Displaying publications 21 - 40 of 76 in total

Abstract:
Sort:
  1. Liu YW, Li JK, Xia J, Hao GR, Teo FY
    Environ Sci Pollut Res Int, 2021 Dec;28(45):64322-64336.
    PMID: 34304355 DOI: 10.1007/s11356-021-15603-w
    Non-point source (NPS) pollution has become a vital contaminant source affecting the water environment because of its wide distribution, hydrodynamic complexity, and difficulty in prevention and control. In this study, the identification and evaluation of NPS pollution risk based on landscape pattern were carried out in the Hanjiang River basin above Ankang hydrological section, Shaanxi province, China. Landscape distribution information was obtained through land use data, analyzing the contribution of "source-sink" landscape to NPS pollution through the location-weighted landscape contrast index. Using the NPS pollution risk index to identify and evaluate the regional NPS pollution risk considering the slope, cost distance, soil erosion, and precipitation erosion affect migration of pollutants. The results showed that (i) the pollution risk was generally high in the whole watershed, and the sub-watersheds dominated by "source" landscapes account for 74.61% of the whole basin; (ii) the high-risk areas were distributed in the central, eastern, and western regions of the river basin; the extremely high-risk areas accounted for 12.7% of the whole watershed; and the southern and northern regions were dominated by forestland and grassland with little pollution risk; (iii) "source" landscapes were mostly distributed in areas close to the river course, which had a great impact on environment, and the landscape pattern units near the water body needed to be further adjusted to reduce the influence of NPS pollution.
    Matched MeSH terms: Nitrogen/analysis
  2. Al-Khadher SAA, Abdul Kadir A, Al-Gheethi AAS, Azhari NW
    Environ Sci Pollut Res Int, 2021 Dec;28(46):65513-65524.
    PMID: 34322791 DOI: 10.1007/s11356-021-15011-0
    The current work aimed to study the physical, chemical and biological properties of food wastes generated from small and medium industries by using Takakura composting methods. Composting method was referred as indigenous compost (IC) and commercial compost (CC) reactors. The reactors were operated at 44 °C, pH (6 to 8.5) and 40 to 55 % of moisture for 22 weeks in closed environment using a carpet around the basket to avoid external disturbance. The results revealed that the total Kjeldahl nitrogen (TKN), total phosphorus (TP) and potassium (K) in the IC reactors were 6300, 10.57 and 726.07 ppm, respectively, while 8400, 15.45 and 727.81 ppm, respectively, in the CC reactors. Moreover, both IC and CC has Cd2+, Cr2+, Cu2+, Pb2+, Ni2+ and Zn2+ concentrations within the compost legislation standard (CLS). The findings of this study indicated that the composting method could be used as an alternative food waste management in small and medium industry and the Takakura composting method is suitable for food waste composting.
    Matched MeSH terms: Nitrogen/analysis
  3. Khatoon H, Penz Penz K, Banerjee S, Redwanur Rahman M, Mahmud Minhaz T, Islam Z, et al.
    Bioresour Technol, 2021 Oct;338:125529.
    PMID: 34265592 DOI: 10.1016/j.biortech.2021.125529
    Removal of nitrogenous and phosphorus compounds from aquaculture wastewater by green microalgae (Tetraselmis sp.) was investigated using a novel method of algal cell immobilization. Immobilized microalgae removed nitrogenous and phosphorous compounds efficiently from aquaculture wastewater. Results showed that Tetraselmis beads reduced significantly (p nitrogen, nitrite nitrogen and soluble reactive phosphorous concentration (0.08; 0.10 and 0.17 mg/L, respectively) from the initial concentration of 7.7, 3.1 and 2.0 mg/L respectively within 48 h compared to other treatments. Removal rate of total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were 99.2, 99.2 and 94.3% respectively, for the artificial wastewater within 24 h. For the shrimp pond wastewater, total ammonia nitrogen, nitrite nitrogen and soluble reactive phosphorous were reduced 98.9, 97.7 and 91.1% respectively within 48 h. It is concluded that Tetraselmis sp. beads is an effective means to reduce nitrogen and phosphorus levels in aquaculture wastewater.
    Matched MeSH terms: Nitrogen/analysis
  4. Nguyen XC, Ly QV, Peng W, Nguyen VH, Nguyen DD, Tran QB, et al.
    J Hazard Mater, 2021 07 05;413:125426.
    PMID: 33621772 DOI: 10.1016/j.jhazmat.2021.125426
    This study evaluated and compared the performance of two vertical flow constructed wetlands (VF) using expanded clay (VF1) and biochar (VF2), of which both are low-cost, eco-friendly, and exhibit potentially high adsorption as compared to conventional filter layers. Both VFs achieved relatively high removal for organic matters (i.e. Biological oxygen demand during 5 days, BOD5) and nitrogen, accounting for 9.5 - 10.5 g.BOD5.m-2.d-1 and 3.5 - 3.6 g.NH4-N.m-2.d-1, respectively. The different filter materials did not exert any significant discrepancy to effluent quality in terms of suspended solids, organic matters and NO3-N (P > 0.05), but they did influence NH4-N effluent as evidenced by the removal rate of that by VF1 and VF2 being of 82.4 ± 5.7 and 84.6 ± 6.4%, respectively (P 
    Matched MeSH terms: Nitrogen/analysis
  5. Chai X, Li X, Hii KS, Zhang Q, Deng Q, Wan L, et al.
    Mar Environ Res, 2021 Jul;169:105398.
    PMID: 34171592 DOI: 10.1016/j.marenvres.2021.105398
    Coastal eutrophication is one of the pivotal factors driving occurrence of harmful algal blooms (HABs), whose underlying mechanism remained unclear. To better understand the nutrient regime triggering HABs and their formation process, the phytoplankton composition and its response to varying nitrogen (N) and phosphorus (P), physio-chemical parameters in water and sediment in Johor Strait in March 2019 were analyzed. Surface and sub-surface HABs were observed with the main causative species of Skeletonema, Chaetoceros and Karlodinium. The ecophysiological responses of Skeletonema to the low ambient N/P ratio such as secreting alkaline phosphatase, regulating cell morphology (volume; surface area/volume ratio) might play an important role in dominating the community. Anaerobic sediment iron-bound P release and simultaneous N removal by denitrification and anammox, shaped the stoichiometry of N and P in water column. The decrease of N/P ratio might shift the phytoplankton community into the dominance of HABs causative diatoms and dinoflagellates.
    Matched MeSH terms: Nitrogen/analysis
  6. Alirezalu K, Pirouzi S, Yaghoubi M, Karimi-Dehkordi M, Jafarzadeh S, Mousavi Khaneghah A
    Meat Sci, 2021 Jun;176:108475.
    PMID: 33684807 DOI: 10.1016/j.meatsci.2021.108475
    In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
    Matched MeSH terms: Nitrogen/analysis
  7. We ACE, Aris A, Zain NAM, Muda K, Sulaiman S
    Chemosphere, 2021 Jan;263:128209.
    PMID: 33297168 DOI: 10.1016/j.chemosphere.2020.128209
    The present work investigates the feasibility of aerobic granulation for the treatment of low-medium strength domestic wastewater for long-term operation and effects of a static mixer on the properties and removal performances of the aerobic granules formed. The static mixer was installed in a sequential batch reactor to provide higher hydrodynamic shear force in enhancing the formation of the aerobic granules. Aerobic granules were successfully formed in the domestic wastewater, and the granulation treatment system was sustained for a period of 356 days without granules disintegration. Subsequent to the installation, aerobic granules with a low SVI30 of 41.37 mL/gTSS, average diameter 1.11 mm, granular strength with integrity coefficient 10.4% and regular shape with minimum filamentous outgrowth were formed. Mineral concentrations such as Fe, Mg, Ca and Na as well as composition of protein and polysaccharide in tightly bound-extracellular polymeric substance of the aerobic granules were found to be higher under the effect of the static mixer. However, no significant improvement was observed on the TCOD, NH4+-N and TSS removal performance. Good TCOD and TSS removal performance of above 85% and 90%, respectively and moderate NH4+-N removal performance of about 60% were observed throughout the study. Higher simultaneous nitrification and denitrification (SND) efficiency of 56% was observed after the installation of the static mixer, as compared to 21% prior. Therefore, it may be concluded that the installation of the static mixer significantly improved the properties of aerobic granules formation and SND efficiency but not the TCOD, NH4+-N and TSS removal performance.
    Matched MeSH terms: Nitrogen/analysis
  8. Raza A, Ejaz S, Saleem MS, Hejnak V, Ahmad F, Ahmed MAA, et al.
    PLoS One, 2021;16(12):e0261468.
    PMID: 34919599 DOI: 10.1371/journal.pone.0261468
    Nitrogen (N) is a macronutrient desired by crop plants in large quantities. However, hiking fertilizer prices need alternative N sources for reducing its requirements through appropriate management practices. Plant growth promoting rhizobacteria (PGPR) are well-known for their role in lowering N requirements of crop plants. This study assessed the impact of PGPR inoculation on growth, allometry and biochemical traits of chili under different N doses. Two PGPR, i.e., Azospirillum 'Er-20' (nitrogen fixing) and Agrobacterium 'Ca-18' (phosphorous solubilizing) were used for inoculation, while control treatment had no PGPR inoculation. Six N doses, i.e., 100, 80, 75, 70, 60 and 50% of the N required by chili were included in the study. Data relating to growth traits, biochemical attributes and yield related traits were recorded. Interaction among N doses and PGPR inoculation significantly altered all growth traits, biochemical attributes and yield related traits. The highest values of the recorded traits were observed for 100% N with and without PGPR inoculation and 75% N with PGPR inoculation. The lowest values of the recorded traits were noted for 50% N without PGPR inoculation. The PGPR inoculation improved the measured traits compared to the traits recorded noted in same N dose without PGPR inoculation. Results revealed that PGPR had the potential to lower 25% N requirement for chili. Therefore, it is recommended that PGPR must be used in chili cultivation to lower N requirements.
    Matched MeSH terms: Nitrogen/analysis*
  9. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p nitrogen did not exhibit any significant response (p > 0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
    Matched MeSH terms: Nitrogen/analysis
  10. Jani J, Lusk MG, Yang YY, Toor GS
    PLoS One, 2020;15(4):e0230908.
    PMID: 32236119 DOI: 10.1371/journal.pone.0230908
    Stormwater runoff is recognized as a cause of water quality degradation because it may carry nitrogen (N) and other pollutants to aquatic ecosystems. Stormwater ponds are a stormwater control measure often used to manage stormwater runoff by holding a permanent pool of water, which reduces the peak flow, magnitude of runoff volume, and concentrations of nutrients and pollutants. We instrumented the outlet of a stormwater pond in an urban residential neighbourhood in Florida, United States to (1) investigate the concentration and composition of N forms during the summer rainy season (May to September 2016), and (2) determine the bioavailability of organic N in the stormwater pond with a bioassay experiment. A total of 144 outflow water samples over 13 storm events were collected at the outlet of the stormwater pond that collects runoff from the residential catchment. Samples were analysed for various inorganic N [ammonium (NH4-N), nitrate (NO3-N)], and organic N forms [dissolved organic nitrogen (DON), and particulate organic nitrogen (PON)]. Flow-weighted mean concentration of total N (TN) in pond outflow for all collected storm events was 1.3±1.42 mg L-1, with DON as the dominant form (78%), followed by PON and NO3-N (each at 8%), and NH4-N (6%). In the bioassay experiment, organic N (DON+PON) was significantly decreased by 25-28% after 5 days of incubation, suggesting that a portion of the DON carried from the pond outflow to receiving water bodies may be bioavailable. These results suggest that efforts to mitigate stormwater N outflows from urban ponds should incorporate both inorganic and organic N in management plans.
    Matched MeSH terms: Nitrogen/analysis*
  11. Mohd Hanafiah Z, Wan Mohtar WHM, Abu Hasan H, Jensen HS, Klaus A, Wan-Mohtar WAAQI
    Sci Rep, 2019 11 06;9(1):16109.
    PMID: 31695087 DOI: 10.1038/s41598-019-52493-y
    The fluctuation of domestic wastewater characteristic inhibits the current conventional microbial-based treatment. The bioremediation fungi has received attention and reported to be an effective alternative to treat industrial wastewater. Similar efficient performance is envisaged for domestic wastewater whereby assessed performance of fungi for varying carbon-to-nitrogen ratios in domestic wastewater is crucial. Thus, the performance of pre-grown wild-Serbian Ganoderma lucidum mycelial pellets (GLMPs) was evaluated on four different synthetic domestic wastewaters under different conditions of initial pH (pH 4, 5, and 7) and chemical oxygen demand (COD) to nitrogen (COD/N) ratio of 3.6:1, 7.1:1, 14.2:1, and 17.8:1 (C3.6N1, C7.1N1, C14.2N1, and C17.8N1). The COD/N ratios with a constant concentration of ammonia-nitrogen (NH3-N) were chosen on the basis of the urban domestic wastewater characteristics sampled at the inlet basin of a sewage treatment plant (STP). The parameters of pH, COD, and NH3-N were measured periodically during the experiment. The wild-Serbian GLMPs efficiently removed the pollutants from the synthetic sewage. The COD/N ratio of C17.8N1 wastewater had the best COD and NH3-N removal, as compared to the lower COD/N ratio, and the shortest treatment time was obtained in an acidic environment at pH 4. The highest percentage for COD and NH3-N removal achieved was 96.0% and 93.2%, respectively. The results proved that the mycelium of GLMP has high potential in treating domestic wastewater, particularly at high organic content as a naturally sustainable bioremediation system.
    Matched MeSH terms: Nitrogen/analysis
  12. Wang Y, Bi L, Liao Y, Lu D, Zhang H, Liao X, et al.
    Ecotoxicol Environ Saf, 2019 Sep 30;180:80-87.
    PMID: 31078019 DOI: 10.1016/j.ecoenv.2019.04.066
    Ammonia emissions is an important issue during composting because it can cause secondary pollution and a significant of nitrogen loss. Based on research adding Bacillus stearothermophilus can reduce ammonia emissions during composting because it can use sugar in organic matter fermentation to produce organic acids over 50 °C. This study conducted the batch experiments by adding different concentrations of Bacillus stearothermophilus to reduce the ammonia emissions and find out its characteristic during layer manure composting by using an aerobic composting reactor with sawdust as a bulking agent. The results show that the application of Bacillus stearothermophilus can accelerate the rate of temperature and significantly decrease pH, the warming period was 2 days in the treatment with Bacillus stearothermophilus, while it was 4 days in the treatment without Bacillus stearothermophilus. Ammonia emissions were mainly occurred in warming and high temperature period during composting. The ammonia emissions in the treatment with 8.00 g/kg initial Bacillus stearothermophilus were significantly lower than the other lower Bacillus stearothermophilus treatment and control during composting (p nitrogen and nitrate-nitrogen concentration, reduce pH (p  0.05). MiSeq System Sequencing results find that the addition of Bacillus stearothermophilus changed the bacterial community structure under warming and high-temperature periods during composting, increased the relative abundance of lactic acid bacillus and nitrification bacteria. Therefore, the reason for the low ammonia emission in 8.00 g/kg initial Bacillus stearothermophilus treatments might be not only due to the Bacillus stearothermophilus itself, but also Bacillus stearothermophilus can change the indigenous microorganism community, including increase the relative content of lactic acid Bacillus and nitrification bacteria, thus reducing the pH and promoting nitrification, and reducing ammonia emissions.
    Matched MeSH terms: Nitrogen/analysis
  13. Lau NS, Zarkasi KZ, Md Sah ASR, Shu-Chien AC
    Microb Ecol, 2019 Jul;78(1):20-32.
    PMID: 30397794 DOI: 10.1007/s00248-018-1283-0
    Although freshwater biomes cover less than 1% of the Earth's surface, they have disproportionate ecological significances. Attempts to study the taxonomy and function of freshwater microbiota are currently limited to samples collected from temperate lakes. In this study, we investigated samples from the photic and aphotic of an aquaculture site (disturbed) of Temengor Lake, a tropical lake in comparison with the undisturbed site of the lake using 16S rRNA amplicon and shotgun metagenomic approaches. Vertical changes in bacterial community composition and function of the Temengor Lake metagenomes were observed. The photic water layer of Temengor Lake was dominated by typical freshwater assemblages consisting of Proteobacteria, Actinobacteria, Bacteroidetes, Verrucomicrobia, and Cyanobacteria lineages. On the other hand, the aphotic water featured in addition to Proteobacteria, Bacteroidetes, Verrucomicrobia, and two more abundant bacterial phyla that are typically ubiquitous in anoxic habitats (Chloroflexi and Firmicutes). The aphotic zone of Temengor Lake exhibited genetic potential for nitrogen and sulfur metabolisms for which terminal electron acceptors other than oxygen are used in the reactions. The aphotic water of the disturbed site also showed an overrepresentation of genes associated with the metabolism of carbohydrates, likely driven by the enrichment of nutrient resulting from aquaculture activities at the site. The results presented in this study can serve as a basis for understanding the structure and functional capacity of the microbial communities in the photic and aphotic zones/water layers of tropical man-made lakes.
    Matched MeSH terms: Nitrogen/analysis
  14. Goh HW, Lem KS, Azizan NA, Chang CK, Talei A, Leow CS, et al.
    Environ Sci Pollut Res Int, 2019 May;26(15):14904-14919.
    PMID: 30977005 DOI: 10.1007/s11356-019-05041-0
    Bioretention systems have been implemented as stormwater best management practices (BMPs) worldwide to treat non-point sources pollution. Due to insufficient research, the design guidelines for bioretention systems in tropical countries are modeled after those of temperate countries. However, climatic factors and stormwater runoff characteristics are the two key factors affecting the capacity of bioretention system. This paper reviews and compares the stormwater runoff characteristics, bioretention components, pollutant removal requirements, and applications of bioretention systems in temperate and tropical countries. Suggestions are given for bioretention components in the tropics, including elimination of mulch layer and submerged zone. More research is required to identify suitable additives for filter media, study tropical shrubs application while avoiding using grass and sedges, explore function of soil faunas, and adopt final discharged pollutants concentration (mg/L) on top of percentage removal (%) in bioretention design guidelines.
    Matched MeSH terms: Nitrogen/analysis
  15. Ganapathy B, Yahya A, Ibrahim N
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11113-11125.
    PMID: 30788704 DOI: 10.1007/s11356-019-04334-8
    Despite being a key Malaysian economic contributor, the oil palm industry generates a large quantity of environmental pollutant known as palm oil mill effluent (POME). Therefore, the need to remediate POME has drawn a mounting interest among environmental scientists. This study has pioneered the application of Meyerozyma guilliermondii with accession number (MH 374161) that was isolated indigenously in accessing its potential to degrade POME. This strain was able to treat POME in shake flask experiments under aerobic condition by utilising POME as a sole source of carbon. However, it has also been shown that the addition of suitable carbon and nitrogen sources has significantly improved the degradation potential of M. guilliermondii. The remediation of POME using this strain resulted in a substantial reduction of chemical oxygen demand (COD) of 72%, total nitrogen of 49.2% removal, ammonical nitrogen of 45.1% removal, total organic carbon of 46.6% removal, phosphate of 60.6% removal, and 92.4% removal of oil and grease after 7 days of treatment period. The strain also exhibited an extracellular lipase activity which promotes better wastewater treatment. Additionally, Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) analyses have specifically shown that M. guilliermondii strain can degrade hydrocarbons, fatty acids, and phenolic compounds present in the POME. Ultimately, this study has demonstrated that M. guilliermondii which was isolated indigenously exhibits an excellent degrading ability. Therefore, this strain is suitable to be employed in the remediation of POME, contributing to a safe discharge of the effluent into the environment.
    Matched MeSH terms: Nitrogen/analysis
  16. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
    Matched MeSH terms: Nitrogen/analysis*
  17. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Nitrogen/analysis*
  18. Er HH, Lee LK, Lim ZF, Teng ST, Leaw CP, Lim PT
    Environ Sci Pollut Res Int, 2018 Aug;25(23):22944-22962.
    PMID: 29858995 DOI: 10.1007/s11356-018-2389-0
    Effects of aquaculture activities on the environmental parameters and phytoplankton community structure were investigated in a semi-enclosed lagoon located at Semerak River, Malaysia. Elevated concentrations of phosphate and ammonia were observed at the aquaculture area and the inner lagoon. Relatively low dissolved oxygen, high total chlorophyll a, and high phytoplankton abundances but low species richness were recorded. Chaetoceros, Pseudo-nitzschia brasiliana, Blixaea quinquecornis, and Skeletonema blooms were observed, and some were associated with anoxia condition. Eutrophication level assessed by UNTRIX suggests that the water quality in the lagoon is deteriorating. Dissolved inorganic phosphorus and nitrogen at the impacted area were 15 and 12 times higher than the reference sites, respectively. Such trophic status indices could provide a useful guideline for optimal aquaculture management plan to reduce the environmental impact caused by aquaculture.
    Matched MeSH terms: Nitrogen/analysis
  19. Jani J, Toor GS
    Water Res, 2018 06 15;137:344-354.
    PMID: 29571112 DOI: 10.1016/j.watres.2018.02.042
    Nitrogen (N) transport from land to water is a dominant contributor of N in estuarine waters leading to eutrophication, harmful algal blooms, and hypoxia. Our objectives were to (1) investigate the composition of inorganic and organic N forms, (2) distinguish the sources and biogeochemical mechanisms of nitrate-N (NO3-N) transport using stable isotopes of NO3- and Bayesian mixing model, and (3) determine the dissolved organic N (DON) bioavailability using bioassays in a longitudinal gradient from freshwater to estuarine ecosystem located in the Tampa Bay, Florida, United States. We found that DON was the most dominant N form (mean: 64%, range: 46-83%) followed by particulate organic N (PON, mean: 22%, range: 14-37%), whereas inorganic N forms (NOx-N: 7%, NH4-N: 7%) were 14% of total N in freshwater and estuarine waters. Stable isotope data of NO3- revealed that nitrification was the main contributor (36.4%), followed by soil and organic N sources (25.5%), NO3- fertilizers (22.4%), and NH4+ fertilizers (15.7%). Bioassays showed that 14 to 65% of DON concentrations decreased after 5-days of incubation indicating utilization of DON by microbes in freshwater and estuarine waters. These results suggest that despite low proportion of inorganic N forms, the higher concentrations and bioavailability of DON can be a potential source of N for algae and bacteria leading to water quality degradation in the estuarine waters.
    Matched MeSH terms: Nitrogen/analysis*
  20. Dalu T, Wasserman RJ, Wu Q, Froneman WP, Weyl OLF
    Environ Sci Pollut Res Int, 2018 Jan;25(3):2842-2852.
    PMID: 29143261 DOI: 10.1007/s11356-017-0728-1
    The effect of metals on environmental health is well documented and monitoring these and other pollutants is considered an important part of environmental management. Developing countries are yet to fully appreciate the direct impacts of pollution on aquatic ecosystems and as such, information on pollution dynamics is scant. Here, we assessed the temporal and spatial dynamics of stream sediment metal and nutrient concentrations using contaminant indices (e.g. enrichment factors, pollution load and toxic risk indices) in an arid temperate environment over the wet and dry seasons. The mean sediment nutrient, organic matter and metal concentration were highest during the dry season, with high values being observed for the urban environment. Sediment contaminant assessment scores indicated that during the wet season, the sediment quality was acceptable, but not so during the dry season. The dry season had low to moderate levels of enrichment for metals B, Cu, Cr, Fe, Mg, K and Zn. Overall, applying the sediment pollution load index highlighted poor quality river sediment along the length of the river. Toxic risk index indicated that most sites posed no toxic risk. The results of this study highlighted that river discharge plays a major role in structuring temporal differences in sediment quality. It was also evident that infrastructure degradation was likely contributing to the observed state of the river quality. The study contributes to our understanding of pollution dynamics in arid temperate landscapes where vast temporal differences in base flow characterise the riverscape. Such information is further useful for contrasting sediment pollution dynamics in aquatic environments with other climatic regions.
    Matched MeSH terms: Nitrogen/analysis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links