Displaying publications 21 - 40 of 553 in total

Abstract:
Sort:
  1. Abdo A, Salim N, Ahmed A
    J Biomol Screen, 2011 Oct;16(9):1081-8.
    PMID: 21862688 DOI: 10.1177/1087057111416658
    Recently, the use of the Bayesian network as an alternative to existing tools for similarity-based virtual screening has received noticeable attention from researchers in the chemoinformatics field. The main aim of the Bayesian network model is to improve the retrieval effectiveness of similarity-based virtual screening. To this end, different models of the Bayesian network have been developed. In our previous works, the retrieval performance of the Bayesian network was observed to improve significantly when multiple reference structures or fragment weightings were used. In this article, the authors enhance the Bayesian inference network (BIN) using the relevance feedback information. In this approach, a few high-ranking structures of unknown activity were filtered from the outputs of BIN, based on a single active reference structure, to form a set of active reference structures. This set of active reference structures was used in two distinct techniques for carrying out such BIN searching: reweighting the fragments in the reference structures and group fusion techniques. Simulated virtual screening experiments with three MDL Drug Data Report data sets showed that the proposed techniques provide simple ways of enhancing the cost-effectiveness of ligand-based virtual screening searches, especially for higher diversity data sets.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  2. Zaman K, Rahim F, Taha M, Wadood A, Adnan Ali Shah S, Gollapalli M, et al.
    Bioorg Chem, 2019 08;89:102999.
    PMID: 31151055 DOI: 10.1016/j.bioorg.2019.102999
    Isoquinoline analogues (KA-1 to 16) have been synthesized and evaluated for their E. coli thymidine phosphorylase inhibitory activity. Except compound 11, all other analogs showed outstanding thymidine inhibitory potential ranging in between 4.40 ± 0.20 to 69.30 ± 1.80 µM when compared with standard drug 7-Deazaxanthine (IC50 = 38.68 ± 4.42 µM). Structure Activity Relationships has been established for all compounds, mainly based on substitution pattern on phenyl ring. All analogs were characterized by various spectroscopic techniques such as 1H NMR, 13C NMR and EI-MS. The binding interactions of isoquinoline analogues with the active site of TP enzyme, the molecular docking studies were performed. Furthermore, the angiogenic inhibitory potentials of isoquinoline analogues (KA-1-9, 14, 12 and 16) were determined in the presence of standard drug Dexamethasone based on percentage inhibitions at various concentrations. Herein this work analogue KA-12, 14 and 16 emerged with most potent angiogenic inhibitory potentials among the synthesized analogues.
    Matched MeSH terms: Structure-Activity Relationship
  3. Al-Nema M, Gaurav A, Akowuah G
    Comput Biol Chem, 2018 Dec;77:52-63.
    PMID: 30240986 DOI: 10.1016/j.compbiolchem.2018.09.001
    The major complaint that most of the schizophrenic patients' face is the cognitive impairment which affects the patient's quality of life. The current antipsychotic drugs treat only the positive symptoms without alleviating the negative or cognitive symptoms of the disease. In addition, the existing therapies are known to produce extrapyramidal side effects that affect the patient adherence to the treatment. PDE10A inhibitor is the new therapeutic approach which has been proven to be effective in alleviating the negative and cognitive symptoms of the disease. A number of PDE10A inhibitors have been developed, but no inhibitor has made it beyond the clinical trials so far. Thus, the present study has been conducted to identify a PDE10A inhibitor from natural sources to be used as a lead compound for the designing of novel selective PDE10A inhibitors. Ligand and structure-based pharmacophore models for PDE10A inhibitors were generated and employed for virtual screening of universal natural products database. From the virtual screening results, 37 compounds were docked into the active site of the PDE10A. Out of 37 compounds, three inhibitors showed the highest affinity for PDE10A where UNPD216549 showed the lowest binding energy and has been chosen as starting point for designing of novel PDE10A inhibitors. The structure-activity-relationship studies assisted in designing of selective PDE10A inhibitors. The optimization of the substituents on the phenyl ring resulted in 26 derivatives with lower binding energy with PDE10A as compared to the lead compound. Among these, MA 8 and MA 98 exhibited the highest affinity for PDE10A with binding energy (-10.90 Kcal/mol).
    Matched MeSH terms: Structure-Activity Relationship
  4. Haque RA, Choo SY, Budagumpi S, Iqbal MA, Al-Ashraf Abdullah A
    Eur J Med Chem, 2015 Jan 27;90:82-92.
    PMID: 25461313 DOI: 10.1016/j.ejmech.2014.11.005
    A series of benzimidazole-based N-heterocyclic carbene (NHC) proligands {1-benzyl-3-(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (1/4), 1,3-bis(2-methylbenzyl)-benzimidazolium bromide/hexafluorophosphate (2/5) and 1,3-bis(3-(2-methylbenzyl)-benzimidazolium-1-ylmethylbenzene dibromide/dihexafluorophosphate (3/6)} has been synthesized by the successive N-alkylation method. Ag complexes {1-benzyl-3-(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (7), 1,3-bis(2-methylbenzyl)-benzimidazol-2-ylidenesilver(I) hexafluorophosphate (8) and 1,3-bis(3-(2-methylbenzyl)-benzimidazol-2-ylidene)-1-ylmethylbenzene disilver(I) dihexafluorophosphate (9)} of NHC ligands have been synthesized by the treatment of benzimidazolium salts with Ag2O at mild reaction conditions. Both, NHC proligands and Ag-NHC complexes have been characterized by (1)H and (13)C{(1)H} NMR and FTIR spectroscopy and elemental analysis technique. Additionally, the structure of the NHC proligand 5 and the mononuclear Ag complexes 7 and 8 has been elucidated by the single crystal X-ray diffraction analysis. Both the complexes exhibit the same general structural motif with linear coordination geometry around the Ag centre having two NHC ligands. Preliminary in vitro antibacterial potentials of reported compounds against a Gram negative (Escherichia coli) and a Gram positive (Bacillus subtilis) bacteria evidenced the higher activity of mononuclear silver(I) complexes. The anticancer studies against the human derived colorectal cancer (HCT 116) and colorectal adenocarcinoma (HT29) cell lines using the MTT assay method, revealed the higher activity of Ag-NHC complexes. The benzimidazolium salts 4-6 and Ag-NHC complexes 7-9 displayed the following IC50 values against the HCT 116 and HT29 cell lines, respectively, 31.8 ± 1.9, 15.2 ± 1.5, 4.8 ± 0.6, 10.5 ± 1.0, 18.7 ± 1.6, 1.20 ± 0.3 and 245.0 ± 4.6, 8.7 ± 0.8, 146.1 ± 3.1, 7.6 ± 0.7, 5.5 ± 0.8, 103.0 ± 2.3 μM.
    Matched MeSH terms: Structure-Activity Relationship
  5. Alharthi AM, Lee MH, Algamal ZY, Al-Fakih AM
    SAR QSAR Environ Res, 2020 Aug;31(8):571-583.
    PMID: 32628042 DOI: 10.1080/1062936X.2020.1782467
    One of the most challenging issues when facing a Quantitative structure-activity relationship (QSAR) classification model is to deal with the descriptor selection. Penalized methods have been adapted and have gained popularity as a key for simultaneously performing descriptor selection and QSAR classification model estimation. However, penalized methods have drawbacks such as having biases and inconsistencies that make they lack the oracle properties. This paper proposes an adaptive penalized logistic regression (APLR) to overcome these drawbacks. This is done by employing a ratio (BWR) of the descriptors between-groups sum of squares (BSS) to the within-groups sum of squares (WSS) for each descriptor as a weight inside the L1-norm. The proposed method was applied to one dataset that consists of a diverse series of antimicrobial agents with their respective bioactivities against Candida albicans. By experimental study, it has been shown that the proposed method (APLR) was more efficient in the selection of descriptors and classification accuracy than the other competitive methods that could be used in developing QSAR classification models. Another dataset was also successfully experienced. Therefore, it can be concluded that the APLR method had significant impact on QSAR analysis and studies.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  6. Al-Abboodi AS, Rasedee A, Abdul AB, Taufiq-Yap YH, Alkaby WAA, Ghaji MS, et al.
    Drug Des Devel Ther, 2017;11:3309-3319.
    PMID: 29200826 DOI: 10.2147/DDDT.S147626
    Introduction: Dentatin (DEN) (5-methoxy-2, 2-dimethyl-10-(1, 1-dimethyl-2propenyl) dipyran-2-one), a natural compound present in the roots of Clausena excavata Burm f, possesses pro-apoptotic and antiproliferative effects in various cancer cells. Because of its hydrophobicity, it is believed that its complexation with hydroxy-β-cyclodextrin (HPβCD) will make it a potent inhibitor of cancer cell growth. In the current work, the molecular mechanisms of apoptosis induced by DEN and DEN-HPβCD complex were demonstrated in human colon HT-29 cancer cells.

    Materials and methods: After the human colon HT-29 cancer cells were treated with DEN and DEN-HPβCD complex, their effects on the expression of apoptotic-regulated gene markers in mitochondria-mediated apoptotic and death receptor pathways were detected by Western blot analysis and reverse transcription polymerase chain reaction. These markers included caspases-9, 3, and 8, cytochrome c, poly (ADP-ribose) polymerase, p53, p21, cyclin A as well as the Bcl-2 family of proteins.

    Results: At 3, 6, 12, and 24 µg/mL exposure, DEN and DEN-HPβCD complex significantly affected apoptosis in HT-29 cells through the down-regulation of Bcl-2 and cyclin A in turn, and up-regulation of Bax, p53, p21, cytochrome c at both protein and mRNA levels. DEN and DEN-HPβCD complex also decreased cleaved poly (ADP-ribose) polymerase and induced caspases-3, -8, and -9.

    Conclusion: Results of this study indicate that the apoptotic pathway caused by DEN and DEN-HPβCD complex are mediated by the regulation of caspases and Bcl-2 families in human colon HT-29 cancer cells. The results also suggest that DEN-HPβCD complex may have chemotherapeutic benefits for colon cancer patients.

    Matched MeSH terms: Structure-Activity Relationship
  7. Younus HA, Hameed A, Mahmood A, Khan MS, Saeed M, Batool F, et al.
    Bioorg Chem, 2020 07;100:103827.
    PMID: 32402802 DOI: 10.1016/j.bioorg.2020.103827
    Medicinal importance of the sulfonylhydrazones is well-evident owing to their binding ability with zinc containing metalloenzymes. In the present study, we have synthesized different series of sulfonylhydrazones by using facile synthetic methods in good to excellent yield. All the successfully prepared sulfonylhydrazones were screened for ectonucleotidase (ALP & e5'NT) inhibitory activity. Among the chromen-2-one scaffold based sulfonylhydrazones, the compounds 7 was found to be most potent inhibitor for h-TNAP (human tissue non-specific alkaline phosphatase) and h-IAP (human intestinal alkaline phosphatase) with IC50 values of 1.02 ± 0.13 and 0.32 ± 0.0 3 µM respectively, compared with levamisole (IC50 = 25.2 ± 1.90 µM for h-TNAP) and l-phenylalanine (IC50 = 100 ± 3.00 µM for h-IAP) as standards. Further, the chromen-2-one based molecule 5a showed excellent activity against h-ecto 5'-NT (human ecto-5'-nucleotidase) with IC50 value of 0.29 ± 0.004 µM compared to standard, sulfamic acid (IC50 = 42.1 ± 7.8 µM). However, among the series of phenyl ring based sulfonylhydrazones, compound 9d was found to be most potent against h-TNAP and h-IAP with IC50 values of 0.85 ± 0.08 and 0.52 ± 0.03 µM, respectively. Moreover, in silico studies were also carried to demonstrate their putative binding with the target enzymes. The potent compounds 5a, 7, and 9d against different ectonucleotidases (h-ecto 5'-NT, h-TNAP, h-IAP) could potentially serve as lead for the development of new therapeutic agents.
    Matched MeSH terms: Structure-Activity Relationship
  8. Saleem Khan M, Asif Nawaz M, Jalil S, Rashid F, Hameed A, Asari A, et al.
    Bioorg Chem, 2022 01;118:105457.
    PMID: 34798458 DOI: 10.1016/j.bioorg.2021.105457
    Substitution of hazardous and often harmful organic solvents with "green" and "sustainable" alternative reaction media is always desirous. Ionic liquids (IL) have emerged as valuable and versatile liquids that can replace most organic solvents in a variety of syntheses. However, recently new types of low melting mixtures termed as Deep Eutectic Solvents (DES) have been utilized in organic syntheses. DES are non-volatile in nature, have sufficient thermal stability, and also have the ability to be recycled and reused. Hence DES have been used as alternative reaction media to perform different organic reactions. The availability of green, inexpensive and easy to handle alternative solvents for organic synthesis is still scarce, hence our interest in DES mediated syntheses. Herein we have investigated Biginelli reaction in different DES for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones. Monoamine oxidases and cholinesterases are important drug targets for the treatment of various neurological disorders such as Alzheimer's disease, Parkinson's disease, depression and anxiety. The compounds synthesized herein were evaluated for their inhibitory potential against these enzymes. Some of the compounds were found to be highly potent and selective inhibitors. Compounds 1 h and 1c were the most active monoamine oxidase A (MAO A) (IC50 = 0.31 ± 0.11 µM) and monoamine oxidase B (MAO B) (IC50 = 0.34 ± 0.04 µM) inhibitors respectively. All compounds were selective AChE inhibitors and did not inhibit BChE (<29% inhibition). Compound 1 k (IC50 = 0.13 ± 0.09 µM) was the most active AChE inhibitor.
    Matched MeSH terms: Structure-Activity Relationship
  9. Abuelizz HA, Anouar EH, Marzouk M, Hasan MH, Saleh SR, Ahudhaif A, et al.
    Anticancer Agents Med Chem, 2020;20(14):1714-1721.
    PMID: 32593283 DOI: 10.2174/1871520620666200627212128
    BACKGROUND: The use of tyrosinase has confirmed to be the best means of recognizing safe, effective, and potent tyrosinase inhibitors for whitening skin. Twenty-four 2-phenoxy(thiomethyl)pyridotriazolopyrimidines were synthesized and characterized in our previous studies.

    OBJECTIVE: The present work aimed to evaluate their cytotoxicity against HepG2 (hepatocellular carcinoma), A549 (pulmonary adenocarcinoma), MCF-7 (breast adenocarcinoma) and WRL 68 (embryonic liver) cell lines.

    METHODS: MTT assay was employed to investigate the cytotoxicity, and a tyrosinase inhibitor screening kit was used to evaluate the Tyrosinase (TYR) inhibitory activity of the targets.

    RESULTS: The tested compounds exhibited no considerable cytotoxicity, and nine of them were selected for a tyrosinase inhibitory test. Compounds 2b, 2m, and 5a showed good inhibitory percentages against TYR compared to that of kojic acid (reference substance). Molecular docking was performed to rationalize the Structure-Activity Relationship (SAR) of the target pyridotriazolopyrimidines and analyze the binding between the docked-selected compounds and the amino acid residues in the active site of tyrosinase.

    CONCLUSION: The target pyridotriazolopyrimidines were identified as a new class of tyrosinase inhibitors.

    Matched MeSH terms: Structure-Activity Relationship
  10. El-Sayed NNE, Almaneai NM, Ben Bacha A, Al-Obeed O, Ahmad R, Abdulla M, et al.
    J Enzyme Inhib Med Chem, 2019 Dec;34(1):672-683.
    PMID: 30821525 DOI: 10.1080/14756366.2019.1574780
    Some new 3H-quinazolin-4-one derivatives were synthesised and screened for anticancer, antiphospholipases, antiproteases, and antimetabolic syndrome activities. Compound 15d was more potent in reducing the cell viabilities of HT-29 and SW620 cells lines to 38%, 36.7%, compared to 5-FU which demonstrated cell viabilities of 65.9 and 42.7% respectively. The IC50 values of 15d were ∼20 µg/ml. Assessment of apoptotic activity revealed that 15d decreased the cell viability by down regulating Bcl2 and BclxL. Moreover, compounds, 8j, 8d/15a/15e, 5b, and 8f displayed lowered IC50 values than oleanolic acid against proinflammatory isoforms of hGV, hG-X, NmPLA2, and AmPLA2. In addition, 8d, 8h, 8j, 15a, 15b, 15e, and 15f showed better anti-α-amylase than quercetin, whereas 8g, 8h, and 8i showed higher anti-α-glucosidase activity than allopurinol. Thus, these compounds can be considered as potential antidiabetic agents. Finally, none of the compounds showed higher antiproteases or xanthine oxidase activities than the used reference drugs.
    Matched MeSH terms: Structure-Activity Relationship
  11. Teh AH, Saito JA, Baharuddin A, Tuckerman JR, Newhouse JS, Kanbe M, et al.
    FEBS Lett., 2011 Oct 20;585(20):3250-8.
    PMID: 21925500 DOI: 10.1016/j.febslet.2011.09.002
    Hell's Gate globin I (HGbI), a heme-containing protein structurally homologous to mammalian neuroglobins, has been identified from an acidophilic and thermophilic obligate methanotroph, Methylacidiphilum infernorum. HGbI has very high affinity for O(2) and shows barely detectable autoxidation in the pH range of 5.2-8.6 and temperature range of 25-50°C. Examination of the heme pocket by X-ray crystallography and molecular dynamics showed that conformational movements of Tyr29(B10) and Gln50(E7), as well as structural flexibility of the GH loop and H-helix, may play a role in modulating its ligand binding behavior. Bacterial HGbI's unique resistance to the sort of extreme acidity that would extract heme from any other hemoglobin makes it an ideal candidate for comparative structure-function studies of the expanding globin superfamily.
    Matched MeSH terms: Structure-Activity Relationship
  12. Abbasi MA, Anwar A, Rehman A, Siddiqui SZ, Rubab K, Shah SAA, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1715-1724.
    PMID: 29084694
    Heterocyclic molecules have been frequently investigated to possess various biological activities during the last few decades. The present work elaborates the synthesis and enzymatic inhibition potentials of a series of sulfonamides. A series of 1-arylsulfonyl-4-Phenylpiperazine (3a-n) geared up by the reaction of 1-phenylpiperazine (1) and different (un)substituted alkyl/arylsulfonyl chlorides (2a-n), under defined pH control using water as a reaction medium. The synthesized molecules were characterized by 1H-NMR, 13C-NMR, IR and EI-MS spectral data. The enzyme inhibition study was carried on α-glucosidase, lipoxygenase (LOX), acetyl cholinesterase (AChE) and butyryl cholinesterase (BChE) enzymes supported by docking simulation studies and the IC50 values rendered a few of the synthesized molecules as moderate inhibitors of these enzymes where, the compound 3e exhibited comparatively better potency against α-glucosidase enzyme. The synthesized compounds showed weak or no inhibition against LOX, AChE and BChE enzymes.
    Matched MeSH terms: Structure-Activity Relationship
  13. Ahmed QU, Ali AHM, Mukhtar S, Alsharif MA, Parveen H, Sabere ASM, et al.
    Molecules, 2020 Nov 24;25(23).
    PMID: 33255206 DOI: 10.3390/molecules25235491
    In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
    Matched MeSH terms: Structure-Activity Relationship
  14. Taha M, Rahim F, Zaman K, Anouar EH, Uddin N, Nawaz F, et al.
    J Biomol Struct Dyn, 2023 Mar;41(5):1649-1664.
    PMID: 34989316 DOI: 10.1080/07391102.2021.2023640
    We have synthesized benzo[d]oxazole derivatives (1-21) through a multistep reaction. Alteration in the structure of derivatives was brought in the last step via using various substituted aromatic aldehydes. In search of an anti-Alzheimer agent, all derivatives were evaluated against acetylcholinesterase and butyrylcholinesterase enzyme under positive control of standard drug donepezil (IC50 = 0.016 ± 0.12 and 4.5 ± 0.11 µM) respectively. In case of acetylcholinesterase enzyme inhibition, derivatives 8, 9 and 18 (IC50 = 0.50 ± 0.01, 0.90 ± 0.05 and 0.3 ± 0.05 µM) showed very promising inhibitory potentials. While in case of butyrylcholinesterase enzyme inhibition, most of the derivatives like 6, 8, 9, 13, 15, 18 and 19 (IC50 = 2.70 ± 0.10, 2.60 ± 0.10, 2.20 ± 0.10, 4.25 ± 0.10, 3.30 ± 0.10, 0.96 ± 0.05 and 3.20 ± 0.10 µM) displayed better inhibitory potential than donepezil. Moreover, derivative 18 is the most potent one among the series in both inhibitions. The binding interaction of derivatives with the active gorge of the enzyme was confirmed via a docking study. Furthermore, the binding interaction between derivatives and the active site of enzymes was correlated through the SAR study. Structures of all derivatives were confirmed through spectroscopic techniques such as 1H-NMR, 13C-NMR and HREI-MS, respectively.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Structure-Activity Relationship
  15. Aljohani G, Said MA, Lentz D, Basar N, Albar A, Alraqa SY, et al.
    Molecules, 2019 Feb 07;24(3).
    PMID: 30736403 DOI: 10.3390/molecules24030590
    An efficient microwave-assisted one-step synthetic route toward Mannich bases is developed from 4-hydroxyacetophenone and different secondary amines in quantitative yields, via a regioselective substitution reaction. The reaction takes a short time and is non-catalyzed and reproducible on a gram scale. The environmentally benign methodology provides a novel alternative, to the conventional methodologies, for the synthesis of mono- and disubstituted Mannich bases of 4-hydroxyacetophenone. All compounds were well-characterized by FT-IR, ¹H NMR, 13C NMR, and mass spectrometry. The structures of 1-{4-hydroxy-3-[(morpholin-4-yl)methyl]phenyl}ethan-1-one (2a) and 1-{4-hydroxy-3-[(pyrrolidin-1-yl)methyl]phenyl}ethan-1-one (3a) were determined by single crystal X-ray crystallography. Compound 2a and 3a crystallize in monoclinic, P2₁/n, and orthorhombic, Pbca, respectively. The most characteristic features of the molecular structure of 2a is that the morpholine fragment adopts a chair conformation with strong intramolecular hydrogen bonding. Compound 3a exhibits intermolecular hydrogen bonding, too. Furthermore, the computed Hirshfeld surface analysis confirms H-bonds and π⁻π stack interactions obtained by XRD packing analyses.
    Matched MeSH terms: Structure-Activity Relationship
  16. Ali F, Khan KM, Salar U, Iqbal S, Taha M, Ismail NH, et al.
    Bioorg Med Chem, 2016 08 15;24(16):3624-35.
    PMID: 27325448 DOI: 10.1016/j.bmc.2016.06.002
    Dihydropyrimidones 1-37 were synthesized via a 'one-pot' three component reaction according to well-known Biginelli reaction by utilizing Cu(NO3)2·3H2O as catalyst, and screened for their in vitro β-glucuronidase inhibitory activity. It is worth mentioning that amongst the active molecules, compounds 8 (IC50=28.16±.056μM), 9 (IC50=18.16±0.41μM), 10 (IC50=22.14±0.43μM), 13 (IC50=34.16±0.65μM), 14 (IC50=17.60±0.35μM), 15 (IC50=15.19±0.30μM), 16 (IC50=27.16±0.48μM), 17 (IC50=48.16±1.06μM), 22 (IC50=40.16±0.85μM), 23 (IC50=44.16±0.86μM), 24 (IC50=47.16±0.92μM), 25 (IC50=18.19±0.34μM), 26 (IC50=33.14±0.68μM), 27 (IC50=44.16±0.94μM), 28 (IC50=24.16±0.50μM), 29 (IC50=34.24±0.47μM), 31 (IC50=14.11±0.21μM) and 32 (IC50=9.38±0.15μM) found to be more potent than the standard d-saccharic acid 1,4-lactone (IC50=48.4±1.25μM). Molecular docking study was conducted to establish the structure-activity relationship (SAR) which demonstrated that a number of structural features of dihydropyrimidone derivatives were involved to exhibit the inhibitory potential. All compounds were characterized by spectroscopic techniques such as (1)H, (13)C NMR, EIMS and HREI-MS.
    Matched MeSH terms: Structure-Activity Relationship
  17. Ibrahim MY, Hashim NM, Mohan S, Abdulla MA, Kamalidehghan B, Ghaderian M, et al.
    Drug Des Devel Ther, 2014;8:1629-47.
    PMID: 25302018 DOI: 10.2147/DDDT.S66105
    Cratoxylum arborescens is an equatorial plant belonging to the family Guttiferae. In the current study, α-Mangostin (AM) was isolated and its cell death mechanism was studied. HCS was undertaken to detect the nuclear condensation, mitochondrial membrane potential, cell permeability, and the release of cytochrome c. An investigation for reactive oxygen species formation was conducted using fluorescent analysis. To determine the mechanism of cell death, human apoptosis proteome profiler assay was conducted. In addition, using immunofluorescence and immunoblotting, the levels of Bcl-2-associated X protein (Bax) and B-cell lymphoma (Bcl)-2 proteins were also tested. Caspaces such as 3/7, 8, and 9 were assessed during treatment. Using HCS and Western blot, the contribution of nuclear factor kappa-B (NF-κB) was investigated. AM had showed a selective cytotoxicity toward the cancer cells with no toxicity toward the normal cells even at 30 μg/mL, thereby indicating that AM has the attributes to induce cell death in tumor cells. The treatment of MCF-7 cells with AM prompted apoptosis with cell death-transducing signals. This regulated the mitochondrial membrane potential by down-regulation of Bcl-2 and up-regulation of Bax, thereby causing the release of cytochrome c from the mitochondria into the cytosol. The liberation of cytochrome c activated caspace-9, which, in turn, activated the downstream executioner caspace-3/7 with the cleaved poly (ADP-ribose) polymerase protein, thereby leading to apoptotic alterations. Increase of caspace 8 had showed the involvement of an extrinsic pathway. This type of apoptosis was suggested to occur through both extrinsic and intrinsic pathways and prevention of translocation of NF-κB from the cytoplasm to the nucleus. Our results revealed AM prompt apoptosis of MCF-7 cells through NF-κB, Bax/Bcl-2 and heat shock protein 70 modulation with the contribution of caspaces. Moreover, ingestion of AM at (30 and 60 mg/kg) significantly reduced tumor size in an animal model of breast cancer. Our results suggest that AM is a potentially useful agent for the treatment of breast cancer.
    Matched MeSH terms: Structure-Activity Relationship
  18. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Jun;30(6):403-416.
    PMID: 31122062 DOI: 10.1080/1062936X.2019.1607899
    Time-varying binary gravitational search algorithm (TVBGSA) is proposed for predicting antidiabetic activity of 134 dipeptidyl peptidase-IV (DPP-IV) inhibitors. To improve the performance of the binary gravitational search algorithm (BGSA) method, we propose a dynamic time-varying transfer function. A new control parameter,
    μ
    , is added in the original transfer function as a time-varying variable. The TVBGSA-based model was internally and externally validated based on

    Q


    int


    2

    ,

    Q



    L
    G
    O



    2

    ,

    Q



    B
    o
    o
    t



    2

    ,


    M
    S






    E





    t
    r
    a
    i
    n





    ,

    Q



    e
    x
    t



    2

    ,


    M
    S






    E





    t
    e
    s
    t





    , Y-randomization test, and applicability domain evaluation. The validation results indicate that the proposed TVBGSA model is robust and not due to chance correlation. The descriptor selection and prediction performance of TVBGSA outperform BGSA method. TVBGSA shows higher

    Q


    int


    2

    of 0.957,

    Q



    L
    G
    O



    2

    of 0.951,

    Q



    B
    o
    o
    t



    2

    of 0.954,

    Q



    e
    x
    t



    2

    of 0.938, and lower


    M
    S






    E





    t
    r
    a
    i
    n





    and


    M
    S






    E





    t
    e
    s
    t





    compared to obtained results by BGSA, indicating the best prediction performance of the proposed TVBGSA model. The results clearly reveal that the proposed TVBGSA method is useful for constructing reliable and robust QSARs for predicting antidiabetic activity of DPP-IV inhibitors prior to designing and experimental synthesizing of new DPP-IV inhibitors.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  19. Al-Fakih AM, Algamal ZY, Lee MH, Aziz M, Ali HTM
    SAR QSAR Environ Res, 2019 Feb;30(2):131-143.
    PMID: 30734580 DOI: 10.1080/1062936X.2019.1568298
    An improved binary differential search (improved BDS) algorithm is proposed for QSAR classification of diverse series of antimicrobial compounds against Candida albicans inhibitors. The transfer functions is the most important component of the BDS algorithm, and converts continuous values of the donor into discrete values. In this paper, the eight types of transfer functions are investigated to verify their efficiency in improving BDS algorithm performance in QSAR classification. The performance was evaluated using three metrics: classification accuracy (CA), geometric mean of sensitivity and specificity (G-mean), and area under the curve. The Kruskal-Wallis test was also applied to show the statistical differences between the functions. Two functions, S1 and V4, show the best classification achievement, with a slightly better performance of V4 than S1. The V4 function takes the lowest iterations and selects the fewest descriptors. In addition, the V4 function yields the best CA and G-mean of 98.07% and 0.977%, respectively. The results prove that the V4 transfer function significantly improves the performance of the original BDS.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
  20. Algamal ZY, Qasim MK, Lee MH, Ali HTM
    SAR QSAR Environ Res, 2020 Nov;31(11):803-814.
    PMID: 32938208 DOI: 10.1080/1062936X.2020.1818616
    High-dimensionality is one of the major problems which affect the quality of the quantitative structure-activity relationship (QSAR) modelling. Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. In this paper, four new transfer functions were adapted to improve the exploration and exploitation capability of the BGOA in QSAR modelling of influenza A viruses (H1N1). The QSAR model with these new quadratic transfer functions was internally and externally validated based on MSEtrain, Y-randomization test, MSEtest, and the applicability domain (AD). The validation results indicate that the model is robust and not due to chance correlation. In addition, the results indicate that the descriptor selection and prediction performance of the QSAR model for training dataset outperform the other S-shaped and V-shaped transfer functions. QSAR model using quadratic transfer function shows the lowest MSEtrain. For the test dataset, proposed QSAR model shows lower value of MSEtest compared with the other methods, indicating its higher predictive ability. In conclusion, the results reveal that the proposed QSAR model is an efficient approach for modelling high-dimensional QSAR models and it is useful for the estimation of IC50 values of neuraminidase inhibitors that have not been experimentally tested.
    Matched MeSH terms: Quantitative Structure-Activity Relationship*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links