Displaying publications 21 - 40 of 602 in total

Abstract:
Sort:
  1. Zamanian M, Veerakumarasivam A, Abdullah S, Rosli R
    Pathol Oncol Res, 2013 Apr;19(2):149-54.
    PMID: 23392843 DOI: 10.1007/s12253-012-9600-2
    Calreticulin (CRT) as a multi-functional endoplasmic reticulum protein is involved in a spectrum of cellular processes which ranges from calcium homeostasis and chaperoning to cell adhesion and finally malignant formation and progression. Previous studies have shown a contributing role for CRT in a range of different cancers. This present review will focus on the possible roles of CRT in the progression of malignant proliferation and the mechanisms involved in its contribution to cancer invasion.
    Matched MeSH terms: Neoplasms/metabolism*
  2. Prime SS, Cirillo N, Hassona Y, Lambert DW, Paterson IC, Mellone M, et al.
    J Oral Pathol Med, 2017 Feb;46(2):82-88.
    PMID: 27237745 DOI: 10.1111/jop.12456
    There is now compelling evidence that the tumour stroma plays an important role in the pathogenesis of cancers of epithelial origin. The pre-eminent cell type of the stroma is carcinoma-associated fibroblasts. These cells demonstrate remarkable heterogeneity with activation and senescence being common stress responses. In this review, we summarise the part that these cells play in cancer, particularly oral cancer, and present evidence to show that activation and senescence reflect a unified programme of fibroblast differentiation. We report advances concerning the senescent fibroblast metabolome, mechanisms of gene regulation in these cells and ways in which epithelial cell adhesion is dysregulated by the fibroblast secretome. We suggest that the identification of fibroblast stress responses may be a valuable diagnostic tool in the determination of tumour behaviour and patient outcome. Further, the fact that stromal fibroblasts are a genetically stable diploid cell population suggests that they may be ideal therapeutic targets and early work in this context is encouraging.
    Matched MeSH terms: Mouth Neoplasms/metabolism
  3. Izadiyan Z, Shameli K, Miyake M, Teow SY, Peh SC, Mohamad SE, et al.
    PMID: 30606561 DOI: 10.1016/j.msec.2018.11.008
    Core-shell Fe3O4/Au nanostructures were constructed using an advanced method of two-step synthesis from Juglans regia (walnut) green husk extract. Several complementary methods were applied to investigate structural and magnetic properties of the samples. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron diffraction, optical, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were used for nanoparticle characterizations. As shown by HR-TEM, the mean diameter of core-shell Fe3O4/Au nanoparticles synthesized using co-precipitation method was 6.08 ± 1.06 nm. This study shows that the physical and structural properties of core-shell Fe3O4/Au nanoparticles possess intrinsic properties of gold and magnetite. VSM revealed that the core-shell Fe3O4/Au have high saturation magnetization and low coercivity due to the magnetic properties. The core-shell nanoparticles show the inhibitory concentration (IC)50 of 235 μg/ml against a colorectal cancer cell line, HT-29. When tested against non-cancer cells, IC50 was not achieved even up to 500 μg/ml. This study highlights the magnetic properties and anticancer action of core-shell Fe3O4/Au nanoparticles. This compound can be ideal candidate for cancer treatment and other biomedical applications.
    Matched MeSH terms: Colorectal Neoplasms/metabolism
  4. Malami I, Abdul AB
    Biomed Pharmacother, 2019 Jan;109:1506-1510.
    PMID: 30551402 DOI: 10.1016/j.biopha.2018.10.200
    Apoptosis is a series of molecular signalling regulating normal cellular growth and development. Cells resistance to apoptosis, however, leads to uncontrolled proliferation. Research involving cancer cell death is one of the most important targeted areas in the discovery of novel anticancer therapy. There are several biochemical pathways that are liked towards cancer cell death of which, uridine-cytidine kinase 2 (UCK2) was recently linked to cell apoptosis induction. UCK2 is responsible for the phosphorylation of uridine and cytidine to their corresponding monophosphate in a salvage pathway of pyrimidine nucleotides biosynthesis. Cytotoxic ribonucleoside analogues that target UCK2 enzyme activity are currently being investigated in clinical trials useful for cancer treatment. Whilst findings have clearly shown that these antimetabolites inhibit cancer development in clinical settings, they have yet to establish linking cytotoxic nucleoside analogues to cancer cell death. In this present review, we propose the probable molecular crosstalk involving UCK2 protein and cancer cell death through cell cycle arrest and triggering of apoptosis involving proteins, MDM2 and the subsequent activation of p53.
    Matched MeSH terms: Neoplasms/metabolism*
  5. Hamad HA, Enezei HH, Alrawas A, Zakuan NM, Abdullah NA, Cheah YK, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858793 DOI: 10.3390/molecules25173876
    Hypoxia plays a significant role in solid tumors by the increased expression of hypoxia-inducible factor-1α (HIF-1α), which is known to promote cancer invasion and metastasis. Cancer-cell invasion dynamically begins with the degradation of the extracellular matrix (ECM) via invadopodia formation. The chemical substrates that are utilized by hypoxic cells as fuel to drive invadopodia formation are still not fully understood. Therefore, the aim of the study was to maintain MDA-MB-231 cells under hypoxia conditions to allow cells to form a large number of invadopodia as a model, followed by identifying their nutrient utilization. The results of the study revealed an increase in the number of cells forming invadopodia under hypoxia conditions. Moreover, Western blot analysis confirmed that essential proteins for hypoxia and invadopodia, including HIF-1α, vascular endothelial growth factor (VEGF), metallopeptidase-2 (MMP-2), and Rho guanine nucleotide exchange factor 7 (β-PIX), significantly increased under hypoxia. Interestingly, phenotype microarray showed that only 11 chemical substrates from 367 types of substrates were significantly metabolized in hypoxia compared to in normoxia. This is thought to be fuel for hypoxia to drive the invasion process. In conclusion, we found 11 chemical substrates that could have potential energy sources for hypoxia-induced invadopodia formation of these cells. This may in part be a target in the hypoxic tumor and invadopodia formation. Additionally, these findings can be used as potential carrier targets in cancer-drug discovery, such as the usage of dextrin.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  6. Shafiee MN, Chapman C, Barrett D, Abu J, Atiomo W
    Gynecol Oncol, 2013 Nov;131(2):489-92.
    PMID: 23822891 DOI: 10.1016/j.ygyno.2013.06.032
    Endometrial cancer (EC) is the commonest gynaecological cancer in North American and European women. Even though it has been shown that women with polycystic ovary syndrome (PCOS) have a three-fold increase in the risk of developing EC compared to women without PCOS, the precise molecular mechanisms which increase EC risk in women with PCOS remain unclear. Clinical strategies to prevent EC in PCOS are therefore not well researched and understood. Although raised estrogen levels, hyperinsulinaemia and, reduced apoptosis have been suggested as potential mechanisms, there is a lack of clarity about how these factors and other factors may interact to increase EC risk in PCOS. This article reviews the literature, on the potential molecular links between PCOS and EC but argues for a paradigm shift, to a systems biology-based approach in future research into the molecular links between PCOS and EC. The potential challenges of a systems biology-based approach are outlined but not considered insurmountable.
    Matched MeSH terms: Endometrial Neoplasms/metabolism*
  7. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC
    Crit Rev Oncol Hematol, 2018 Jan;121:11-22.
    PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010
    E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
    Matched MeSH terms: Neoplasms/metabolism*
  8. Wong MM, Chan HY, Aziz NA, Ramasamy TS, Bong JJ, Ch'ng ES, et al.
    Mol Biol Rep, 2021 Apr;48(4):3695-3717.
    PMID: 33893928 DOI: 10.1007/s11033-021-06334-9
    Liver cancer is the sixth most common cancer and the fourth leading cause of cancer deaths in the world. The most common type of liver cancers is hepatocellular carcinoma (HCC). Autophagy is the cellular digestion of harmful components by sequestering the waste products into autophagosomes followed by lysosomal degradation for the maintenance of cellular homeostasis. The impairment of autophagy is highly associated with the development and progression of HCC although autophagy may be involved in tumour-suppressing cellular events. In regards to its protecting role, autophagy also shelters the cells from anoikis- a programmed cell death in anchorage-dependent cells detached from the surrounding extracellular matrix which facilitates metastasis in HCC. Liver cancer stem cells (LCSCs) have the ability for self-renewal and differentiation and are associated with the development and progression of HCC by regulating stemness, resistance and angiogenesis. Interestingly, autophagy is also known to regulate normal stem cells by promoting cellular survival and differentiation and maintaining cellular homeostasis. In this review, we discuss the basal autophagic mechanisms and double-faceted roles of autophagy as both tumour suppressor and tumour promoter in HCC, as well as its association with and contribution to self-renewal and differentiation of LCSCs.
    Matched MeSH terms: Liver Neoplasms/metabolism*
  9. Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P
    Int J Pharm, 2019 Jun 30;565:509-522.
    PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042
    The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
    Matched MeSH terms: Neoplasms/metabolism*
  10. Cheng WK, Oon CE
    Biomed Pharmacother, 2018 Jul;103:1246-1252.
    PMID: 29864905 DOI: 10.1016/j.biopha.2018.04.119
    Glycosylation is an enzymatic process in which a carbohydrate is attached to a functional group from another molecule. Glycosylation is a crucial post translational process in protein modification. The tumor microenvironment produces altered glycans that contribute to cancer progression and aggressiveness. Abnormal glycosylation is widely observed in tumor angiogenesis. Despite many attempts to decipher the role of glycosylation in different aspects of cancer, little is known regarding the roles of glycans in angiogenesis. The blood vessels in tumors are often used to transport oxygen and nutrients for tumor progression and metastasis. The crosstalk within the tumor microenvironment can induce angiogenesis by manipulating these glycans to hijack the normal angiogenesis process, thus promoting tumor growth. Abnormal glycosylation has been shown to promote tumor angiogenesis by degrading the extracellular matrix to activate the angiogenic signaling pathways. This review highlights the latest update on how glycosylation can contribute to tumor angiogenesis that may affect treatment outcomes.
    Matched MeSH terms: Neoplasms/metabolism*
  11. Haziman AA, Ravinderan S, Thangavelu T, Thomas W
    Ir J Med Sci, 2019 May;188(2):389-395.
    PMID: 30014247 DOI: 10.1007/s11845-018-1867-1
    Colorectal cancer (CRC) is a malignancy whose incidence is increasing globally, and there is a gender difference in the increasing risk. Evidence from hormone replacement therapy studies points to a role for circulating estrogens in suppressing the development of CRC. Estrogen receptor-β has been identified as a tumor suppressor, but other actions of estrogen may also contribute to the difference in CRC incidence between men and women. The KCNQ1/KCNE3 potassium channel is regulated by estrogen in order to modulate chloride secretion during the menstrual cycle; the effect of estrogen on the colon is to promote fluid conservation during the implantation window. KCNQ1 is also a tumor suppressor in CRC, and its sustained expression has been linked to suppression of the Wnt/β-catenin signaling pathway that contributes to CRC tumor progression. KCNQ1 regulation may represent a link between the normal physiological actions of estrogen in the colon and the hormone's apparent tumor-suppressive effects in CRC development.
    Matched MeSH terms: Colorectal Neoplasms/metabolism*
  12. Mustapar N, Zawawi MSF, Tuan Sharif SE
    Asian Pac J Cancer Prev, 2020 Mar 01;21(3):699-705.
    PMID: 32212796 DOI: 10.31557/APJCP.2020.21.3.699
    BACKGROUND: Diagnosis of malignant peripheral nerve sheath tumor (MPNST) is rather challenging due to its divergent morphologic heterogeneity and lack of specific ancillary test. The emergence of H3K27 trimethylation (H3K27me3) as a new immunohistochemistry (IHC) marker for MPNST have recently available to assist pathologists in differentiating MPNST from other histologic mimics. We aim to study the expression pattern of H3K27me3 in MPNST and its histologic mimickers and their association with the clinicopathological data.

    METHODOLOGY: A total of 59 benign and malignant spindle cell tumours (18 MPNST and 41 of its histologic mimickers which included 10 schwannoma, 13 neurofibroma, 4 synovial sarcoma, 3 fibrosarcoma, 2 gastrointestinal stromal tumour (GIST), 4 leiomyosarcoma, 1 spindle cell liposarcoma, 1 solitary fibrous tumour, 2 low grade fibromyxoid sarcoma and 1 unclassified spindle cell sarcoma), diagnosed from January 1998 to April 2018 in Hospital Universiti Sains Malaysia (HUSM) were tested for H3K27me3 by IHC. The MPNST histological grade was assessed based on the French Fe'de' ration Nationale des Centres de LutteContre le Cancer (FNCLCC) for 3 tiers system (low grade, intermediate grade and high grade). The clinicopathological data were retrieved from the patients' record.

    RESULTS: A total of 61.1% (11/18 MPNST) showed loss of H3K27me3 expression which is statistically significant as compared to its histologic mimics (p<0.001). Similar findings (p=0.026) were also observed in high grade MPNST (81.8%), intermediate grade MPNST (100%) and 0% in low grade MPNST.

    CONCLUSION: H3K27me3, combined with other panel of markers, is useful in MPNST diagnosis to differentiate it from the histological mimickers.

    Matched MeSH terms: Nerve Sheath Neoplasms/metabolism
  13. Hasanpourghadi M, Pandurangan AK, Mustafa MR
    Pharmacol Res, 2018 02;128:376-388.
    PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009
    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
    Matched MeSH terms: Breast Neoplasms/metabolism*
  14. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
    Matched MeSH terms: Neoplasms/metabolism*
  15. Al-Sanea MM, Ali Khan MS, Abdelazem AZ, Lee SH, Mok PL, Gamal M, et al.
    Molecules, 2018 Jan 31;23(2).
    PMID: 29385071 DOI: 10.3390/molecules23020297
    A new series of 1-phenyl-3-(4-(pyridin-3-yl)phenyl)urea derivatives were synthesized and subjected to in vitro antiproliferative screening against National Cancer Institute (NCI)-60 human cancer cell lines of nine different cancer types. Fourteen compounds 5a-n were synthesized with three different solvent exposure moieties (4-hydroxylmethylpiperidinyl and trimethoxyphenyloxy and 4-hydroxyethylpiperazine) attached to the core structure. Substituents with different π and σ values were added on the terminal phenyl group. Compounds 5a-e with a 4-hydroxymethylpiperidine moiety showed broad-spectrum antiproliferative activity with higher mean percentage inhibition values over the 60-cell line panel at 10 µM concentration. Compound 5a elicited lethal rather than inhibition effects on SK-MEL-5 melanoma cell line, 786-0, A498, RXF 393 renal cancer cell lines, and MDA-MB-468 breast cancer cell line. Two compounds, 5a and 5d showed promising mean growth inhibitions and thus were further tested at five-dose mode to determine median inhibitory concentration (IC50) values. The data revealed that urea compounds 5a and 5d are the most active derivatives, with significant efficacies and superior potencies than paclitaxel in 21 different cancer cell lines belonging particularly to renal cancer and melanoma cell lines. Moreover, 5a and 5d had superior potencies than gefitinib in 38 and 34 cancer cell lines, respectively, particularly colon cancer, breast cancer and melanoma cell lines.
    Matched MeSH terms: Neoplasms/metabolism
  16. Lee SH, Golinska M, Griffiths JR
    Cells, 2021 Sep 09;10(9).
    PMID: 34572020 DOI: 10.3390/cells10092371
    In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
    Matched MeSH terms: Neoplasms/metabolism*
  17. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
    Matched MeSH terms: Uterine Cervical Neoplasms/metabolism; Ovarian Neoplasms/metabolism
  18. Wong SK, Mohamad NV, Giaze TR, Chin KY, Mohamed N, Ima-Nirwana S
    Int J Mol Sci, 2019 May 27;20(10).
    PMID: 31137764 DOI: 10.3390/ijms20102587
    Patients with advanced prostate cancer often develop bone metastases, leading to bone pain, skeletal fracture, and increased mortality. Bone provides a hospitable microenvironment to tumor cells. The disease manifestation is driven by the interaction between invading tumor cells, bone-forming osteoblasts, and bone-resorbing osteoclasts. The increased level of osteoclast-activating factor (parathyroid hormone-related peptide, PTHrP) is believed to induce bone resorption by upregulating receptor activator of nuclear factor-kappa B ligand (RANKL) and the release of various growth factors into the bone microenvironment to enhance cancer cell growth. However, the underlying molecular mechanisms remain poorly understood. This review outlines the possible molecular mechanisms involved in governing bone metastases driven by prostate cancer, which further provide the basis in searching for new molecular targets for the development of potential therapy.
    Matched MeSH terms: Bone Neoplasms/metabolism*; Prostatic Neoplasms/metabolism*
  19. Stepien M, Fedirko V, Duarte-Salles T, Ferrari P, Freisling H, Trepo E, et al.
    Cancer Epidemiol, 2016 Feb;40:179-87.
    PMID: 26773278 DOI: 10.1016/j.canep.2016.01.002
    INTRODUCTION: Serum liver biomarkers (gamma-glutamyl transferase, GGT; alanine aminotransferase, ALT; aspartate aminotransferase, AST; alkaline phosphatase, ALP; total bilirubin) are used as indicators of liver disease, but there is currently little data on their prospective association with risk of hepatobiliary cancers.

    METHODS: A nested-case control study was conducted within the prospective EPIC cohort (>520,000 participants, 10 European countries). After a mean 7.5 mean years of follow-up, 121 hepatocellular carcinoma (HCC), 34 intrahepatic bile duct (IHBC) and 131 gallbladder and biliary tract (GBTC) cases were identified and matched to 2 controls each. Circulating biomarkers were measured in serum taken at recruitment into the cohort, prior to cancer diagnosis. Multivariable adjusted conditional logistic regression was used to calculate odds ratios and 95% confidence intervals (OR; 95%CI).

    RESULTS: In multivariable models, 1SD increase of each log-transformed biomarker was positively associated with HCC risk (OR(GGT)=4.23, 95%CI:2.72-6.59; OR(ALP)=3.43, 95%CI:2.31-5.10;OR(AST)=3.00, 95%CI:2.04-4.42; OR(ALT)=2.69, 95%CI:1.89-3.84; OR(Bilirubin)=2.25, 95%CI:1.58-3.20). Each liver enzyme (OR(GGT)=4.98; 95%CI:1.75-14.17; OR(AST)=3.10, 95%CI:1.04-9.30; OR(ALT)=2.86, 95%CI:1.26-6.48, OR(ALP)=2.31, 95%CI:1.10-4.86) but not bilirubin (OR(Bilirubin)=1.46,95%CI:0.85-2.51) showed a significant association with IHBC. Only ALP was significantly associated with GBTC risk (OR(ALP)=1.59, 95%CI:1.20-2.09).

    CONCLUSION: This study shows positive associations between circulating liver biomarkers in sera collected prior to cancer diagnoses and the risks of developing HCC or IHBC, but not GBTC.

    Matched MeSH terms: Bile Duct Neoplasms/metabolism; Biliary Tract Neoplasms/metabolism; Liver Neoplasms/metabolism
  20. Devan SM, Pailoor J, Sthaneshwar P, Narayanan V
    Asian Pac J Cancer Prev, 2013;14(8):4545-8.
    PMID: 24083699
    The objective of this study is to assess tissue expression of CA-125 and HE4 protein in primary benign and malignant epithelial tumours of the ovary and correlate with serum CA-125 levels. A total of 100 formalin-fixed, paraffin embedded sections of ovarian tumours which included serous adenoma (11), mucinous adenoma (42), serous carcinoma (20), mucinous carcinoma (12) and endometrioid carcinoma (15), histologically diagnosed between 1st January 2004 to 31st December 2012 at the University Malaya Medical Centre, were stained for HE4 (rabbit polyclonal antibody, Abcam, UK) and CA-125 (mouse monoclonal antibody clone: OC125, Cell Marque Corporation, Rocklin, California, USA). Pre-operative serum CA-125 levels were obtained from the laboratory information system. Immunoscore (I score) for HE4 and CA-125 was given based on the intensity of staining and percentage of positive tumour cells and considered significant when it was >50 (intensity of staining multiplied by percentage of positive tumour cells). Serum CA-125 levels were compared with the I score of HE4 and CA-125 in tissues. We noted that the CA-125 levels in serum and tissues were significantly raised in malignant compared to benign ovarian tumours (p value<0.05). Tissue expression of HE4 protein was also significantly raised in malignant tumours compared to benign tumours (p value<0.05). We conclude that HE4 can be a useful tissue immunomarker in addition to CA-125.
    Matched MeSH terms: Ovarian Neoplasms/metabolism*; Endometrial Neoplasms/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links