OBJECTIVE: Interestingly, plant sources and secondary metabolites from plants have been increasingly employed in managing acute and chronic inflammatory diseases for centuries. Boswellic acids are pentacyclic triterpenoidal moieties obtained from the oleo gum resin of different Boswellia species.
METHODS: Detailed data was collected revealing the anti-inflammatory potential of Boswellic acids through various databases.
RESULT: These are pharmacologically active agents that possess promising anti-inflammatory, anti-arthritic, antirheumatic, anti-diarrheal, anti-hyperlipidemic, anti-asthmatic, anti-cancer, and anti-microbial effects.
CONCLUSION: Boswellic acids have been in use since ancient times primarily to treat acute and chronic inflammatory diseases. This review discusses the various mechanisms underlying the inflammatory process and the necessity of such natural products as a medication to treat inflammatory diseases. In addition, a discussion has also been extended to understand the primary targets involved in inflammation. The review further explores the therapeutic potential of boswellic acids in.
AIM OF THIS REVIEW: In this article, we have reviewed the literature on the phytochemicals of several Tinospora species, which have shown strong immunomodulatory effects and critically analyzed the reports to provide perspectives and instructions for future research for the plants as a potential source of new immunomodulators for use as medicinal agents or dietary supplements.
MATERIALS AND METHODS: Electronic search on worldwide accepted scientific databases (Google Scholar, Science Direct, SciFinder, Web of Science, PubMed, Wiley Online Library, ACS Publications Today) was performed to compile the relevant information. Some information was obtained from books, database on medicinal plants used in Ayurveda, MSc dissertations and herbal classics books written in various languages.
RESULTS: T. cordifolia, T. crispa, T. sinensis, T. smilacina, T. bakis, and T. sagittata have been reported to possess significant immunomodulatory effects. For a few decades, initiatives in molecular research on the effects of these species on the immune system have been carried out. However, most of the biological and pharmacological studies were carried out using the crude extracts of plants. The bioactive compounds contributing to the bioactivities have not been properly identified, and mechanistic studies to understand the immunomodulatory effects of the plants are limited by many considerations with regard to design, conduct, and interpretation.
CONCLUSION: The plant extracts and their active constituents should be subjected to more detail mechanistic studies, in vivo investigations in various animal models including pharmacokinetic and bioavailability studies, and elaborate toxicity study before submission to clinical trials.