Displaying publications 21 - 40 of 781 in total

Abstract:
Sort:
  1. Alhaji SY, Chowdhury EH, Rosli R, Hassan F, Abdullah S
    Biomed Res Int, 2014;2014:646787.
    PMID: 25143941 DOI: 10.1155/2014/646787
    Existing nonviral gene delivery systems to lungs are inefficient and associated with dose limiting toxicity in mammalian cells. Therefore, carbonate apatite (CO3Ap) nanoparticles were examined as an alternative strategy for effective gene delivery to the lungs. This study aimed to (1) assess the gene delivery efficiency of CO3Ap in vitro and in mouse lungs, (2) evaluate the cytotoxicity effect of CO3Ap/pDNA in vitro, and (3) characterize the CO3Ap/pDNA complex formulations. A significantly high level of reporter gene expression was detected from the lung cell line transfected with CO3Ap/pDNA complex prepared in both serum and serum-free medium. Cytotoxicity analysis revealed that the percentage of the viable cells treated with CO3Ap to be almost similar to the untreated cells. Characterization analyses showed that the CO3Ap/pDNA complexes are in a nanometer range with aggregated spherical structures and tended to be more negatively charged. In the lung of mice, highest level of transgene expression was observed when CO3Ap (8 μL) was complexed with 40 μg of pDNA at day 1 after administration. Although massive reduction of gene expression was seen beyond day 1 post administration, the level of expression remained significant throughout the study period.
    Matched MeSH terms: Lung/metabolism*
  2. Fakiruddin KS, Lim MN, Nordin N, Rosli R, Zakaria Z, Abdullah S
    Cancers (Basel), 2019 08 28;11(9).
    PMID: 31466290 DOI: 10.3390/cancers11091261
    Mesenchymal stem cells (MSCs) are emerging as vehicles for anti-tumor cytotherapy; however, investigation on its efficacy to target a specific cancer stem cell (CSC) population in non-small cell lung cancer (NSCLC) is lacking. Using assays to evaluate cell proliferation, apoptosis, and gene expression, we investigated the efficacy of MSCs expressing tumour necrosis factor (TNF)-related apoptosis inducing ligand (MSC-TRAIL) to target and destroy CD133+ (prominin-1 positive) NSCLC-derived CSCs. Characterization of TRAIL death receptor 5 (DR5) revealed that it was highly expressed in the CD133+ CSCs of both H460 and H2170 cell lines. The human MSC-TRAIL generated in the study maintained its multipotent characteristics, and caused significant tumor cell inhibition in NSCLC-derived CSCs in a co-culture. The MSC-TRAIL induced an increase in annexin V expression, an indicator of apoptosis in H460 and H2170 derived CD133+ CSCs. Through investigation of mitochondria membrane potential, we found that MSC-TRAIL was capable of inducing intrinsic apoptosis to the CSCs. Using pathway-specific gene expression profiling, we uncovered candidate genes such as NFKB1, BAG3, MCL1, GADD45A, and HRK in CD133+ CSCs, which, if targeted, might increase the sensitivity of NSCLC to MSC-TRAIL-mediated inhibition. As such, our findings add credibility to the utilization of MSC-TRAIL for the treatment of NSCLC through targeting of CD133+ CSCs.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung; Lung Neoplasms
  3. Lim HH, Domala Z, Joginder S, Lee SH, Lim CS, Abu Bakar CM
    Br J Ind Med, 1984 Nov;41(4):445-9.
    PMID: 6498108 DOI: 10.1136/oem.41.4.445
    A study was carried out to determine the health effects of rice husk dust in Malaysian rice millers. The study population consisted of 122 male Malay workers from three rice mills, with 42 controls of similar age, sex, ethnic group, and agricultural work background. Interviews using standardised questionnaires, physical examination, total and differential white cell counts, chest radiographs, and lung function tests were performed on each of the millers and the controls. Environmental dust monitoring was also carried out in the three rice mills. Clinical, haematological, and radiological findings suggest that a distinct clinical syndrome seems to be associated with exposure to rice husk dust. The manifestations of this "rice millers' syndrome" include acute and chronic irritant effects affecting the eyes, skin, and upper respiratory tract; allergic responses such as nasal catarrh, tightness of chest, asthma, and eosinophilia; and radiological opacities in the chest, probably representing early silicosis or extrinsic allergic alveolitis.
    Matched MeSH terms: Lung/radiography; Lung Diseases/etiology; Lung Diseases/radiography
  4. Wong PF, Cheong WF, Shu MH, Teh CH, Chan KL, AbuBakar S
    Phytomedicine, 2012 Jan 15;19(2):138-44.
    PMID: 21903368 DOI: 10.1016/j.phymed.2011.07.001
    Bioactive compounds from the medicinal plant, Eurycoma longifolia Jack have been shown to promote anti-proliferative effects on various cancer cell lines. Here we examined the effects of purified eurycomanone, a quassinoid found in Eurycoma longifolia Jack extract, on the expression of selected genes of the A549 lung cancer cells. Eurycomanone inhibited A549 lung cancer cell proliferation in a dose-dependent manner at concentrations ranging from 5 to 20 μg/ml. The concentration that inhibited 50% of cell growth (GI(50)) was 5.1 μg/ml. The anti-proliferative effects were not fully reversible following the removal of eurycomanone, in which 30% of cell inhibition still remained (p<0.0001, T-test). At 8 μg/ml (GI(70)), eurycomanone suppressed anchorage-independent growth of A549 cells by >25% (p<0.05, T-test, n=8) as determined using soft agar colony formation assay. Cisplatin, a chemotherapy drug used for the treatment of non small cell lung cancer on the other hand, inhibited A549 cells proliferation at concentrations ranging from 0.2 μg/ml to 15 μg/ml with a GI(50) of 0.58 μg/ml. The treatment with eurycomanone reduced the abundance expression of the lung cancer markers, heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1, p53 tumor suppressor protein and other cancer-associated genes including prohibitin (PHB), annexin 1 (ANX1) and endoplasmic reticulum protein 28 (ERp28) but not the house keeping genes. The mRNA expressions of all genes with the exception of PHB were significantly downregulated, 72 h after treatment (p<0.05, T-test, n=9). These findings suggest that eurycomanone at viable therapeutic concentrations of 5-20 μg/ml exhibited significant anti-proliferative and anti-clonogenic cell growth effects on A549 lung cancer cells. The treatment also resulted in suppression of the lung cancer cell tumor markers and several known cancer cell growth-associated genes.
    Matched MeSH terms: Lung Neoplasms/drug therapy*; Lung Neoplasms/chemistry
  5. Loong SK, Mahfodz NH, Wali HA, Talib SA, Nasrah SN, Wong PF, et al.
    J Vet Med Sci, 2016 May 3;78(4):715-7.
    PMID: 26782013 DOI: 10.1292/jvms.15-0472
    Accurate identification and separation of non-classical Bordetella species is very difficult. These species have been implicated in animal infections. B. hinzii, a non-classical Bordetella, has been isolated from mice in experimental facilities recently. We isolated and characterized one non-classical Bordetella isolate from the trachea and lung of an ICR mouse. Isolate BH370 was initially identified as B. hinzii by 16S ribosomal DNA and ompA sequencing. Additionally, isolate BH370 also displayed antimicrobial sensitivity profiles similar to B. hinzii. However, analyses of nrdA sequences determined its identity as Bordetella genogroup 16. The isolation of BH370 from a healthy mouse suggests the possibility of it being a commensal. The nrdA gene was demonstrated to possess greater phylogenetic resolution as compared with 16S ribosomal DNA and ompA for the discrimination of non-classical Bordetella species.
    Matched MeSH terms: Lung
  6. Wong PF, Jamal J, Tong KL, Khor ES, Yeap CE, Jong HL, et al.
    Microvasc Res, 2017 11;114:26-33.
    PMID: 28595801 DOI: 10.1016/j.mvr.2017.06.002
    miRNAs are important regulators of cellular senescence yet the extent of their involvement remains to be investigated. We sought to identify miRNAs that are involved in cytokine-induced premature senescence (CIPS) in endothelial cells. CIPS was established in young human pulmonary microvascular endothelial cells (HMVEC-Ls) following treatment with a sublethal dose (20ng/ml) of tumor necrosis factor alpha (TNF-α) for 15days. In parallel, HMVEC-Ls were grown and routinely passaged until the onset of replicative senescence (RS). Differential expression analysis following miRNA microarray profiling revealed an overlapped of eight deregulated miRNAs in both the miRNA profiles of RS and TNF-α-induced premature senescence cells. Amongst the deregulated miRNAs were members of the miR 17-92 cluster which are known regulators of angiogenesis. The role of hsa-miR-20b in TNF-α-induced premature senescence, a paralog member of the miR 17-92 cluster, was further investigated. Biotin-labeled hsa-miR-20b captured the enriched transcripts of retinoblastoma-like 1 (RBL1), indicating that RBL1 is a target of hsa-miR-20b. Knockdown of hsa-miR-20b attenuated premature senescence in the TNF-α-treated HMVEC-Ls as evidenced by increased cell proliferation, increased RBL1 mRNA expression level but decreased protein expression of p16INK4a, a cellular senescence marker. These findings provide an early insight into the role of hsa-miR-20b in endothelial senescence.
    Matched MeSH terms: Lung/blood supply*
  7. Loong SK, Che-Mat-Seri NA, Abdulrazak O, Douadi B, Ahmad-Nasrah SN, Johari J, et al.
    J Vet Med Sci, 2018 Jan 27;80(1):77-84.
    PMID: 29237995 DOI: 10.1292/jvms.17-0218
    Rodents have historically been associated with zoonotic pandemics that claimed the lives of large human populations. Appropriate pathogen surveillance initiatives could contribute to early detection of zoonotic infections to prevent future outbreaks. Bordetella species are bacteria known to cause mild to severe respiratory disease in mammals and, some have been described to infect, colonize and spread in rodents. There is a lack of information on the population diversity of bordetellae among Malaysian wild rodents. Here, bordetellae recovered from lung tissues of wild rats were genotypically characterized using 16S rDNA sequencing, MLST and nrdA typing. A novel B. bronchiseptica ST82, closely related to other human-derived isolates, was discovered in three wild rats (n=3) from Terengganu (5.3333° N, 103.1500° E). B. pseudohinzii, a recently identified laboratory mice inhabitant, was also recovered from one rat (n=1). Both bordetellae displayed identical antimicrobial resistance profiles, indicating the close phylogenetic association between them. Genotyping using the 765-bp nrdA locus was shown to be compatible with the MLST-based phylogeny, with the added advantage of being able to genotype non-classical bordetellae. The recovery of B. pseudohinzii from wild rat implied that this bordetellae has a wider host range than previously thought. The findings from this study suggest that bordetellae surveillance among wild rats in Malaysia has to be continued and expanded to other states to ensure early identification of species capable of causing public health disorder.
    Matched MeSH terms: Lung/microbiology
  8. Horry MJ, Chakraborty S, Pradhan B, Paul M, Zhu J, Loh HW, et al.
    Sensors (Basel), 2023 Jul 21;23(14).
    PMID: 37514877 DOI: 10.3390/s23146585
    Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.
    Matched MeSH terms: Lung
  9. García Mde L, Borrero R, Lanio ME, Tirado Y, Alvarez N, Puig A, et al.
    Biomed Res Int, 2014;2014:273129.
    PMID: 25548767 DOI: 10.1155/2014/273129
    A more effective vaccine against tuberculosis (TB) is urgently needed. Based on its high genetic homology with Mycobacterium tuberculosis (Mtb), the nonpathogenic mycobacteria, Mycobacterium smegmatis (Ms), could be an attractive source of potential antigens to be included in such a vaccine. We evaluated the capability of lipid-based preparations obtained from Ms to provide a protective response in Balb/c mice after challenge with Mtb H37Rv strain. The intratracheal model of progressive pulmonary TB was used to assess the level of protection in terms of bacterial load as well as the pathological changes in the lungs of immunized Balb/c mice following challenge with Mtb. Mice immunized with the lipid-based preparation from Ms either adjuvanted with Alum (LMs-AL) or nonadjuvanted (LMs) showed significant reductions in bacterial load (P < 0.01) compared to the negative control group (animals immunized with phosphate buffered saline (PBS)). Both lipid formulations showed the same level of protection as Bacille Calmette and Guerin (BCG). Regarding the pathologic changes in the lungs, mice immunized with both lipid formulations showed less pneumonic area when compared with the PBS group (P < 0.01) and showed similar results compared with the BCG group. These findings suggest the potential of LMs as a promising vaccine candidate against TB.
    Matched MeSH terms: Lung/microbiology; Lung/pathology
  10. Alvarez N, Infante JF, Borrero R, Mata D, Payan JB, Hossain MM, et al.
    Malays J Med Sci, 2014 May;21(3):31-7.
    PMID: 25246833 MyJurnal
    Humoral and cellular immune responses are associated with protection against extracellular and intracellular pathogens, respectively. In the present study, we evaluated the effect of receiving human secretory immunoglobulin A (hsIgA) on the histopathology of the lungs of mice challenged with virulent Mycobacterium tuberculosis.
    Matched MeSH terms: Lung
  11. Hajeb P, Sloth JJ, Shakibazadeh S, Mahyudin NA, Afsah-Hejri L
    Compr Rev Food Sci Food Saf, 2014 Jul;13(4):457-472.
    PMID: 33412705 DOI: 10.1111/1541-4337.12068
    Toxic elements such as mercury, arsenic, cadmium, and lead, sometimes called heavy metals, can diminish mental and central nervous system function; elicit damage to blood composition as well as the kidneys, lungs, and liver; and reduce energy levels. Food is considered one of the main routes of their entry into the human body. Numerous studies have been performed to examine the effects of common food processing procedures on the levels of toxic elements in food. While some studies have reported negative effects of processing, several have shown that processing practices may have a positive effect on the reduction of toxic elements in foodstuffs. A number of studies have also introduced protocols and suggested chemical agents that reduce the amount of toxic elements in the final food products. In this review, the reported methods employed for the reduction of toxic elements are discussed with particular emphasis on the chemical binding of both the organic and inorganic forms of each element in various foods. The molecular groups and the ligands by which the food products bind with the metals and the types of these reactions are also presented.
    Matched MeSH terms: Lung
  12. Wan Ahmad WS, Zaki WM, Ahmad Fauzi MF
    Biomed Eng Online, 2015;14:20.
    PMID: 25889188 DOI: 10.1186/s12938-015-0014-8
    Unsupervised lung segmentation method is one of the mandatory processes in order to develop a Content Based Medical Image Retrieval System (CBMIRS) of CXR. The purpose of the study is to present a robust solution for lung segmentation of standard and mobile chest radiographs using fully automated unsupervised method.
    Matched MeSH terms: Lung/radiography*
  13. Siti Fatimah Saipuddin, Ahmad Saat
    Science Letters, 2018;12(2):11-18.
    MyJurnal
    Radon gas has been known as one of the main factors that cause breathing complications which lead to lung cancer, second only after smoking habit. As one of the most commonly found Naturally Occurring Radioactive Materials (NORM), its contribution to background radiation is immense, and its contributors, Uranium and Thorium are widely available on Earth and have been in existence for such a long time with long half-lives. Indoor radon exposure contributed by building materials worsens the effects. The probability of inhaling radon-polluted air and being surrounded by it in any buildings is very high. This research is focused on the detection of radon emanation rate from various building materials which are commonly being used in Malaysia. Throughout this research, common building materials used in constructions in Malaysia were collected and indoor radon exposure from each material was measured individually using Tight Chamber Method coupled to a Continuous Radon Monitor, CRM 1029. It has been shown that sand brick is the biggest contributor to indoor radon compared to other samples such as sand, soil, black cement, white cement, and clay brick. From the results, materials which have high radon emanation could be reconsidered as building materials and mitigation action can be chosen, suitable to its application.
    Matched MeSH terms: Lung Neoplasms
  14. Yaacob I, Harun Z, Ahmad Z
    Singapore Med J, 1991 Feb;32(1):26-8.
    PMID: 2017700
    Two hundred and ninety-three bronchoscopies were done for 285 patients (78% males, 22% females) at Hospital University Sains Malaysia between 1984 and 1988. The mean age was 56.4 years (range 13 to 90 years). 70.2% of patients underwent bronchoscopies to confirm or exclude the diagnosis of carcinoma of the bronchus, out of which 58% were confirmed to have bronchial carcinoma. 77% of the 98 patients with visible endobronchial tumours had biopsy specimens diagnostic of malignancy. Brushing and washing cytology increased the positive yield to 92%. The commonest histological type of bronchial carcinoma identified was squamous cell carcinoma (48.1%), followed by small cell carcinoma (27.1%), anaplastic/undifferentiated carcinoma (12.9%), adenocarcinoma (9.4%) and large cell carcinoma (2.4%). Bronchoscopy for the investigation of haemoptysis identified the commonest cause as 'bronchitis'. There were no complications noted in our series. Notable differences of our experience compared to that of the western series were the high percentage of bronchoscopy done for infective respiratory disorders and the younger age of our patients.
    Matched MeSH terms: Lung Diseases/diagnosis*; Lung Neoplasms/diagnosis
  15. Sadeghi A, Tahmasebi S, Mahmood A, Kuznetsova M, Valizadeh H, Taghizadieh A, et al.
    J Cell Physiol, 2021 04;236(4):2829-2839.
    PMID: 32926425 DOI: 10.1002/jcp.30047
    In the course of the coronavirus disease 2019 (COVID-19), raising and reducing the function of Th17 and Treg cells, respectively, elicit hyperinflammation and disease progression. The current study aimed to evaluate the responses of Th17 and Treg cells in COVID-19 patients compared with the control group. Forty COVID-19 intensive care unit (ICU) patients were compared with 40 healthy controls. The frequency of cells, gene expression of related factors, as well as the secretion levels of cytokines, were measured by flow cytometry, real-time polymerase chain reaction, and enzyme-linked immunosorbent assay techniques, respectively. The findings revealed a significant increase in the number of Th17 cells, the expression levels of related factors (RAR-related orphan receptor gamma [RORγt], IL-17, and IL-23), and the secretion levels of IL-17 and IL-23 cytokines in COVID-19 patients compared with controls. In contrast, patients had a remarkable reduction in the frequency of Treg cells, the expression levels of correlated factors (Forkhead box protein P3 [FoxP3], transforming growth factor-β [TGF-β], and IL-10), and cytokine secretion levels (TGF-β and IL-10). The ratio of Th17/Treg cells, RORγt/FoxP3, and IL-17/IL-10 had a considerable enhancement in patients compared with the controls and also in dead patients compared with the improved cases. The findings showed that enhanced responses of Th17 cells and decreased responses of Treg cells in 2019-n-CoV patients compared with controls had a strong relationship with hyperinflammation, lung damage, and disease pathogenesis. Also, the high ratio of Th17/Treg cells and their associated factors in COVID-19-dead patients compared with improved cases indicates the critical role of inflammation in the mortality of patients.
    Matched MeSH terms: Lung
  16. Biswal BM, Kareem A, Ahmed NM
    Australas Radiol, 2001 Feb;45(1):71-3.
    PMID: 11259979 DOI: 10.1046/j.1440-1673.2001.00883.x
    A patient with nasopharyngeal carcinoma developed clubbing and hypertrophic osteoarthropathy 6 months before radiological detection of secondary deposits in the lung. Another patient with nasopharyngeal carcinoma developed digital clubbing and hypertrophic osteoarthropathy 6 months after the discovery of lung metastases. Development of a paraneoplastic syndrome in the form of hypertrophic osteoarthropathy and digital clubbing is very rare. This manifestation of nasopharyngeal cancers is presented, with a short review of its biology and pathogenesis.
    Matched MeSH terms: Lung Neoplasms/secondary
  17. Iqbal FR, Sani A, Gendeh BS, Aireen I
    Med J Malaysia, 2008 Dec;63(5):417-8.
    PMID: 19803306 MyJurnal
    Patients with multiple malignant primary tumours are often described, based on their chronology of presentation, as simultaneous, synchronous or metachronous tumours. Lung malignancies presenting in association with head and neck tumours are well documented while there have been small series of thyroid synchronous cancers presenting with laryngeal lesions in literature. No cases, to our knowledge, have been reported in literature of a single patient with all three laryngeal, lung and thyroid malignancies. We report one such case of a 71-year-old Chinese man who had undergone a total laryngectomy for a recurrent cancer of the larynx only to be found to have tumours of the lung and thyroid in the post-operative period and he eventually died of post-operative complications. We also discuss screening for lung and thyroid malignancies in patients with head and neck squamous cell carcinoma (SCC).
    Matched MeSH terms: Lung/pathology; Lung/surgery; Lung Neoplasms/diagnosis*; Lung Neoplasms/surgery
  18. Al-Adsani A, Dahniya MH, Al-Adsani N
    Postgrad Med J, 2001 Feb;77(904):127, 137-8.
    PMID: 11161092
    Matched MeSH terms: Lung Neoplasms/etiology*
  19. Ismail IN, Alaga A
    Med J Malaysia, 2023 Nov;78(6):751-755.
    PMID: 38031216
    INTRODUCTION: Ultrasound guided lung biopsy (USLB) is a minimally invasive diagnostic tool with short examination time and real-time monitoring conducted bedside for accurate diagnosis in order to provide the best treatment. However, it is not widely performed by pulmonologists. We aim to explicate the efficacy and safety of USLB led by pulmonologists. The objective of this study is to assess safety and efficacy of USLB performed by pulmonologists in an outpatient setting.

    MATERIALS AND METHODS: We retrospectively enrolled patients who underwent the procedure from January 2018 to April 2022. Under real time ultrasound (Hitachi Medical ProSound F37), thoracic lesions adjacent to the chest wall were sampled with a full-core biopsy needle (CT Core Single Action Biopsy Device, 18G × 15 cm, Vigeo, Italy). Chest x-ray was performed 30 minutes post procedure ruling out pneumothorax. Patients were discharged home 1-2 hours post biopsy. Data was analysed using Microsoft Excel 2010 and Statistical Package for Social Science (SPSS) Version 26.

    RESULTS: A total of 18 patients (14 males, 4 females) underwent USLB for lung tumours. Biopsies were histologically deemed adequate with an overall diagnostic yield of 77.8% (14/18). A total of 57% were positive for thoracic malignancy (21% squamous cell carcinoma, 21% adenocarcinoma, 15% small cell carcinoma) and another 43% were positive for extra thoracic malignancy (1 hepatocellular carcinoma, 2 DLBCL, 1 Hodgkin's lymphoma, 1 seminoma, 1 thymoma). Four patients had inconclusive results but managed to get positive results from surgical or lymph node biopsy (thymoma and adenocarcinoma). Statistical analysis showed more than two passes are needed to achieve a positive HPE yield (p value<0.05). There were nil complications to all the cases done.

    CONCLUSIONS: USLB can safely and effectively be performed by trained pulmonologists with excellent accuracy and low complication rate in outpatients.

    Matched MeSH terms: Lung/pathology
  20. Horry M, Chakraborty S, Pradhan B, Paul M, Gomes D, Ul-Haq A, et al.
    Sensors (Basel), 2021 Oct 07;21(19).
    PMID: 34640976 DOI: 10.3390/s21196655
    Lung cancer is the leading cause of cancer death and morbidity worldwide. Many studies have shown machine learning models to be effective in detecting lung nodules from chest X-ray images. However, these techniques have yet to be embraced by the medical community due to several practical, ethical, and regulatory constraints stemming from the "black-box" nature of deep learning models. Additionally, most lung nodules visible on chest X-rays are benign; therefore, the narrow task of computer vision-based lung nodule detection cannot be equated to automated lung cancer detection. Addressing both concerns, this study introduces a novel hybrid deep learning and decision tree-based computer vision model, which presents lung cancer malignancy predictions as interpretable decision trees. The deep learning component of this process is trained using a large publicly available dataset on pathological biomarkers associated with lung cancer. These models are then used to inference biomarker scores for chest X-ray images from two independent data sets, for which malignancy metadata is available. Next, multi-variate predictive models were mined by fitting shallow decision trees to the malignancy stratified datasets and interrogating a range of metrics to determine the best model. The best decision tree model achieved sensitivity and specificity of 86.7% and 80.0%, respectively, with a positive predictive value of 92.9%. Decision trees mined using this method may be considered as a starting point for refinement into clinically useful multi-variate lung cancer malignancy models for implementation as a workflow augmentation tool to improve the efficiency of human radiologists.
    Matched MeSH terms: Lung
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links