Displaying publications 21 - 40 of 102 in total

Abstract:
Sort:
  1. Hanson SM, Mutebi JP, Craig GB, Novak RJ
    J Am Mosq Control Assoc, 1993 Mar;9(1):78-83.
    PMID: 8468578
    Eggs of temperate Aedes albopictus populations are cold hardy and can diapause, but tropical populations are not cold hardy and cannot diapause. Heterozygotes possess intermediate diapause and cold hardiness. Males of a tropical strain from Malaysia with a distinctive genetic marker were released into an existing temperate population in East St. Louis, Illinois. Subsequent egg samples from the release site had genetic marker frequency of up to 24%. Reduced cold hardiness and decreased diapause incidence were also observed in the release site population. No such changes occurred at a nearby control site. The rank order of overwintering survival of eggs at the release site was: Aedes triseriatus > temperate Ae. albopictus > hybrid temperate/tropical Ae. albopictus > tropical Ae. albopictus. Eggs collected from the release population the next summer showed total absence of the genetic marker; presumably carriers were removed by the winter.
    Matched MeSH terms: Pest Control, Biological/methods*
  2. Sariah M, Choo CW, Zakaria H, Norihan MS
    Mycopathologia, 2005 Jan;159(1):113-7.
    PMID: 15750742
    Basal stem rot of oil palm caused by Ganoderma boninense is of major economic importance. Observations of the low incidence of disease due to Ganoderma species in natural stands, suggest that the disease is kept under control by some biological means. Trichoderma spp. are saprophytic fungi with high antagonistic activities against soil-borne pathogens. However, their abundance and distribution are soil and crop specific. Trichoderma species have been found to be concentrated in the A1 (0-30 cm) and Be soil horizons (30-60 cm), although the abundance of Trichoderma was not significantly different between the oil palm and non-oil palm ecosystems. Characterisation of Trichoderma isolates based on cultural, morphological and DNA polymorphism showed that T. harzianum, T. virens, T. koningii and T. longibrachiatum made up 72, 14, 10 and 4% of the total Trichoderma isolates isolated. As Trichoderma species are present in the oil palm ecosystem, but at lower numbers and in locations different from those desired, soil augmentation with antagonistic Trichoderma spp. can be developed as a strategy towards integrated management of basal stem rot of oil palm.
    Matched MeSH terms: Pest Control, Biological/methods*
  3. Arbaiah, O., Daud, A.R., Surinah, A., Noorhaida, U., Shaharom, N.A.M.C.D., Rahim, A.
    MyJurnal
    Introduction : The 2006 -2007 flood in Johore which displaced more than 312,386 residents of the state was an extraordinary event and tested everyone preparedness. The disaster caused massive material, economic and environmental losses exceeded the state and local community capacity, forcing them seeks help from other states. Needs assessment, effectiveness of health services as well as leadership and nongovernment organization involvement were evaluated and constitute lessons learnt from the experiences.
    Methodology : This is a descriptive review of the Johore flood. The review was based on literature search using established data and published reports of previous disasters. Discussion will focus on the 4 S’s of the surge capacity that is Structure, Staffing, Supplies and System (policies & procedures). Result : Structure- although 49 or 14% of health facilities in the state were affected by the flood, health services continued to be given. Majority of the relief centers were schools with better facilities. Funding for repairs obtained early approval as estimation of damages was timely applied. Temporary isolation centers for the conjunctivitis outbreak was appropriate implemented. Staffing- Leadership was assumed by the Johore State Health Department, the strongest and most prepared health sector. Needs assessment resulted in additional staff being deployed from other states allowing local staff to have their break from work as well as personal stress. Local staff became multi-skilled players. Training in disaster preparedness has to be of utmost priority to support such needs. Supplies- Personnel protective and pest control equipment, and medical supplies were adequately supplied. The laboratory services were well prepared. Pamphlets, posters, buntings and banners were distributed including five new health promotion materials. System- Flood disaster plan of action was well in place resulting in efficient management of the operating rooms, data management, coordination of services and disease surveillance through early warning system.
    Conclusion : Public health preparedness is a matter of good governance and management based on evidence and experience. There is a need for a permanent and stable program for the Ministry of Health to prepare and coordinate the response to all disasters.
    Matched MeSH terms: Pest Control
  4. Harith Fadzilah N, Abdul-Ghani I, Hassan M
    Arch Insect Biochem Physiol, 2019 Jan;100(1):e21520.
    PMID: 30426561 DOI: 10.1002/arch.21520
    Biopesticides are collective pest control harnessing the knowledge of the target pest and its natural enemies that minimize the risks of synthetic pesticides. A subset of biopesticides; bioinsecticides, are specifically used in controlling insect pests. Entomopathogens (EPMs) are micro-organisms sought after as subject for bioinsecticide development. However, lack of understanding of EPM mechanism of toxicity and pathogenicity slowed the progress of bioinsecticide development. Proteomics is a useful tool in elucidating the interaction of entomopathogenic fungi, entomopathogenic bacteria, and entomopathogenic virus with their target host. Collectively, proteomics shed light onto insect host response to EPM infection, mechanism of action of EPM's toxic proteins and secondary metabolites besides characterizing secreted and membrane-bound proteins of EPM that more precisely describe relevant proteins for host recognition and mediating pathogenesis. However, proteomics requires optimized protein extraction methods to maximize the number of proteins for analysis and availability of organism's genome for a more precise protein identification.
    Matched MeSH terms: Pest Control
  5. Hafeez F, Abbas M, Zia K, Ali S, Farooq M, Arshad M, et al.
    PLoS One, 2021;16(10):e0257952.
    PMID: 34644343 DOI: 10.1371/journal.pone.0257952
    Wheat (Triticum aestivum L.) production is significantly altered by the infestation of sucking insects, particularly aphids. Chemical sprays are not recommended for the management of aphids as wheat grains are consumed soon after crop harvests. Therefore, determining the susceptibility of different wheat genotypes and selecting the most tolerant genotype could significantly lower aphid infestation. This study evaluated the susceptibility of six different wheat genotypes ('Sehar-2006', 'Shafaq-2006', 'Faisalabad-2008', 'Lasani-2008', 'Millat-2011' and 'Punjab-2011') to three aphid species (Rhopalosiphum padi Linnaeus, Schizaphis graminum Rondani, Sitobion avenae Fabricius) at various growth stages. Seed dressing with insecticides and plant extracts were also evaluated for their efficacy to reduce the incidence of these aphid species. Afterwards, an economic analysis was performed to compute cost-benefit ratio and assess the economic feasibility for the use of insecticides and plant extracts. Aphids' infestation was recorded from the seedling stage and their population gradually increased as growth progressed towards tillering, stem elongation, heading, dough and ripening stages. The most susceptible growth stage was heading with 21.89 aphids/tiller followed by stem elongation (14.89 aphids/tiller) and dough stage (13.56 aphids/tiller). The genotype 'Punjab-2011' recorded the lower aphid infestation than 'Faisalabad-2008', 'Sehar-2006', 'Lasani-2008' and 'Shafaq-2006'. Rhopalosiphum padi appeared during mid-February, whereas S. graminum and S. avenae appeared during first week of March. Significant differences were recorded for losses in number of grains/spike and 1000-grain weight among tested wheat genotypes. The aphid population had non-significant correlation with yield-related traits. Hicap proved the most effective for the management of aphid species followed by Hombre and Husk among tested seed dressers, while Citrullus colocynthis L. and Moringa oleifera Lam. plant extracts exhibited the highest efficacy among different plant extracts used in the study. Economic analysis depicted that use of Hombre and Hicap resulted in the highest income and benefit cost ratio. Therefore, use of genotype Punjab-2011' and seed dressing with Hombre and Hicap can be successfully used to lower aphid infestation and get higher economic returns for wheat crop.
    Matched MeSH terms: Pest Control, Biological/methods*
  6. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
    Matched MeSH terms: Pest Control
  7. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
    Matched MeSH terms: Pest Control, Biological
  8. Harith-Fadzilah N, Haris-Hussain M, Abd Ghani I, Zakaria A, Amit S, Zainal Z, et al.
    Insects, 2020 Jun 30;11(7).
    PMID: 32630104 DOI: 10.3390/insects11070407
    The red palm weevil (RPW) is a stem boring Coleoptera that decimates host palm trees from within. The challenge of managing this pest is due to a lack of physical symptoms during the early stages of infestation. Investigating the physiological changes that occur within RPW-infested palm trees may be useful in establishing a new approach in RPW detection. In this study, the effects of RPW infestation were investigated in Elaeis guineensis by observing changes in physical and physiological parameters during the progress of infestation by visual inspection and the comparison of growth, gas exchange, stomatal conductance, and chlorophyll content between the non-infested control, physically wounded, and RPW-infested E. guineensis groups. During the study period, four distinct levels of physical infestation were observed and recorded. The RPW-infested group displayed significantly lower maximum photosynthesis activity (Amax) starting from the third week post-infestation. However, growth in terms of change in plant height and stem circumference, leaves' stomatal conductance, and chlorophyll content were not significantly different between the three groups during the duration of the study. The significant drop in photosynthesis was observed one week before physical changes appeared. This suggests the promising utilisation of photosynthesis activity as a signal for detecting RPW infestation at the early stage of attacks, which could be useful for integration in integrated pest management (IPM).
    Matched MeSH terms: Pest Control
  9. Wardhana AH, Hall MJ, Mahamdallie SS, Muharsini S, Cameron MM, Ready PD
    Int J Parasitol, 2012 Jul;42(8):729-38.
    PMID: 22664061 DOI: 10.1016/j.ijpara.2012.04.017
    Phylogenetic, genealogical and population relationships of Chrysomya bezziana, the Old World screwworm fly (OWSF), were inferred from DNA sequences of mitochondrial cytochrome b (cyt b), nuclear elongation factor-1α (EF-1α) and nuclear white eye colour (white), using sequences of Chrysomya megacephala and Chrysomya rufifacies as outgroups. Cyt b (717bp, 754 specimens), EF-1α (361bp, 256 specimens) and white (577bp, 242 specimens) were analysed from up to two African and nine Asian countries, including 10 Indonesian islands. We show that OWSF occurs as distinctive African and Asian lineages based on cyt b and white, and that there is a marked differentiation between Sumatran and Javan populations in Indonesia, supported by the genealogy and analysis of molecular variance of cyt b alone. Four cyt b sub-lineages are recognised in Asia: only 2.1 occurs on the Asian mainland, from Yemen to Peninsular Malaysia; only 2.2, 2.3 and 2.4 occur in central Indonesia; 2.4 predominates on New Guinea; and 2.1 co-occurs with others only on Sumatra in western Indonesia. This phylogeography and the genetic distances between cyt b haplotypes indicate pre-historic, natural dispersal of OWSF eastwards into Indonesia and other Malesian islands, followed by vicariant evolution in New Guinea and central Indonesia. OWSF is absent from Australia, where there is surveillance for importation or natural invasion. Judged by cyt b haplotype markers, there is currently little spread of OWSF across sea barriers, despite frequent shipments of Australian livestock through Indonesian seas to the Middle East Gulf region. These findings will inform plans for integrated pest management, which could be applied progressively, for example starting in East Nusa Tenggara (central Indonesia) where OWSF has regional cyt b markers, and progressing westwards to Java where any invasion from Sumatra is unlikely. Cyt b markers would help identify the source of any re-emergence in treated areas.
    Matched MeSH terms: Pest Control
  10. Ishak I, Ng LC, Haris-Hussain M, Jalinas J, Idris AB, Azlina Z, et al.
    J Econ Entomol, 2020 02 08;113(1):43-49.
    PMID: 31586213 DOI: 10.1093/jee/toz233
    Metarhizium anisopliae Metchnikoff (Hypocreales: Clavicipitaceae) is a fungal pathogen that causes disease in various insect pests, and it can be exploited and developed as a biological control agent to combat the red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae). The study on indigenous isolates is crucial especially for development of bioinsecticides in the future. The M. anisopliae strain called MET-GRA4 was tested for pathogenicity against adult red palm weevil and treated in vitro with different spore viabilities. The isolates exhibited pathogenicity with 100% mortality 21 d postinfection. The median lethal time (LT50) for 85% viable spores was 8.6 d, while 39% viable spores had an LT50 value of 21.37 d, with 92 and 16.6% mycosis, respectively. The species MET-GRA4 strain was molecularly characterized using ITS1 and ITS4 from pure culture (Isolate A), mass-produced spores (Isolate B), and infected red palm weevil cadavers (Isolate C). The DNA sequences obtained matched M. anisopliae sequences, with 99% similarity. This new isolate of M. anisopliae has potential as a targeted bioinsecticide for management of red palm weevil.
    Matched MeSH terms: Pest Control, Biological
  11. Kermani N, Abu-Hassan ZA, Dieng H, Ismail NF, Attia M, Abd Ghani I
    PLoS One, 2013;8(5):e62884.
    PMID: 23675435 DOI: 10.1371/journal.pone.0062884
    Biological control using pathogenic microsporidia could be an alternative to chemical control of the diamondback moth (DBM) Plutella xylostella (Lepidoptera: Plutellidae). The microsporidium Nosema bombycis (NB) is one of the numerous pathogens that can be used in the Integrated Pest Management (IPM) of DBM. However, its pathogenicity or effectiveness can be influenced by various factors, particularly temperature. This study was therefore conducted to investigate the effect of temperature on NB infection of DBM larvae. Second-instar larvae at different doses (spore concentration: 0, 1×10²,1×10³,1×10⁴, and 1×10⁵) at 15°, 20°, 25°, 30° and 35°C and a relative humidity(RH) of 65% and light dark cycle (L:D) of 12∶12. Larval mortality was recorded at 24 h intervals until the larvae had either died or pupated. The results showed that the spore concentration had a significant negative effect on larval survival at all temperatures, although this effect was more pronounced (92%) at 35°C compared with that at 20 and 30°C (≃50%) and 25°C (26%). Histological observations showed that Nosema preferentially infected the adipose tissue and epithelial cells of the midgut, resulting in marked vacuolization of the cytoplasm. These findings suggest that Nosema damaged the midgut epithelial cells. Our results suggest that Nosema had a direct adverse effect on DBM, and could be utilized as an important biopesticide alternative to chemical insecticides in IPM.
    Matched MeSH terms: Pest Control, Biological/methods*
  12. Meekes ET, Fransen JJ, van Lenteren JC
    J Invertebr Pathol, 2002 Sep;81(1):1-11.
    PMID: 12417207
    Entomopathogenic fungi of the genus Aschersonia are specific for whitefly and scale insects. They can be used as biological control agents against silverleaf whitefly, Bemisia argentifolii and greenhouse whitefly, Trialeurodes vaporariorum. Forty-four isolates of Aschersonia spp. were tested for their ability to sporulate and germinate on semi-artificial media and to infect insect hosts. Seven isolates sporulated poorly (less than 1x10(7) conidia/dry weight) and 10 were not able to infect either of the whitefly species. Several isolates were able to produce capilliconidia. Infection level was not correlated with germination on water agar. After a selection based on spore production and infection, virulence of 31 isolates was evaluated on third instar nymphs of both whitefly species on poinsettia (Euphorbia pulcherrima). Whitefly infection levels varied between 2 and 70%, and infection percentages of B. argentifolii correlated with that of T. vaporariorum. However, mortality was higher for T. vaporariorum than for B. argentifolii, as a result of a higher 'mortality due to unknown causes.' Several isolates, among which unidentified species of Aschersonia originating from Thailand and Malaysia, A. aleyrodis from Colombia, and A. placenta from India showed high spore production on semi-artificial medium and high infection levels of both whitefly species.
    Matched MeSH terms: Pest Control, Biological/methods*
  13. Kermani N, Abu Hassan ZA, Suhaimi A, Abuzid I, Ismail NF, Attia M, et al.
    PLoS One, 2014;9(6):e100671.
    PMID: 24968125 DOI: 10.1371/journal.pone.0100671
    The diamondback moth (DBM) Plutella xylostella (L.) has traditionally been managed using synthetic insecticides. However, the increasing resistance of DBM to insecticides offers an impetus to practice integrated pest management (IPM) strategies by exploiting its natural enemies such as pathogens, parasitoids, and predators. Nevertheless, the interactions between pathogens and parasitoids and/or predators might affect the effectiveness of the parasitoids in regulating the host population. Thus, the parasitism rate of Nosema-infected DBM by Cotesia vestalis (Haliday) (Hym., Braconidae) can be negatively influenced by such interactions. In this study, we investigated the effects of Nosema infection in DBM on the parasitism performance of C. vestalis. The results of no-choice test showed that C. vestalis had a higher parasitism rate on non-infected host larvae than on Nosema-treated host larvae. The C. vestalis individuals that emerged from Nosema-infected DBM (F1) and their progeny (F2) had smaller pupae, a decreased rate of emergence, lowered fecundity, and a prolonged development period compared to those of the control group. DBM infection by Nosema sp. also negatively affected the morphometrics of C. vestalis. The eggs of female C. vestalis that developed in Nosema-infected DBM were larger than those of females that developed in non-infected DBM. These detrimental effects on the F1 and F2 generations of C. vestalis might severely impact the effectiveness of combining pathogens and parasitoids as parts of an IPM strategy for DBM control.
    Matched MeSH terms: Pest Control, Biological/methods*
  14. Bong LJ, Neoh KB, Jaal Z, Lee CY
    J Med Entomol, 2015 Jul;52(4):517-26.
    PMID: 26335457 DOI: 10.1093/jme/tjv041
    Although rove beetles (Paederus spp.) play a beneficial role as biological control agents to manage crop pests in agro-ecosystems, their high prevalence in human settings has elevated them to pest status in urban areas. Rove beetles neither bite nor sting, but accidental crushing on human skin causes them to release the toxin paederin, which causes dermatitis linearis. This review integrates currently available knowledge about the issues pertaining to Paederus infestation. For instance, the results of life history studies conducted under different food and temperature regimes are summarized, as they indicate how large a population can be in a habitat to cause massive and widespread infestation and illustrate the physiological traits required to maintain the population at the maximum level even under adverse conditions. In contrast to what is generally reported, we speculate that climatic factors do not necessarily result in Paederus dispersal in temperate regions; instead, habitat disturbance and site unsuitability may be the main factors that lead to massive dispersal to human settings. Factors such as whether dispersers are adaptable to xeric conditions in human settings, the probability that dispersed Paederus mate with the opposite sex, and whether dispersers have adequate nutrient intake to reproduce are considered to evaluate their potential to reproduce in human settings. Finally, the effectiveness of current commercial insecticides, challenges faced in managing infestations, and sustainable management practices are discussed to provide information for long-term control programs.
    Matched MeSH terms: Pest Control*
  15. Lee HL, Aramu M, Nazni WA, Selvi S, Vasan S
    Trop Biomed, 2009 Dec;26(3):312-9.
    PMID: 20237445
    The natural and artificial mating of laboratory bred Aedes albopictus and transgenic Aedes aegypti RIDL-513A-Malaysian strain was conducted. The experiment consisted of crossmating of homologous Ae. aegypti RIDL female symbol X Ae. aegypti RIDL male symbol and reciprocal Ae. aegypti RIDL female symbol X Ae. albopictus WT male symbol. The other set comprised homologous Ae. albopictus WT female symbol X Ae. albopictus WT male symbol and reciprocal Ae. albopictus WT female symbol X Ae. aegypti RIDL male symbol. This study demonstrated that reproductive barriers exist between these two species. Cross insemination occurred between A. albopictus male and Ae. aegypti female and their reciprocals. There was 26.67% and 33.33% insemination rate in Ae. aegypti RIDL female cross-mating with A. albopictus WT male and Ae. albopictus female cross-mating with Ae. aegypti RIDL male, respectively. There was 0% hatchability in both directions of the reciprocals. There was also no embryonation of these eggs which were bleached. Although none of the female Ae. albopictus WT was inseminated in the cross-mating with Ae. albopictus WT female symbol X Ae. aegypti RIDL male symbol, a total of 573 eggs were obtained. The homologous mating was very productive resulting in both high insemination rate and hatchability rates. Generally there was a significantly higher insemination rate with artificial mating insemination of homologous than with artificial mating of reciprocal crosses. Interspecific mating between Ae. aegypti RIDL and Ae. albopictus wild type was not productive and no hybrid was obtained, indicating absence of horizontal transfer of introduced RIDL gene in Ae. aegypti to Ae. albopictus.
    Matched MeSH terms: Pest Control, Biological*
  16. Chandrawathani P, Jamnah O, Waller PJ, Höglund J, Larsen M, Zahari WM
    Vet Res, 2002 Nov-Dec;33(6):685-96.
    PMID: 12498569
    Approximately 2,800 fresh dung samples from animals, mainly ruminant livestock, were screened for the presence of nematophagous fungi in Malaysia. Arthrobotrys spp. was noted on numerous occasions, but only one isolate of Duddingtonia flagrans was made. For the purposes of producing sufficient quantities of this fungus for feeding trials in sheep, various, commonly available, cheap plant materials were tested as possible growth substrates. This showed that cereal grains (wheat, millet and rice) were the best media for fungal growth. Pen feeding trials were carried out using sheep, both naturally and experimentally infected with nematode parasites (predominantely Haemonchus contortus), to test the efficiency of D. flagrans when administered either in a grain supplement, or incorporated into a feed block. These showed that the fungus survived gut passage in sheep and that dose rates of approximately 1 x 10(6) D. flagrans spores / animal / day, reduced the percentage of infective larvae developing in faecal cultures by more than 90%. These results indicate that using D. flagrans as a biological control agent of nematode parasites, is a promising alternative to nematode parasite control of small ruminants in Malaysia, where anthelmintic resistance is now a major problem.
    Matched MeSH terms: Pest Control, Biological*
  17. Lakxmy AP, Xavier R, Reenajosephine CM, Lee YW, Marimuthu K, Kathiresan S, et al.
    Eur Rev Med Pharmacol Sci, 2011 Feb;15(2):149-55.
    PMID: 21434481
    To evaluate the mosquito larvicidal potential of the native Bacillus thuringiensis isolate BtReXO2, which was isolated from a tropical rain forest ecosystem in Malaysia. This study also aimed at determining the phenotypic and biochemical characteristics of the isolate.
    Matched MeSH terms: Pest Control, Biological*
  18. Seleena P, Lee HL, Nazni WA, Rohani A, Kadri MS
    PMID: 9185282
    In an effort to develop a more effective technique in dispersing a microbial control agent, Bacillus thuringiensis (Bt), a truck-mounted ultra low volume (ULV) generator (Scorpion) was used to disperse B. thuringiensis israelensis (Bti) and Bti with malathion. Complete larval and adult mortalities for all tested mosquito species within the first 70-80 feet from the ULV generator were achieved. Beyond that distance less than 50% mortality was achieved as insufficient sprayed particles reached the area. A minimum of 10(3) Bti colony forming units per ml is required to cause 100% larval mortality. The sprayed Bti larvicidal toxins were persistent in the test water 7 days post ULV. The effectiveness of B. thuringiensis jegathesan (Btj), a new mosquitocidal Bt serotype was also evaluated. Similar mortality results as Bti were achieved except that the Btj toxins underwent degradation in the test water, since less than 50% less in larval mortality was observed in 7 days post ULV samples. This ULV method has the potential to disperse Bt and malathion effectively for a simultaneous control of mosquito adults and larvae.
    Matched MeSH terms: Pest Control, Biological/methods*
  19. Hoang KP, Teo TM, Ho TX, Le VS
    Parasit Vectors, 2016 Jan 28;9:49.
    PMID: 26818000 DOI: 10.1186/s13071-016-1331-x
    BACKGROUND: More effective mosquito control strategies are urgently required due to the increasing prevalence of insecticide resistance. The sterile insect technique (SIT) and the release of insects carrying a dominant lethal allele (RIDL) are two proposed methods for environmentally-friendly, species-targeted population control. These methods may be more suitable for developing countries if producers reduce the cost of rearing insects. The cost of control programs could be reduced by producing all-male mosquito populations to circumvent the isolation of females before release without reducing male mating competitiveness caused by transgenes.

    RESULTS: An RNAi construct targeting the RNA recognition motif of the Aedes aegypti transformer-2 (tra-2) gene does not trigger female-to-male sex conversion as commonly observed among dipterous insects. Instead, homozygous insects show greater mortality among m-chromosome-bearing sperm and mm zygotes, yielding up to 100% males in the subsequent generations. The performance of transgenic males was not significantly different to wild-type males in narrow-cage competitive mating experiments.

    CONCLUSION: Our data provide preliminary evidence that the knockdown of Ae. aegypti tra-2 gene expression causes segregation distortion acting at the level of gametic function, which is reinforced by sex-specific zygotic lethality. This finding could promote the development of new synthetic sex distorter systems for the production of genetic sexing mosquito strains.

    Matched MeSH terms: Pest Control, Biological
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links