Displaying publications 21 - 40 of 782 in total

Abstract:
Sort:
  1. Pravina Jeevanaraj, Samala Munianddey, Zailina Hashim
    MyJurnal
    Introduction: Due to rapid urbanization, Malaysia is currently undergoing extensive amount of construction activities and significant rise in the construction waste. Improper construction wastes management practices have led to rise in the waste open dumping sites which may significantly affect the environment and public health. This study was undertaken to assess air pollution in such a site and the impact to the respiratory health of children studying in a nearby school. Methods: A comparative cross-sectional study was conducted in Sungai Buloh (exposed) and Kuala Selangor (comparative). Concentration of PM10 was monitored at the open dumping site (n=15), a nearby primary school (n=45) and a comparative primary school (n=12). Parents who gave consent (n=229) answered a questionnaire related to child’s respiratory health whereas their children participated in lung function assessment. Results: Concentration of PM10 at the dumping site, exposed school and comparative school was 0.245±0.048mg/ m3 , 0.270±0.020mg/m3 and 0.051±0.016mg/m3 respectively, with the first two significantly exceeded the 24-hour Malaysian Air Quality Standard (MAQS) for PM10 (0.150mg/m3 ). Besides, PM10 concentration in the exposed school was similar to the dumping site (p>0.05) and many folds higher than the comparative school (p
    Matched MeSH terms: Lung
  2. Ismail Y, Loo CS, Zahary MK
    Singapore Med J, 1994 Apr;35(2):171-2.
    PMID: 7939814
    We reviewed 116 chest radiographs done in 70 adult asthmatic patients who were admitted to the Hospital Universiti Sains Malaysia from January to December 1989. The chest radiographs were abnormal in 23% of cases. Twelve percent showed hyperinflation and 7% had pneumonia. Eight patients diagnosed clinically to have pneumonia had normal chest radiographs. Seven patients had radiographic findings of conditions which were unsuspected clinically. These included two cases of pneumonia, one case each of fibrosing alveolitis, pneumothorax, pneumomediastinum, mitral stenosis with left ventricular failure and right pleural effusion. In conclusion, we found that significant chest radiograph abnormalities in adult patients admitted for asthma were uncommon although chest radiographs were helpful in detecting complications or coincidental conditions. Chest radiograph is therefore an important investigation in adult asthmatic patients who are admitted. However, considering the cost and the risk of radiation, it should be done only in selective cases rather than as a routine procedure.
    Study site: Hospital Universiti Sains Malaysia, Kelantan, Malaysia
    Matched MeSH terms: Lung Diseases, Obstructive/radiography*
  3. Johari J, Sharifudin MA, Ab Rahman A, Omar AS, Abdullah AT, Nor S, et al.
    Singapore Med J, 2016 Jan;57(1):33-8.
    PMID: 26831315 DOI: 10.11622/smedj.2016009
    This retrospective review aimed to examine the relationship between preoperative pulmonary function and the Cobb angle, location of apical vertebrae and age in adolescent idiopathic scoliosis (AIS). To our knowledge, there have been no detailed analyses of preoperative pulmonary function in relation to these three factors in AIS.
    Matched MeSH terms: Lung/physiopathology*
  4. Loh KY, Yushak AW
    N Engl J Med, 2007 Jul 19;357(3):282.
    PMID: 17634463 DOI: 10.1056/NEJMicm063871
    Matched MeSH terms: Lung Neoplasms/radiography; Lung Neoplasms/secondary
  5. Yong SJ
    Med Hypotheses, 2021 Aug;153:110628.
    PMID: 34139599 DOI: 10.1016/j.mehy.2021.110628
    Presently, it remains unclear why the prevalence of lung diseases, namely chronic obstructive pulmonary disease (COPD), is much lower than other medical comorbidities and the general population among patients with coronavirus disease 2019 (COVID-19). If COVID-19 is a respiratory disease, why is COPD not the leading risk factor for contracting COVID-19? The same odd phenomenon was also observed with other pathogenic human coronaviruses causing severe acute respiratory distress syndrome (SARS) and Middle East respiratory syndrome (MERS), but not other respiratory viral infections such as influenza and respiratory syncytial viruses. One commonly proposed reason for the low COPD rates among COVID-19 patients is the usage of inhaled corticosteroids or bronchodilators that may protect against COVID-19. However, another possible reason not discussed elsewhere is that lungs in a diseased state may not be conducive for the severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) to establish COVID-19. For one, COPD causes mucous plugging in large and small airways, which may hinder SARS-CoV-2 from reaching deeper parts of the lungs (i.e., alveoli). Thus, SARS-CoV-2 may only localize to the upper respiratory tract of persons with COPD, causing mild or asymptomatic infections requiring no hospital attention. Even if SARS-CoV-2 reaches the alveoli, cells therein are probably under a heavy burden of endoplasmic reticulum (ER) stress and extensively damaged where it may not support efficient viral replication. As a result, limited SARS-CoV-2 virions would be produced in diseased lungs, preventing the development of COVID-19.
    Matched MeSH terms: Lung
  6. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
    Matched MeSH terms: Lung Neoplasms/metabolism*; Lung Neoplasms/microbiology; Lung Neoplasms/pathology
  7. Chew DT, Yin AL
    Med J Malaya, 1971 Dec;26(2):122-8.
    PMID: 4260858
    Matched MeSH terms: Lung Diseases/etiology*
  8. Majid AA, Yii NW
    Chest, 1991 Aug;100(2):560-1.
    PMID: 1864139
    Pulmonary zygomycosis rarely occurs in the absence of underlying disease. We report a patient with granulomatous pulmonary zygomycosis without underlying disease who presented with a pulmonary mass. We present the computed tomographic findings that we believe have not been described previously. We also report the successful treatment by pneumonectomy.
    Matched MeSH terms: Lung Diseases, Fungal/pathology; Lung Diseases, Fungal/surgery
  9. Teah MK, Yap KY, Ismail AJ, Yeap TB
    BMJ Case Rep, 2021 Feb 17;14(2).
    PMID: 33597165 DOI: 10.1136/bcr-2020-241148
    Placement of a double-lumen tube to achieve one lung ventilation is an aerosol-generating procedure. Performing it on a patient with COVID-19 will put healthcare workers at high risk of contracting the disease. We herein report a case of its use in a patient with traumatic diaphragmatic rupture, who was also suspected to have COVID-19. This article aims to highlight the issues, it presented and ways to address them as well as the perioperative impact of personal protective equipment.
    Matched MeSH terms: One-Lung Ventilation/instrumentation; One-Lung Ventilation/standards*
  10. Bera H, Abbasi YF, Gajbhiye V, Liew KF, Kumar P, Tambe P, et al.
    Mater Sci Eng C Mater Biol Appl, 2020 May;110:110628.
    PMID: 32204068 DOI: 10.1016/j.msec.2020.110628
    The current study dealt with the synthesis and characterization of carboxymethyl fenugreek galactomannang-g-poly(N-isopropylacrylamide-co-N,N'-methylene-bis-acrylamide)-bentonite [CFG-g-P(NIPA-co-MBA)-BEN] based nanocomposites (NCs) as erlotinib (ERL)-delivery devices for lung cancer cells to suppress excessive cell proliferation. The blank NCs exhibited outstanding biodegradability and pH/temperature-dependent swelling profiles, which were significantly influenced by their BEN contents (0-20%). The molar mass (M¯c) between the crosslinks of these NCs was declined with temperature. The composite architecture of these scaffolds was confirmed by XRD, FTIR, TGA, DSC and SEM analyses. The corresponding ERL-loaded matrices (F-1-F-3) portrayed outstanding drug encapsulation efficiency (DEE, 93-100%) with zeta potential between -8 and -16 mV and diameter between 615 and 1258 nm. These formulations demonstrated sustained ERL elution profiles (Q8h, 62-98%) with an initial burst release of drug. The drug dissolution pattern of the optimized matrices (F-3) obeyed first-order kinetic model and was driven by Fickian diffusion. The mucin adsorption behavior of F-3 was best fitted to Freudlich isotherms. The ERL-loaded formulation suppressed A549 cell proliferation and promoted apoptosis to a greater extent than the pristine drug, as detected by cellular uptake analysis, MTT cytotoxicity test and AO/EB staining assay.
    Matched MeSH terms: Lung Neoplasms/drug therapy*; Lung Neoplasms/metabolism
  11. Bera H, Abbasi YF, Lee Ping L, Marbaniang D, Mazumder B, Kumar P, et al.
    Carbohydr Polym, 2020 Feb 15;230:115664.
    PMID: 31887927 DOI: 10.1016/j.carbpol.2019.115664
    Erlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature. The solid state characterization confirmed the semi-IPN architecture of these scaffolds. The corresponding drug-loaded formulations displayed excellent drug-trapping capacity (DEE, 86-97 %) with acceptable zeta potential (-16 to -13 mV) and diameter (967-646 nm). These formulations conferred sustained drug elution profiles (Q8h, 77-99 %) with an initial burst release. The drug release profile of the optimized formulation (F-3) was best fitted in the first order kinetic model with Fickian diffusion driven mechanism. The mucin adsorption to F-3 followed Langmuir isotherms. The results of MTT assay, AO/EB staining and confocal analyses revealed that the ERL-loaded formulation suppressed A549 cell proliferation and induced apoptosis more effectively than pristine drug.
    Matched MeSH terms: Lung Neoplasms/drug therapy
  12. Tan D, Mohamad Salleh SA, Manan HA, Yahya N
    J Med Imaging Radiat Oncol, 2023 Aug;67(5):564-579.
    PMID: 37309680 DOI: 10.1111/1754-9485.13546
    INTRODUCTION: Delta-radiomics models are potentially able to improve the treatment assessment than single-time point features. The purpose of this study is to systematically synthesize the performance of delta-radiomics-based models for radiotherapy (RT)-induced toxicity.

    METHODS: A literature search was performed following the PRISMA guidelines. Systematic searches were performed in PubMed, Scopus, Cochrane and Embase databases in October 2022. Retrospective and prospective studies on the delta-radiomics model for RT-induced toxicity were included based on predefined PICOS criteria. A random-effect meta-analysis of AUC was performed on the performance of delta-radiomics models, and a comparison with non-delta radiomics models was included.

    RESULTS: Of the 563 articles retrieved, 13 selected studies of RT-treated patients on different types of cancer (HNC = 571, NPC = 186, NSCLC = 165, oesophagus = 106, prostate = 33, OPC = 21) were eligible for inclusion in the systematic review. Included studies show that morphological and dosimetric features may improve the predictive model performance for the selected toxicity. Four studies that reported both delta and non-delta radiomics features with AUC were included in the meta-analysis. The AUC random effects estimate for delta and non-delta radiomics models were 0.80 and 0.78 with heterogeneity, I2 of 73% and 27% respectively.

    CONCLUSION: Delta-radiomics-based models were found to be promising predictors of predefined end points. Future studies should consider using standardized methods and radiomics features and external validation to the reviewed delta-radiomics model.

    Matched MeSH terms: Lung Neoplasms*
  13. Ngen RMY, Cheong I, Yahaya O
    Med J Malaysia, 1985 Jun;40(2):98-100.
    PMID: 3834293
    405 cases of bronchial brushing cytology were evaluated for its effectiveness in detecting pulmonary carcinoma. Cytohistologic findings were correlated whenever endoscopic biopsies were performed. Sputum cytological investigations were also included in this paper to examine the total diagnostic sensitivity of all the three methods combined.
    Matched MeSH terms: Lung Neoplasms/diagnosis*
  14. Kamaruzaman NA, Kardia E, Kamaldin N', Latahir AZ, Yahaya BH
    Biomed Res Int, 2013;2013:691830.
    PMID: 23653896 DOI: 10.1155/2013/691830
    No single animal model can reproduce all of the human features of both acute and chronic lung diseases. However, the rabbit is a reliable model and clinically relevant facsimile of human disease. The similarities between rabbits and humans in terms of airway anatomy and responses to inflammatory mediators highlight the value of this species in the investigation of lung disease pathophysiology and in the development of therapeutic agents. The inflammatory responses shown by the rabbit model, especially in the case of asthma, are comparable with those that occur in humans. The allergic rabbit model has been used extensively in drug screening tests, and this model and humans appear to be sensitive to similar drugs. In addition, recent studies have shown that the rabbit serves as a good platform for cell delivery for the purpose of stem-cell-based therapy.
    Matched MeSH terms: Lung Diseases/therapy*
  15. Kardia E, Halim NSSA, Yahaya BH
    Methods Mol Biol, 2016;1516:243-255.
    PMID: 27062596 DOI: 10.1007/7651_2016_327
    Aerosol-based cell delivery technique via intratracheal is an effective route for delivering transplant cells directly into the lungs. An aerosol device known as the MicroSprayer(®) Aerosolizer is invented to transform liquid into an aerosol form, which then can be applied via intratracheal administration for drug delivery. The device produces a uniform and concentrated distribution of aerosolized liquid. Using the capability of MicroSprayer(®) Aerosolizer to transform liquid into aerosol form, our group has designed a novel method of cell delivery using an aerosol-based technique. We have successfully delivered skin-derived fibroblast cells and airway epithelial cells into the airway of a rabbit with minimum risk of cell loss and have uniformly distributed the cells into the airway. This chapter illustrates the application of aerosol device to deliver any type of cells for future treatment of lung diseases.
    Matched MeSH terms: Lung/drug effects*; Lung/pathology; Lung Diseases/pathology; Lung Diseases/therapy*
  16. Halim NHA, Zakaria N, Satar NA, Yahaya BH
    Methods Mol Biol, 2016;1516:371-388.
    PMID: 27032945 DOI: 10.1007/7651_2016_326
    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/pathology*
  17. Abdul Satar N, Ismail MN, Yahaya BH
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670440 DOI: 10.3390/molecules26041056
    Cancer stem cells (CSCs) represent a small subpopulation within a tumour. These cells possess stem cell-like properties but also initiate resistance to cytotoxic agents, which contributes to cancer relapse. Natural compounds such as curcumin that contain high amounts of polyphenols can have a chemosensitivity effect that sensitises CSCs to cytotoxic agents such as cisplatin. This study was designed to investigate the efficacy of curcumin as a chemo-sensitiser in CSCs subpopulation of non-small cell lung cancer (NSCLC) using the lung cancer adenocarcinoma human alveolar basal epithelial cells A549 and H2170. The ability of curcumin to sensitise lung CSCs to cisplatin was determined by evaluating stemness characteristics, including proliferation activity, colony formation, and spheroid formation of cells treated with curcumin alone, cisplatin alone, or the combination of both at 24, 48, and 72 h. The mRNA level of genes involved in stemness was analysed using quantitative real-time polymerase chain reaction. Liquid chromatography-mass spectrometry was used to evaluate the effect of curcumin on the CSC niche. A combined treatment of A549 subpopulations with curcumin reduced cellular proliferation activity at all time points. Curcumin significantly (p < 0.001) suppressed colonies formation by 50% and shrank the spheroids in CSC subpopulations, indicating inhibition of their self-renewal capability. This effect also was manifested by the down-regulation of SOX2, NANOG, and KLF4. Curcumin also regulated the niche of CSCs by inhibiting chemoresistance proteins, aldehyde dehydrogenase, metastasis, angiogenesis, and proliferation of cancer-related proteins. These results show the potential of using curcumin as a therapeutic approach for targeting CSC subpopulations in non-small cell lung cancer.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/drug therapy; Carcinoma, Non-Small-Cell Lung/genetics; Carcinoma, Non-Small-Cell Lung/pathology*; Lung Neoplasms/drug therapy; Lung Neoplasms/genetics; Lung Neoplasms/pathology*
  18. Zakaria N, Yahaya BH
    Adv Exp Med Biol, 2020;1292:83-95.
    PMID: 31916234 DOI: 10.1007/5584_2019_464
    INTRODUCTION: Mesenchymal stem cells (MSCs) have been used in cancer therapy as vehicles to deliver therapeutic materials such as drugs, apoptosis inducers and cytokines due to their ability to migrate and home at the tumour site. Furthermore, MSCs have been genetically engineered to produce anticancer molecules such as TRAIL that can induce apoptosis of cancer cells. However, MSCs' presence in the tumour microenvironment has shown to be involved in promoting tumour growth and progression. Therefore, the roles of MSCs either promoting or suppressing tumorigenesis need to be investigated.

    METHODS: Human adipose-derived MSCs (Ad-MSCs) and A549 cells are co-cultured together in indirect co-culture system using Transwell insert. Following co-culture, both cells were analysed in terms of growth rate, migration ability, apoptosis and gene expression for genes involved in migration and stemness characteristics.

    RESULTS: The result shows that Ad-MSCs promoted the growth of A549 cells when indirectly co-cultured for 48 and 72 h. Furthermore, Ad-MSCs significantly enhanced the migration rate of A549 cells. The increased in migration rate was in parallel with the significant increase of MMP9. There are no significant changes observed in the expression of TWIST2, CDH2 and CDH1, genes involved in the epithelial-to-mesenchymal transition (EMT). Ad-MSCs also protect A549 cancer cells from undergoing apoptosis and increase the survival of cancer cells.

    CONCLUSION: Secretion of soluble factors from Ad-MSCs has been shown to promote the growth and metastatic characteristics of A549 cancer cells. Therefore, the use of Ad-MSCs in cancer therapy needs to be carefully evaluated in the long-term aspect.

    Matched MeSH terms: Lung Neoplasms/genetics; Lung Neoplasms/pathology*
  19. Abu Halim NH, Zakaria N, Theva Das K, Lin J, Lim MN, Fakiruddin KS, et al.
    J Cancer, 2021;12(12):3468-3485.
    PMID: 33995625 DOI: 10.7150/jca.50793
    Retinoic acid receptor beta is a nuclear receptor protein that binds to retinoic acid (RA) to mediate cellular signalling in embryogenic morphogenesis, cell growth, and differentiation. However, the function of RARβ in cancer stem cells (CSCs) has yet to be determined. This study aimed to understand the role of RARβ in regulating cell growth and differentiation of lung cancer stem cells. Based on the clonogenic assay, spheroid assay, mRNA levels of stem cell transcription factors, and cell cycle being arrested at the G0/G1 phase, the suppression of RARβ resulted in significant inhibition of A549 parental cell growth. This finding was contradictory to the results seen in CSCs, where RARβ inhibition enhanced the cell growth of putative and non-putative CSCs. These results suggest that RARβ suppression may act as an essential regulator in A549 parental cells, but not in the CSCs population. The findings in this study demonstrated that the loss of RARβ promotes tumorigenicity in CSCs. Microarray analysis revealed that various cancer pathways were significantly activated following the suppression of RARβ. The changes seen might compensate for the loss of RARβ function, CSCs population's aggressiveness, which led to the CSCs population's aggressiveness. Thus, understanding the role of RARβ in regulating the stemness of CSCs may lead to targeted therapy for lung CSCs.
    Matched MeSH terms: Lung
  20. Kardia E, Ch'ng ES, Yahaya BH
    J Tissue Eng Regen Med, 2018 02;12(2):e995-e1007.
    PMID: 28105760 DOI: 10.1002/term.2421
    Aerosol-based cell therapy has emerged as a novel and promising therapeutic strategy for treating lung diseases. The goal of this study was to determine the safety and efficacy of aerosol-based airway epithelial cell (AEC) delivery in the setting of acute lung injury induced by tracheal brushing in rabbit. Twenty-four hours following injury, exogenous rabbit AECs were labelled with bromodeoxyuridine and aerosolized using the MicroSprayer® Aerosolizer into the injured airway. Histopathological assessments of the injury in the trachea and lungs were quantitatively scored (1 and 5 days after cell delivery). The aerosol-based AEC delivery appeared to be a safe procedure, as cellular rejection and complications in the liver and spleen were not detected. Airway injury initiated by tracheal brushing resulted in disruption of the tracheal epithelium as well as morphological damage in the lungs that is consistent with acute lung injury. Lung injury scores were reduced following 5 days after AEC delivery (AEC-treated, 0.25  ±  0.06 vs. untreated, 0.53  ±  0.05, P  lungs, following acute insults. These findings suggest that aerosol-based AEC delivery can be a valuable tool for future therapy to treat acute lung injury. Copyright © 2017 John Wiley & Sons, Ltd.
    Matched MeSH terms: Lung/pathology*; Lung/physiopathology*; Acute Lung Injury/pathology; Acute Lung Injury/physiopathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links