like Baghdad (0.16 °C), Basrah (0.44 °C), and Erbil (0.32 °C). The built-up area is increased 147.1 km2 (Erbil), 217.86 km2 (Baghdad), and 294.43 km2 (Erbil), which indicated the SUHI affects the entire area of the three cities. The bare land is increased in Baghdad city, which indicated the local climatic condition and affected the livelihood. Basrah City is affected by anthropogenic activities and most areas of Basrah were converted into built-up land in the last 30 years. In Erbil, agricultural land (295.81 km2) is increased. The SUHI study results indicated the climate change effect in those three cities in Iraq. This study's results are more useful for planning, management, and sustainable development of urban areas.
    Matched MeSH terms: Hot Temperature*
  4. Hamed MM, Salehie O, Nashwan MS, Shahid S
    Environ Sci Pollut Res Int, 2023 Mar;30(13):38063-38075.
    PMID: 36576621 DOI: 10.1007/s11356-022-24985-4
    Global warming has amplified the frequency of temperature extremes, especially in hot dry countries, which could have serious consequences for the natural and built environments. Egypt is one of the hot desert climate regions that are more susceptible to climate change and associated hazards. This study attempted to project the changes in temperature extremes for three Shared Socioeconomic Pathways (SSPs), namely, SSP1-2.6, SSP2-4.5, and SSP5-8.5 and two future periods (early future: 2020-2059 and late future: 2060-2099) by using daily maximum (Tmax) and minimum temperature (Tmin) of general circulation model (GCMs) of Coupled Model Inter-comparison Project phase 6 (CMIP6). The findings showed that most temperature extreme indices would increase especially by the end of the century. In the late future, the change in the mean Tmin (4.3 °C) was projected to be higher than the mean Tmax (3.7 °C). Annual maximum Tmax, temperature above 95th percentile of Tmax, and the number of hot days above 40 °C and 45 °C were projected to increase in the range 3.0‒5.4 °C, 1.5‒4.8 °C, 20‒95 days, and 10‒52 days, respectively. In contrast, the annual minimum of Tmin, temperature below the 5th percentile, and the annual percentage of cold nights were projected to change in the range of 2.95‒5.0 °C, 1.4‒3.6 °C, and - 0.1‒0.1%, respectively. In all the cases, the lowest changes would be for SSP1-2.6 in the early period and the greatest changes for SSP5-8.5 in the late period. The study indicates that the country is likely to experience a rise in hot extremes and a decline in cold extremes. Therefore, Egypt should take long-term adaptation plans to build social resiliency to rising hot extremes.
    Matched MeSH terms: Hot Temperature*
  5. Phung VLH, Oka K, Honda Y, Hijioka Y, Ueda K, Seposo XT, et al.
    Environ Res, 2023 Feb 01;218:114988.
    PMID: 36463996 DOI: 10.1016/j.envres.2022.114988
    BACKGROUND: Climate change and its subsequent effects on temperature have raised global public health concerns. Although numerous epidemiological studies have shown the adverse health effects of temperature, the association remains unclear for children aged below five years old and those in tropical climate regions.

    METHODS: We conducted a two-stage time-stratified case-crossover study to examine the association between temperature and under-five mortality, spanning the period from 2014 to 2018 across all six regions in Malaysia. In the first stage, we estimated region-specific temperature-mortality associations using a conditional Poisson regression and distributed lag nonlinear models. We used a multivariate meta-regression model to pool the region-specific estimates and examine the potential role of local characteristics in the association, which includes geographical information, demographics, socioeconomic status, long-term temperature metrics, and healthcare access by region.

    RESULTS: Temperature in Malaysia ranged from 22 °C to 31 °C, with a mean of 27.6 °C. No clear seasonality was observed in under-five mortality. We found no strong evidence of the association between temperature and under-five mortality, with an "M-" shaped exposure-response curve. The minimum mortality temperature (MMT) was identified at 27.1 °C. Among several local characteristics, only education level and hospital bed rates reduced the residual heterogeneity in the association. However, effect modification by these variables were not significant.

    CONCLUSION: This study suggests a null association between temperature and under-five mortality in Malaysia, which has a tropical climate. The "M-" shaped pattern suggests that under-fives may be vulnerable to temperature changes, even with a small temperature change in reference to the MMT. However, the weak risks with a large uncertainty at extreme temperatures remained inconclusive. Potential roles of education level and hospital bed rate were statistically inconclusive.

    Matched MeSH terms: Hot Temperature*
  6. Karen WMJ, Wong CY, Wang Z, Liew WYH, Melvin GJH
    Environ Technol, 2023 Jan;44(3):326-333.
    PMID: 34407722 DOI: 10.1080/09593330.2021.1970820
    This study demonstrated the generation of clean water from seawater collected at the beach coast in Universiti Malaysia Sabah, Malaysia, with carbonized rice husk coated melamine sponge as solar absorber by a solar still. Melamine sponge was utilized as a seawater transportation medium since its porous structure is excellent in channelling the seawater. Whereas carbonized rice husk was used as the photothermal conversion material for its efficient heat absorption due to its black colour and porous structure. Implementing air gap between the seawater body and solar absorber, and restricted water pathway assisted in localizing heat on the top surface of the solar absorber. Clean water was generated under direct solar radiation during the day at an open space with average solar intensity around 1.1∼1.2 kW/m2 (slightly higher than 1 sun) for about 4 h. Efficiency of the solar absorber was calculated, while the quality of the generated clean water was observed in terms of salinity and pH value. Insulated solar still with carbon-coated sponge showed the highest efficiency at about 54.74%. Salinity of the collected clean water significantly reduced to consumable level which was approximately 55 ppm, and the pH value at about 6.73 where it was within the safe limit of the drinkable water pH.
    Matched MeSH terms: Hot Temperature
  7. Wong RS, Alias NNM, Ong EBB, Liew MWO
    Methods Mol Biol, 2023;2617:189-200.
    PMID: 36656525 DOI: 10.1007/978-1-0716-2930-7_13
    Inclusion bodies (IB) are dense insoluble aggregates of mostly misfolded polypeptides that usually result from recombinant protein overexpression. IB formation has been observed in protein expression systems such as E. coli, yeast, and higher eukaryotes. To recover soluble recombinant proteins in their native state, IB are commonly first solubilized with a high concentration of denaturant. This is followed by concurrent denaturant removal or reduction and a transition into a refolding-favorable chemical environment to facilitate the refolding of solubilized protein to its native state. Due to the high concentration of denaturant used, conventional refolding approaches can result in dilute products and are buffer inefficient. To circumvent the limitations of conventional refolding approaches, a temperature-based refolding approach which combines a low concentration of denaturant (0.5 M guanidine hydrochloride, GdnHCl) with a high temperature (95 °C) during solubilization was proposed. In this chapter, we describe a temperature-based refolding approach for the recovery of core streptavidin (cSAV) from IB. Through the temperature-based approach, intensification was achieved through the elimination of a concentration step which would be required by a dilution approach and through a reduction in buffer volumes required for dilution or denaturant removal. High-temperature treatment during solubilization may have also resulted in the denaturation and aggregation of undesired host-cell proteins, which could then be removed through a centrifugation step resulting in refolded cSAV of high purity without the need for column purification. Refolded cSAV was characterized by biotin-binding assay and SDS-PAGE, while purity was determined by RP-HPLC.
    Matched MeSH terms: Hot Temperature*
  8. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
    Matched MeSH terms: Hot Temperature
  9. Mohamad Dzol MAA, Balasundram V, Shameli K, Ibrahim N, Manan ZA, Isha R
    J Environ Manage, 2022 Dec 15;324:116392.
    PMID: 36208512 DOI: 10.1016/j.jenvman.2022.116392
    The main objective of the current work is to investigate the effect of nickel-waste chicken eggshell modified Hydrogen exchanged Zeolite Socony Mobil-5 (Ni-WCE/HZSM-5) on pyrolysis of high-density polyethylene (HDPE). Ni-WCE/HZSM-5 was synthesized via the impregnation incipient wetness (IWI) method with Ni and WCE mass loading of 4 and 12 wt% respectively. HZSM-5, CaO, WCE, WCE/HZSM-5, and Ni/HZSM-5 were prepared for comparison purposes with Ni-WCE/HZSM-5. All the synthesized catalysts were characterized for phase analysis, metal loading, surface morphology, and textural properties. The impregnation of nickel and WCE had significantly affected the original framework of HZSM-5, where the crystallinity percentage and average crystal size of HZSM-5 dropped to 44.97% and increased to 47.90 nm respectively. The surface morphology of HZSM-5 has drastically changed from a cubic-like shape into a spider web-like surface after the impregnation of WCE. The BET surface area of HZSM-5 has been lowered due to the impregnation of nickel and WCE, but the total pore volume has increased greatly from 0.2291 cm3/g to 0.2621 cm3/g. The catalyst performance was investigated in the pyrolysis of HDPE via a fixed bed reactor and the pyrolysis oil was further analysed to evaluate the distribution of C6 to C9> hydrocarbons. Among the tested catalytic samples, the highest pyrolysis oil yield was achieved by WCE (80%) followed by CaO (78%), WCE/HZSM-5 (63%), HZSM-5 (61%), Ni/HZSM-5 (44%) and Ni-WCE/HZSM-5 (50%). For hydrocarbon distribution in pyrolysis oil, the Ni/HZSM-5 produced the highest of total C6 and C7 hydrocarbons at 12% and 27% respectively followed by WCE/HZSM-5 (4% and 20%), non-catalytic (5% and 13%), Ni-WCE/HZSM-5 (0% and 15%), WCE (0% and 10%), HZSM-5 (0% and 6%) and CaO (0% and 0%).
    Matched MeSH terms: Hot Temperature
  10. Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, et al.
    Int J Environ Res Public Health, 2022 Dec 06;19(23).
    PMID: 36498428 DOI: 10.3390/ijerph192316356
    BACKGROUND: This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component.

    METHODS: This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework.

    RESULTS: A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors.

    CONCLUSIONS: While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.

    Matched MeSH terms: Hot Temperature
  11. Mak NL, Ooi EH, Lau EV, Ooi ET, Pamidi N, Foo JJ, et al.
    Comput Methods Programs Biomed, 2022 Dec;227:107195.
    PMID: 36323179 DOI: 10.1016/j.cmpb.2022.107195
    BACKGROUND AND OBJECTIVES: Thermochemical ablation (TCA) is a thermal ablation technique involving the injection of acid and base, either sequentially or simultaneously, into the target tissue. TCA remains at the conceptual stage with existing studies unable to provide recommendations on the optimum injection rate, and reagent concentration and volume. Limitations in current experimental methodology have prevented proper elucidation of the thermochemical processes inside the tissue during TCA. Nevertheless, the computational TCA framework developed recently by Mak et al. [Mak et al., Computers in Biology and Medicine, 2022, 145:105494] has opened new avenues in the development of TCA. Specifically, a recommended safe dosage is imperative in driving TCA research beyond the conceptual stage.

    METHODS: The aforesaid computational TCA framework for sequential injection was applied and adapted to simulate TCA with simultaneous injection of acid and base at equimolar and equivolume. The developed framework, which describes the flow of acid and base, their neutralisation, the rise in tissue temperature and the formation of thermal damage, was solved numerically using the finite element method. The framework will be used to investigate the effects of injection rate, reagent concentration, volume and type (weak/strong acid-base combination) on temperature rise and thermal coagulation formation.

    RESULTS: A higher injection rate resulted in higher temperature rise and larger thermal coagulation. Reagent concentration of 7500 mol/m3 was found to be optimum in producing considerable thermal coagulation without the risk of tissue overheating. Thermal coagulation volume was found to be consistently larger than the total volume of acid and base injected into the tissue, which is beneficial as it reduces the risk of chemical burn injury. Three multivariate second-order polynomials that express the targeted coagulation volume as functions of injection rate and reagent volume, for the weak-weak, weak-strong and strong-strong acid-base combinations were also derived based on the simulated data.

    CONCLUSIONS: A guideline for a safe and effective implementation of TCA with simultaneous injection of acid and base was recommended based on the numerical results of the computational model developed. The guideline correlates the coagulation volume with the reagent volume and injection rate, and may be used by clinicians in determining the safe dosage of reagents and optimum injection rate to achieve a desired thermal coagulation volume during TCA.

    Matched MeSH terms: Hot Temperature
  12. Mukhtar K, Nabi BG, Arshad RN, Roobab U, Yaseen B, Ranjha MMAN, et al.
    Ultrason Sonochem, 2022 Nov;90:106194.
    PMID: 36242792 DOI: 10.1016/j.ultsonch.2022.106194
    Sugarcane juice (Saccharum officinarum) is a proven nutritious beverage with high levels of antioxidants, polyphenols, and other beneficial nutrients. It has recently gained consumer interest due to its high nutritional profile and alkaline nature. Still, high polyphenolic and sugar content start the fermentation in juice, resulting in dark coloration. Lately, some novel techniques have been introduced to extend shelf life and improve the nutritional value of sugarcane juice. The introduction of such processing technologies is beneficial over conventional processes and essential for producing chemical-free, high-quality, fresh juices. The synergistic impact of these novel technologies is also advantageous for preserving sugarcane juice. In literature, novel thermal, non-thermal and hurdle technologies have been executed to preserve sugarcane juice. These technologies include high hydrostatic pressure (HHP), ultrasound (US), pulsed electric field (PEF), ultraviolet irradiation (UV), ohmic heating (OH), microwave (MW), microfludization and ozone treatment. This review manifests the impact of novel thermal, non-thermal, and synergistic technologies on sugarcane juice processing and preservation characteristics. Non-thermal techniques have been successfully proved effective and showed better results than novel thermal treatments. Because they reduced microbial load and retained nutritional content, while thermal treatments degraded nutrients and flavor of sugarcane juice. Among non-thermal treatments, HHP is the most efficient technique for the preservation of sugarcane juice while OH is preferable in thermal techniques due to less nutritional loss.
    Matched MeSH terms: Hot Temperature
  13. Nuhma MJ, Alias H, Tahir M, Jazie AA
    Molecules, 2022 Oct 25;27(21).
    PMID: 36364078 DOI: 10.3390/molecules27217251
    Despite the extensive research into the catalytic uses of zeolite-based catalysts, these catalysts have a limited useful lifetime because of the deactivating effect of coke production. This study looks at the use of Cerium (Ce) loaded HZSM-5 zeolite catalysts in the hydrocarbon and oxygenated chemical conversion from Chlorella Vulgaris microalgae crude oil. Characterization of structure, morphology, and crystallinity was performed after the catalysts were manufactured using the impregnation technique. Soxhlet extraction was carried out to extract the crude oil of microalgae. Transesterification reaction was used to produce algal hydrolyzed oil (HO), and the resulting HO was put to use in a batch reactor at 300 °C, 1000 rpm, 7 bars of nitrogen pressure, a catalyst to the algal HO ratio of 15% (wt. %), and a retention time of 6 h. To determine which Ce-loaded HZSM-5 catalysts would be most effective in converting algal HO into non-oxygenated molecules (hydrocarbons), we conducted a series of tests. Liquid product characteristics were analyzed for elemental composition, higher heating value (HHV), atomic ratios of O/C and H/C, and degree of deoxygenation (DOD%). Results were categorized into three groups: product yield, chemical composition, and carbon number distribution. When Cerium was added to HZSM-5 zeolite at varying loading percentages, the zeolite's acid sites became more effective in facilitating the algal HO conversion. The results showed that 10%Ce/HZSM-5 had the greatest conversion of the algal HO, the yield of hydrocarbons, HHV, and DOD% (98.2%, 30%, 34.05 MJ/Kg, and 51.44%, respectively) among all the synthesized catalysts in this research. In conclusion, the physical changes seen in the textural characteristics may be attributed to Cerium-loading on the parent HZSM-5; nevertheless, there is no direct association between the physical features and the hydrocarbons yield (%). The primary impact of Cerium alteration of the parent HZSM-5 zeolite was to change the acidic sites required to boost the conversion (%) of the algal HO in the catalytic deoxygenation process, which in turn increased the hydrocarbons yield (%), which in turn increased the HHV and DOD%.
    Matched MeSH terms: Hot Temperature
  14. Su G, Ong HC, Mofijur M, Mahlia TMI, Ok YS
    J Hazard Mater, 2022 Feb 15;424(Pt B):127396.
    PMID: 34673394 DOI: 10.1016/j.jhazmat.2021.127396
    The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.
    Matched MeSH terms: Hot Temperature
  15. Aghamohammadi N, Ramakreshnan L, Fong CS, Noor RM, Hanif NR, Sulaiman NM
    Sci Total Environ, 2022 Feb 01;806(Pt 1):150331.
    PMID: 34571225 DOI: 10.1016/j.scitotenv.2021.150331
    The stakeholders' perceptions on the impacts of Urban Heat Island (UHI) are critical for reducing exposure and influencing their response to interventions that are aimed at encouraging a behaviour change. A proper understanding of the UHI impacts on the society, economy and environment is deemed an essential motivating factor for the stakeholders to work towards UHI mitigations in the local context. This study adopted an inductive qualitative approach using Stakeholder Dialogue Sessions (SDSs) to assess the perceived impacts of UHI among various stakeholders, comprising policy makers, academicians, developers and Non-Governmental Organizations (NGO), in a tropical metropolitan city. The results revealed five themes such as deterioration of public health, acceleration of urban migration patterns and spending time in cooler areas, reduction of workers' productivity, increased energy consumption by the households and deterioration of environmental quality and natural resources that were categorized into social, economic and environmental impacts. Although most of the stakeholders were quite unfamiliar with the term UHI, they still display a good understanding of the potential impacts of UHI due to their posteriori knowledge and ability to rationalize the physical condition of the environment in which they live. The findings provide useful insights and valuable information to the local authorities to tailor necessary actions and educational campaigns to increase UHI awareness among the stakeholders. Being among the earlier studies to use a qualitative approach to attain the aforementioned objective, the findings are crucial to determine the level of understanding of the stakeholders on the impact of UHI. Through this study, the authors have highlighted the gaps and needs for knowledge improvements aimed at behaviour change among the stakeholders.
    Matched MeSH terms: Hot Temperature*
  16. Foong SY, Liew RK, Lee CL, Tan WP, Peng W, Sonne C, et al.
    J Hazard Mater, 2022 01 05;421:126774.
    PMID: 34364214 DOI: 10.1016/j.jhazmat.2021.126774
    Waste furniture boards (WFBs) contain hazardous formaldehyde and volatile organic compounds when left unmanaged or improperly disposed through landfilling and open burning. In this study, pyrolysis was examined as a disposal and recovery approach to convert three types of WFBs (i.e., particleboard, plywood, and fiberboard) into value-added chemicals using thermogravimetric analysis coupled with Fourier-transform infrared spectrometry (TG-FTIR) and pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS). TG-FTIR analysis shows that pyrolysis performed at an optimum temperature of 250-550 °C produced volatile products mainly consisting of carbon dioxide, carbon monoxide, and light hydrocarbons, such as methane. Py-GC/MS shows that pyrolysis at different final temperatures and heating rates recovered mainly phenols (25.9-54.7%) for potential use as additives in gasoline, colorants, and food. The calorific value of WFBs ranged from 16 to 18 MJ/kg but the WFBs showed high H/C (1.7-1.8) and O/C (0.8-1.0) ratios that provide low chemical energy during combustion. This result indicates that WFBs are not recommended to be burned directly as fuel, however, they can be pyrolyzed and converted into solid pyrolytic products such as biochar with improved properties for fuel application. Hazardous components, such as cyclopropylmethanol, were removed and converted into value-added compounds, such as 1,4:3,6-dianhydro-d-glucopyranose, for use in pharmaceuticals. These results show that the pyrolysis of WFBs at high temperature and low heating rate is a promising feature to produce value-added chemicals and reduce the formation of harmful chemical species. Thus, the release of hazardous formaldehyde and greenhouse gases into the environment is redirected.
    Matched MeSH terms: Hot Temperature
  17. Subramaniam S, Foo KY, Md Yusof EN, Jawad AH, Wilson LD, Sabar S
    Int J Biol Macromol, 2021 Dec 15;193(Pt B):1716-1726.
    PMID: 34742842 DOI: 10.1016/j.ijbiomac.2021.11.009
    Phosphorylated chitosan (P-CS) was successfully synthesized using a facile experimental setup of hydrothermal method that was applied to the adsorption of anionic Acid Red 88 (AR88) from aqueous media. The adsorption process obeyed the pseudo-second-order (PSO) kinetic model. In contrast, the adsorption isotherm conformed to the Langmuir model, with the maximum adsorption capacity (qm = 230 mg g-1) at 303 K. Both external and intraparticle diffusion strongly influenced the rate of adsorption. The insights from this study reveal that P-CS could be easily prepared and regenerated for reusability applications. The adsorption mechanism and intermolecular interaction between P-CS and AR 88 were investigated using Fourier transform infrared (FTIR) spectroscopy and calculations via Density Functional Theory (DFT). The key modes of adsorption for the P-CS/AR 88 system are driven by electrostatic attractions, H-bonding, and n-π interactions. The findings herein reveal that P-CS is a promising adsorbent for the removal of anionic dyes such as AR88 or similar pollutants from water.
    Matched MeSH terms: Hot Temperature*
  18. Arumugam S, Yew HZ, Baharin SA, Qamaruz Zaman J, Muchtar A, Kanagasingam S
    Aust Endod J, 2021 Dec;47(3):520-530.
    PMID: 33956372 DOI: 10.1111/aej.12516
    This study aimed to evaluate and compare the frequency of microcracks and its severity at different root canal dentin locations, after preparation with thermomechanically heat-treated engine-driven nickel-titanium instruments. Forty mandibular premolars were assigned to four experimental groups (n = 10): ProTaper Next, ProTaper Gold, WaveOne Gold and Reciproc Blue. After pre-instrumentation micro-computed tomography scans, the root canals were prepared to size 25. Following post-instrumentation scans, pre- and post-instrumentation scanned images were analysed for the presence and extent of dentinal defects. A total of 56 500 cross-sectional images were obtained, showing that less than 2.3% with pre-existing dentinal microcracks. No new microcracks were identified during the post-instrumentation analyses. No significant association was found between the types of dentinal defects, file motions and sequences. Thermomechanically heat-treated rotary files did not induce the formation of new microcracks. There was also no association between the kinematic motions and sequences of the rotary instruments to the types of dentinal defects.
    Matched MeSH terms: Hot Temperature*
  19. Ernst B, Setayesh T, Nersesyan A, Kundi M, Fenech M, Bolognesi C, et al.
    Sci Rep, 2021 11 26;11(1):23014.
    PMID: 34836993 DOI: 10.1038/s41598-021-01995-9
    Consumption of very hot beverages and foods increases the incidence of oral and esophageal cancer but the mechanisms are not known and the critical temperature is not well defined. We realized a study with exfoliated cells from the oral cavity of individuals (n = 73) that live in an area in Iran which has the highest incidence of EC worldwide. Consumption of beverages at very high temperatures is a characteristic feature of this population. We analyzed biomarkers which are (i) indicative for genetic instability (micronuclei that are formed as a consequence of chromosomal damage, nuclear buds which are a consequence of gene amplifications and binucleated cells which reflect mitotic disturbances), (ii) markers that reflect cytotoxic effects (condensed chromatin, karyorrhectic, karyolitic and pyknotic cells), (iii) furthermore, we determined the number of basal cells which is indicative for the regenerative capacity of the buccal mucosa. The impact of the drinking temperature on the frequencies of these parameters was monitored with thermometers. We found no evidence for induction of genetic damage but an increase of the cytotoxic effects with the temperature was evident. This effect was paralleled by an increase of the cell division rate of the mucosa which was observed when the temperature exceeded 60 °C. Our findings indicate that cancer in the upper digestive tract in drinkers of very hot beverages is not caused by damage of the genetic material but by an increase of the cell division rate as a consequence of cytotoxic effects which take place at temperatures over 60 °C. It is known from earlier experiments with rodents that increased cell divisions lead to tumor promotion in the esophagus. Our findings provide a mechanistic explanation and indicate that increased cancer risks can be expected when the drinking temperature of beverages exceeds 60 °C.
    Matched MeSH terms: Hot Temperature/adverse effects*
  20. Lohrey S, Chua M, Gros C, Faucet J, Lee JKW
    Sci Total Environ, 2021 Nov 10;794:148260.
    PMID: 34328123 DOI: 10.1016/j.scitotenv.2021.148260
    Extreme heat is an increasing climate threat, most pronounced in urban areas where poor populations are at particular risk. We analyzed heat impacts and vulnerabilities of 1027 outdoor workers who participated in a KAP survey in Hanoi, Vietnam in 2018, and the influence of their mitigation actions, their knowledge of heat-risks, and access to early warnings. We grouped respondents by their main income (vendors, builders, shippers, others, multiple jobs, and non-working) and analyzed their reported heat-health impacts, taking into consideration socioeconomics, knowledge of heat impacts and preventive measures, actions taken, access to air-conditioning, drinking amounts and use of weather forecasts. We applied linear and logistic regression analyses using R. Construction workers were younger and had less knowledge of heat-health impacts, but also reported fewer symptoms. Older females were more likely to report symptoms and visit a doctor. Access to air-conditioning in the bedroom depended on age and house ownership, but did not influence heat impacts as cooling was too expensive. Respondents who knew more heat exhaustion symptoms were more likely to report impacts (p < 0.01) or consult a doctor (p < 0.05). Similarly, those who checked weather updates were more likely to report heat impacts (p < 0.01) and experienced about 0.6 more symptoms (p < 0.01). Even though occupation type did not explain heat illness, builders knew considerably less (40%; p < 0.05) about heat than other groups but were twice as likely to consult a doctor than street vendors (p < 0.01). Knowledge of preventive actions and taking these actions both correlated positively with reporting of heat-health symptoms, while drinking water did not reduce these symptoms (p < 0.01). Child carers and homeowners experienced income losses in heatwaves (p < 0.01). The differences support directed actions, such as dissemination of educational materials and weather forecasts for construction workers. The Red Cross assisted all groups with cooling tents, provision of drinks and health advice.
    Matched MeSH terms: Hot Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links