Displaying publications 21 - 40 of 134 in total

Abstract:
Sort:
  1. Hindia MN, Reza AW, Noordin KA, Chayon MH
    PLoS One, 2015;10(4):e0121901.
    PMID: 25830703 DOI: 10.1371/journal.pone.0121901
    Smart grid (SG) application is being used nowadays to meet the demand of increasing power consumption. SG application is considered as a perfect solution for combining renewable energy resources and electrical grid by means of creating a bidirectional communication channel between the two systems. In this paper, three SG applications applicable to renewable energy system, namely, distribution automation (DA), distributed energy system-storage (DER) and electrical vehicle (EV), are investigated in order to study their suitability in Long Term Evolution (LTE) network. To compensate the weakness in the existing scheduling algorithms, a novel bandwidth estimation and allocation technique and a new scheduling algorithm are proposed. The technique allocates available network resources based on application's priority, whereas the algorithm makes scheduling decision based on dynamic weighting factors of multi-criteria to satisfy the demands (delay, past average throughput and instantaneous transmission rate) of quality of service. Finally, the simulation results demonstrate that the proposed mechanism achieves higher throughput, lower delay and lower packet loss rate for DA and DER as well as provide a degree of service for EV. In terms of fairness, the proposed algorithm shows 3%, 7 % and 9% better performance compared to exponential rule (EXP-Rule), modified-largest weighted delay first (M-LWDF) and exponential/PF (EXP/PF), respectively.
    Matched MeSH terms: Renewable Energy*
  2. Saqib N, Sharif A, Razzaq A, Usman M
    Environ Sci Pollut Res Int, 2023 Feb;30(6):16372-16385.
    PMID: 36181595 DOI: 10.1007/s11356-022-23345-6
    For the purpose of this study, the role of technological innovation is examined. Few studies have examined empirically and theoretically the relationship between technological innovation and ecological footprint in conjunction with other factors, such as the human capital index and renewable energy sources, such as biofuels and nuclear power. This study examines the impact of technological innovation on G-7 countries' ecological footprints from 1990 to 2020. A cross-sectionally augmented autoregressive distributed lag (CS-ARDL) model is used in the study. The results of the study show that technological innovation minimizes the ecological footprint. A lower ecological footprint is also associated with increased usage of human capital and renewable energy. Depletion of the natural environment is a short-term and long-term consequence of increased GDP growth. Our results confirm that ecologically sustainable technology enhances the quality of the environment. Consistent panel causality results were achieved. In the context of the G-7 countries, our study's results could support the idea that there are new policy ideas that could help achieve the Sustainable Development Goals (SDG 3, 4, 7, 8, 9, and 13).
    Matched MeSH terms: Renewable Energy*
  3. Subramaniam Y, Loganathan N, Subramaniam T, Bulut U
    Environ Sci Pollut Res Int, 2023 Oct;30(50):108802-108824.
    PMID: 37755592 DOI: 10.1007/s11356-023-29965-w
    This study investigates the energy security and income roles in testing environmental Kuznets curve (EKC) for developing countries from 1990 to 2019. The panel quantile regression approaches are employed to examine the relationship between the variables, considering that income and energy security effects on carbon emissions may vary across distributions. Findings revealed that the EKC hypothesis was inconsistent at low and high quantiles when estimating energy availability, affordability, and acceptability. The validity of inverted U-shaped EKC is supported at high quantiles for energy affordability and accessibility in developing countries. However, given the energy accessibility and acceptability, the EKC hypothesis becomes invalid in developing countries. Notably, developing countries have yet to progress toward achieving energy security as a switch component to low carbon emissions. This study contributes to the literature by revealing the effect of availability, accessibility, affordability, and acceptability of energy security on carbon dioxide emissions (CO2). Thus, it suggests implications for improving environmental quality in developing countries by enhancing energy security. Diversifying energy sources with nuclear, renewable, and developing technologies reduces dependence risks on a single source while improving efficiency through technology and demand management lowers carbon emissions and strengthens energy security. Beyond energy security, this study emphasises sustainable urban planning to promote compact development, effective transportation, and green infrastructure to reduce energy use and improve environmental sustainability, ultimately reducing carbon emissions.
    Matched MeSH terms: Renewable Energy*
  4. Sohail MT, Din NM
    Environ Sci Pollut Res Int, 2024 Jan;31(2):2869-2882.
    PMID: 38066276 DOI: 10.1007/s11356-023-31342-6
    To tackle the growing menace of environmental degradation, the idea of green entrepreneurship has gained popularity, which is the process of creating new goods and technologies to solve environmental problems. Like traditional entrepreneurs, green entrepreneurs also need financial backing from financial institutions. However, no empirical evidence was found regarding the relationship between formal credit and green entrepreneurship. This analysis is an effort to plug this vacuum into the literature by analyzing the impact of formal credit on green entrepreneurship in high, middle, and low-income economies from 2011 to 2021. The study has employed various econometric techniques such as fixed-effects, random-effects, 2SLS, and GMM. The results show that formal credit substantially develops green entrepreneurship in high, middle, low-income, and full samples. Besides formal credit, GDP, environmental pressure, trade openness, technological development, and human capital are crucial in green entrepreneurship development in all samples. Policymakers may collaborate with financial institutions to create and provide specialized financial products and services catering to green entrepreneurs.
    Matched MeSH terms: Renewable Energy*
  5. Senadjki A, Bashir MJK, AuYong HN, Awal IM, Chan JH
    Environ Sci Pollut Res Int, 2024 Jan;31(1):1468-1487.
    PMID: 38041733 DOI: 10.1007/s11356-023-31132-0
    Africa faces significant economic and environmental challenges, including waste generation, food insecurity, and energy inefficiency, jeopardizing future generations. To address this, Africa has adopted the 10-year Sustainable Consumption and Production Framework for Africa (10-YFP), evident through national and local projects focusing on sustainable food and agriculture, technology transfer in water irrigation, and related initiatives. The Belt and Road Initiative (BRI) presents an opportunity for promoting green cooperation and sustainable development in Africa, though its impact on ethical production and consumption remains unexplored. This study evaluates the BRI's role in achieving Africa's Twelve Sustainable Development Goals (SDGs) and catalyzing responsible consumption and production. Through interviews and focus group discussions (FGDs) involving 42 participants from 19 African countries, thematic patterns emerged using the thematic inductive method. Findings indicate that BRI initiatives effectively integrate advanced technologies to enhance sustainable agriculture and industrial production. Notably, BRI investments in countries like Morocco, Algeria, Ethiopia, Kenya, and Zambia are fostering renewable energy projects to provide electricity to underserved communities. A stronger alignment between national sustainable development plans and the green BRI is essential to maximize the benefits without compromising BRI principles of inclusivity, coordination, coherence, and capacity building. This research fosters dialogue among academics, educators, government officials, business leaders, and investors about the transformative potential of China's BRI in African nations. By shedding light on the positive strides made by BRI programs, this study underscores the need for strategic synergy between international cooperation efforts and localized sustainability agendas, ultimately propelling Africa toward its long-term development goals.
    Matched MeSH terms: Renewable Energy*
  6. Afroz R, Muhibbullah M
    Environ Sci Pollut Res Int, 2022 Jul;29(32):48795-48811.
    PMID: 35201582 DOI: 10.1007/s11356-022-19346-0
    The purpose of this paper is to investigate the links between renewable energy (RE), non-renewable energy (NRE), capital, labour and economic growth, using the nonlinear autoregressive distributive lag (NARDL) model in Malaysia for the period of 1980-2018. The results of NARDL confirm the asymmetric effect of RE and NRE consumption on the economic growth in the long run as well as the short run in Malaysia. The findings also show that in the long and short run, positive shocks of NRE are greater than the positive shocks of RE. It indicates that Malaysia's economic growth is highly dependent on NRE which is not a good indication as NRE consumption increases carbon dioxide (CO2) emission in the country. Moreover, the empirical results of this study demonstrated that RE consumption reduction accelerates economic growth, whereas NRE consumption reduction decreases economic growth. It can have claimed that in Malaysia, RE is still more expensive than NRE. In conclusion, this study offered a variety of measures to develop RE to reduce the dependency on NRE consumption.
    Matched MeSH terms: Renewable Energy*
  7. Basir Khan MR, Jidin R, Pasupuleti J
    Data Brief, 2016 Mar;6:117-20.
    PMID: 26779562 DOI: 10.1016/j.dib.2015.11.043
    Renewable energy assessments for resort islands in the South China Sea were conducted that involves the collection and analysis of meteorological and topographic data. The meteorological data was used to assess the PV, wind and hydropower system potentials on the islands. Furthermore, the reconnaissance study for hydro-potentials were conducted through topographic maps in order to determine the potential sites suitable for development of run-of-river hydropower generation. The stream data was collected for 14 islands in the South China Sea with a total of 51 investigated sites. The data from this study are related to the research article "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea" published in Energy (Khan et al., 2015) [1].
    Matched MeSH terms: Renewable Energy
  8. Hossain MZ, Selvaraj JA, Rahim NA
    PLoS One, 2018;13(11):e0206691.
    PMID: 30500857 DOI: 10.1371/journal.pone.0206691
    Over the past few years, high step-up dc-dc converters have been drawn substantial attention because of their wide-ranging application not only in the renewable energy sector but also in many other applications. To acquire a high voltage gain in photovoltaic (PV) and other renewable energy applications, a high step-up dc-dc converter is proposed in this paper. The proposed converter structure consists of a full-bridge (FB) module along with an input boost inductor and a voltage multiplier based on the Cockcroft-Walton (CW) principle with a parallel inductor. The key features of the proposed converter are: 1) high voltage gain with lower voltage stress on the switches, diodes and other passive elements without affecting the number of cascaded stages, 2) a minimum size of boost inductance and cascaded stage capacitance that ensures its compactness and low cost, and 3) a minimal number of major components. Circuit operation, steady-state analysis and various design parameters of the proposed converter are explained in details. In order to prove the performance of the theoretical analysis, a laboratory prototype is also implemented. The peak voltage gain and the maximum efficiency obtained are 11.9 and 94.6% respectively with very low input current ripple and output voltage ripple generated.
    Matched MeSH terms: Renewable Energy
  9. Sathik MJ, Almakhles DJ, Sandeep N, Siddique MD
    Sci Rep, 2021 Mar 03;11(1):5067.
    PMID: 33658562 DOI: 10.1038/s41598-021-84531-z
    Multilevel inverters play an important role in extracting the power from renewable energy resources and delivering the output voltage with high quality to the load. This paper proposes a new single-stage switched capacitor nine-level inverter, which comprises an improved T-type inverter, auxiliary switch, and switched cell unit. The proposed topology effectively reduces the DC-link capacitor voltage and exhibits superior performance over recently switched-capacitor inverter topologies in terms of the number of power components and blocking voltage of the switches. A level-shifted multilevel pulse width modulation scheme with a modified triangular carrier wave is implemented to produce a high-quality stepped output voltage waveform with low switching frequency. The proposed nine-level inverter's effectiveness, driven by the recommended modulation technique, is experimentally verified under varying load conditions. The power loss and efficiency for the proposed nine-level inverter are thoroughly discussed with different loads.
    Matched MeSH terms: Renewable Energy
  10. Butt AH, Akbar B, Aslam J, Akram N, Soudagar MEM, García Márquez FP, et al.
    Sensors (Basel), 2020 Oct 21;20(20).
    PMID: 33096774 DOI: 10.3390/s20205954
    Vertical axis wind turbines (VAWT) are a source of renewable energy and are used for both industrial and domestic purposes. The study of noise characteristics of a VAWT is an important performance parameter for the turbine. This study focuses on the development of a linear microphone array and measuring acoustic signals on a cambered five-bladed 45 W VAWT in an anechoic chamber at different tip speed ratios. The sound pressure level spectrum of VAWT shows that tonal noises such as blade passing frequencies dominate at lower frequencies whereas broadband noise corresponds to all audible ranges of frequencies. This study shows that the major portion of noise from the source is dominated by aerodynamic noises generated due to vortex generation and trailing edge serrations. The research also predicts that dynamic stall is evident in the lower Tip speed ratio (TSR) region making smaller TSR values unsuitable for a quiet VAWT. This paper compares the results of linear aeroacoustic array with a 128-MEMS acoustic camera with higher resolution. The study depicts a 3 dB margin between two systems at lower TSR values. The research approves the usage of the 8 mic linear array for small radius rotary machinery considering the results comparison with a NORSONIC camera and its resolution. These observations serve as a basis for noise reduction and blade optimization techniques.
    Matched MeSH terms: Renewable Energy
  11. Zamri AA, Ong MY, Nomanbhay S, Show PL
    Environ Res, 2021 06;197:111204.
    PMID: 33894238 DOI: 10.1016/j.envres.2021.111204
    The composition of carbon dioxide (CO2) is increasing day by day in the Earth's atmosphere. Worldwide energy demand is now increasing, and this has led to an increase in the percentage of global carbon emission. Moreover, this phenomenon can occur from the careless use of heating systems, generators and especially transportation, therefore, the release of these gases will continue to be widespread if there is no solution. Interaction within the microwave plasma-based gasification system of synthetic natural gas (syngas) production is presented in this paper. Consequently, this reduces the high concentrations of methane and carbon dioxide emission in our atmosphere. Syngas is very useful products that can be used as a source of energy such as fuel production and fuel source. The overview and basic theory about gasification process and microwave plasma technology are provided. Modelling of the microwave plasma system particularly on its application of system electromagnetic field inside waveguide of plasma reactor to produce microwave plasma and how it was calculated are presented in this paper. To recapitulate, the global challenges on the rising of greenhouse gases volume can be regulated with microwave plasma technology and its important aspects have been underlined.
    Matched MeSH terms: Renewable Energy
  12. Usubamatov, R., Qasim, A.Y., Zain, Z.M.
    MyJurnal
    Wind energy has often been touted as one of the most reliable sources of renewable energy that should be used for people. Today, wind energy (mainly by propeller type wind turbines) produces less than one percent of the total energy used worldwide. Practically, a standard three-blade propellers efficiency of use of the wind energy is around twenty percents and this is due to its design and shape that use the wind lift force and a rotating turbine. In addition, these turbines are quite expensive due to the complex aerodynamic shape of the propellers which are made of composite materials. The new world boom for wind turbines obliges inventors to create new wind turbine designs that have high efficiency and are better than any known design. This paper proposes the new patented invention of the vane-type wind turbine which uses wind energy more efficiently and is only dependent on the acting area of the vanes. The vane wind turbine was designed to increase the output of a wind turbine that uses kinetic energy of the wind. Due to its high efficiency, simple construction and technology, the vane wind turbine can be used universally, apart from the fact that it is made from cheap materials. The new design of the vane-type wind turbine has quite small sizes than the propeller type one of same output power.
    Matched MeSH terms: Renewable Energy
  13. Romanello M, McGushin A, Di Napoli C, Drummond P, Hughes N, Jamart L, et al.
    Lancet, 2021 Oct 30;398(10311):1619-1662.
    PMID: 34687662 DOI: 10.1016/S0140-6736(21)01787-6
    Matched MeSH terms: Renewable Energy
  14. Awan AM, Azam M, Saeed IU, Bakhtyar B
    Environ Sci Pollut Res Int, 2020 Dec;27(36):45405-45418.
    PMID: 32789804 DOI: 10.1007/s11356-020-10445-4
    The broad purpose of this study is to empirically explore the impact of globalization and financial development on environmental pollution by carbon (CO2) emissions in the six Middle East and North Africa (MENA) countries using balanced panel data from 1971 to 2015. We also aimed to test the legitimacy of the environmental Kuznets curve (EKC) hypothesis for this region. The fixed-effects approach preferred by the Hausman specification test is used to estimate the empirical model, and the feasible generalized least squares (F.G.L.S.) estimator is employed to cope with any issue of heteroscedasticity and serial correlation. This study found that globalization and financial development have adverse and significant effects on environmental degradation and affirm the legitimacy of the EKC hypothesis for these countries. The finding of this study suggests that the governments of MENA countries should design and implement appropriate policies for strengthening the renewable sources of energy like wind, solar, bio-fuel, and thermal to decrease CO2 emissions and boost sustainable economic development. The policymakers should focus on the efficiency of institutions and enhancement of energy-saving projects in this region.
    Matched MeSH terms: Renewable Energy
  15. Khan SAR, Yu Z, Sharif A, Golpîra H
    Environ Sci Pollut Res Int, 2020 Dec;27(36):45675-45687.
    PMID: 32803598 DOI: 10.1007/s11356-020-10410-1
    Considering the importance of green economic growth and environmental sustainability in the discussion, it is crucial to understand its critical contributing factors and to draw results implications for the green policy. This research used the data of the South Asian Association for Regional Cooperation (SAARC) member countries for a period from 2005 to 2017. It adopted the panel autoregressive distributed lag technique to examine the hypotheses. The findings revealed that environmental sustainability is strongly and positively associated with national scale-level green practices, including renewable energy, regulatory pressure, and eco-friendly policies, and sustainable use of natural resources. Conversely, in our model, the "regulatory pressure" has an insignificant effect on economic growth. A necessary contribution of the present study is that a positive effect of green practices on national scale economic and environmental variables, particularly in the scenario of SAARC member states, can be noticed. At the end of the present study, we have provided policy implications for regulatory authorities and discussed potential areas for future research.
    Matched MeSH terms: Renewable Energy
  16. Ozturk I, Al-Mulali U, Solarin SA
    Environ Sci Pollut Res Int, 2019 Jun;26(17):17277-17283.
    PMID: 31012074 DOI: 10.1007/s11356-019-05016-1
    This study aims at exploring the impact of corruption control on energy efficiency in 60 countries categorized by income: lower middle (LMI), upper middle (UMI), and high (HI). Panel methodology was utilized taking the period of 2000-2017. As cross-sectional dependence is confirmed among the tested equations, the Pesaran (J Appl Econ 22(2):265-312, 2007) unit root test and the augmented mean group estimator proposed by Eberhardt and Teal (2010) were utilized to overcome this matter. The results in general indicate that the lower the corruption is, the more the energy efficiency for all income group economies. Moreover, renewable energy reduces energy efficiency in lower-middle income and high-income economies while its effect is positive in middle-income economies. In addition, the environmental Kuznets curve (EKC) found to be present in all income group economies. Lastly, causality relationships among energy efficiency, corruption, and GDP were present mostly in upper-middle income and high-income economies. From the results, it was recommended that the countries from all income groups should increase their corruption control for the purpose of enhancing energy efficiency.
    Matched MeSH terms: Renewable Energy
  17. Shakib M, Yumei H, Rauf A, Alam M, Murshed M, Mahmood H
    Environ Sci Pollut Res Int, 2022 Jan;29(3):3808-3825.
    PMID: 34402005 DOI: 10.1007/s11356-021-15860-9
    The Belt and Road Initiative (BRI) is an ambitious development project initiated by the Chinese government to foster economic progress worldwide. In this regard, this study aims to investigate the dynamics of energy, economy, and environment among 42 BRI developing countries using an annual frequency panel dataset from 1995 to 2019. The major findings from the econometric analyses revealed that higher levels of energy consumption, economic growth, population growth rate, and FDI inflows exhibit adverse environmental consequences by boosting the CO2 emission figures of the selected developing BRI member nations. However, it is interesting to observe that exploiting renewable energy sources, which are relatively cleaner compared to the traditionally-consumed fossil fuels, and fostering agricultural sector development can significantly improve environmental well-being by curbing the emission levels further. On the other hand, financial development is found to be ineffective in explaining the variations in the CO2 emission figures of the selected countries. Besides, the causality analysis shows that higher energy consumption, FDI inflows, and agricultural development cause environmental pollution by boosting CO2 emissions. However, economic growth, technology development, financial progress, and renewable energy consumption are evidenced to exhibit bidirectional causal associations with CO2 emissions. In line with these findings, several relevant policies can be recommended for the BRI to be environmentally sustainable.
    Matched MeSH terms: Renewable Energy
  18. Yee CH, Al-Mulali U, Ling GM
    Environ Sci Pollut Res Int, 2022 Jan;29(1):1021-1036.
    PMID: 34341932 DOI: 10.1007/s11356-021-15737-x
    Renewable energy investments possess great potential for reducing the consumption of fossil fuels influenced by various determinants. This study investigates the individual investors' renewable energy investments' intention within the framework of the theory of planned behaviour (TPB) based on a survey conducted in 3 major states in Malaysia. The results indicate that one's intention to invest in renewable energy investments is influenced by attitude, subjective norm, perceived behavioural control and evaluation of regulatory framework. Risk aversion on the other hand was found to have no effect on investors' intention towards such investments. The findings also reveal that the evaluation of regulatory framework is the most important determinant. This outcome contradicts the outcomes arrived at by the previous studies that focus on investment behaviours or other types of pro-environmentally intention or behaviours. This research also investigates the indirect effects of TPB on explaining investor's intention towards renewable energy investments through the evaluation of regulatory framework. The results indicate that the investors' intention towards renewable energy investments is indirectly influenced by attitude and perceived behavioural control. Subjective norm does not have an indirect effect on investors' intention towards renewable energy investments. This study provides policymakers' important practical implications to improve renewable energy investments.
    Matched MeSH terms: Renewable Energy
  19. Khan SAR, Yu Z, Umar M
    Environ Sci Pollut Res Int, 2022 Mar;29(11):16082-16090.
    PMID: 34643866 DOI: 10.1007/s11356-021-16961-1
    In today's era, the world economy needs to move towards a green transformation. Green total factor productivity provides the judgment about a country or region's ability to achieve long-term sustainable development goals. However, many factors considerably affect green total factor productivity that needs to be explored and clarified. This panel study investigates the link between technological input, environmental policies, governmental involvement, manufacturing and logistics industry cooperation, renewable energy consumption, and green total factor productivity in the context of Chinese's manufacturing and logistics industry. Hypotheses are tested through fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) econometric technique. The study used 12 cities data mainly taken from China Urban Statistical Yearbook (2005-2019) and National Economic and Social Development Statistics Bulletin. The results indicate that technological input, environmental policies, governmental involvement, manufacturing and logistics industry cooperation, and renewable energy consumption are significantly linked to green total factor productivity. The result also implies that the factors mentioned above have a crucial role in the transformation process. Moreover, the current research results will help popularize green total factor productivity and provide a new starting point for reducing non-renewable energy consumption and environmental pollution.
    Matched MeSH terms: Renewable Energy
  20. Shah MI, AbdulKareem HKK, Ishola BD, Abbas S
    Environ Sci Pollut Res Int, 2023 Feb;30(10):26063-26077.
    PMID: 36350445 DOI: 10.1007/s11356-022-23871-3
    This paper empirically examines the effects of energy, natural resources, agriculture, political constraint and regional integration on CO2 emissions in four ASEAN (Association of Southeast Asian Nations) countries of Cambodia, Malaysia, Indonesia and Thailand. We distinguish between renewable and fossil fuel energy consumption to see their individual impacts on CO2 emissions. The study employed a panel data from 1990 to 2019 derived from sources such as World Development Indicators, which were then analysed using Common-Correlated Effect Mean Group (CCEMG) and Augmented Mean Group (AMG) estimates. The findings show that renewable energy consumption has a negative impact on CO2 emissions while fossil fuel energy degrades the environment. The role of natural resources was found to be favourable for environmental quality with the impact of agriculture being found to be detrimental. For regional trade integration, its influence was not significant enough to offset CO2 emission. Furthermore, we discovered that political constraint induces CO2 emission. Based on the result, it is recommended that the selected ASEAN countries promote the use of renewable energy and clean technologies in their manufacturing processes, conserve natural resources, adopt eco-friendly political policies and intensify regional integration to accelerate the achievement of the SDGs.
    Matched MeSH terms: Renewable Energy
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links