Displaying publications 21 - 40 of 378 in total

Abstract:
Sort:
  1. Naji GA, Omar RA, Yahya R
    J Mech Behav Biomed Mater, 2017 03;67:135-143.
    PMID: 28006713 DOI: 10.1016/j.jmbbm.2016.12.007
    In all-ceramic systems, a high incidence of veneer chip-off has been reported in clinical studies. Coefficient of thermal expansion (CTE) behaviour is one of the factors that may increase residual stress in the interface and influence the veneer/core bond strength. Therefore, this study aimed to evaluate the effect of sodalite zeolite-infiltration on the CTE behaviour and bond strength of different all-ceramic prostheses. The case-study groups were synthesized sodalite zeolite-infiltrated alumina (IA-SOD) and synthesized sodalite zeolite-infiltrated zirconia-toughened alumina (ZTA) (IZ-SOD), while the control groups were glass-infiltrated alumina (IA-glass) and glass-infiltrated ZTA (IZ-glass). Forty cylindrical-shaped samples measuring 5 mm in diameter and 10 mm in height were tested for CTE using a thermo-mechanical analyser machine, and forty disc-shaped ceramic samples measuring 12 mm in diameter and 1.2 ± 0.2 mm in thickness were prepared using specially designed stainless steel split mould and veneered by cylinder-shaped (2 mm high × 2 mm diameter) low-fusing porcelain (Vita VM7). The veneer/core samples were sintered and tested for shear bond strength using a high precision universal testing machine. Scanning electron microscope, stereo microscope, atomic force microscope, and energy-dispersive X-ray spectroscopy were used to investigate the structural characteristics of samples at the fracture surface. The collected data were analyzed with a one-way ANOVA and Tukey HSD test (α=.05). IZ-SOD revealed highest CTE and shear bond strength values, while the IA-glass revealed the lowest values than the other groups. There was no significant difference in CTE and bond strength among IZ-SOD, IA-SOD and IZ-glass samples (p>0.05). The experimental SOD zeolite-infiltrated samples revealed higher CTE mismatch and bond strength along with a more favourable mode of failure than did the commercial glass-infiltrated samples. Sandblast technique is considered as effective conditioning procedure for enhancing the surface roughness of SOD zeolite-infiltrated frameworks which subsequently improving the bond strength.
    Matched MeSH terms: Surface Properties
  2. Ong J, Yap AU, Abdul Aziz A, Yahya NA
    Oper Dent, 2023 Jan 01;48(1):90-97.
    PMID: 36445974 DOI: 10.2341/21-202-L
    This study investigated the effects of environmental pH on the flexural properties of ion-releasing restorative materials (IRMs), including giomer (Beautifil-Bulk Restorative - BB), alkasite (Cention N - CN), bioactive composite (Activa - AB) and resin-modified glass ionomer (Riva Light Cure -RV) restoratives. A bio-inert resin-based composite (Filtek Bulk-fill Posterior - FB) served as the control. Stainless steel molds were used to fabricate 40 beam-shaped specimens (12mm × 2mm × 2mm) for each material. The specimens were finished, measured, and randomly distributed into four groups (n=10) and immersed in aqueous solutions of pH 3.0, pH 5.0, pH 6.8, and pH 10.0 at 37°C for 28 days. Specimens were then subjected to a uniaxial three-point bending flexural test with a load cell of 5 KN and a fixed deformation rate of 0.5 mm/min until fracture occurred. Flexural modulus and strength were statistically analyzed using analysis of variance/Dunnet T3's test (p=0.05). Mean flexural modulus varied from (2.40±0.41 to 9.65±1.21 GPa), while mean flexural strength ranged from (21.56±2.78 to 163.86±13.13 MPa). Significant differences in flexural properties were observed among the various pH values and materials. All materials immersed in artificial saliva (pH 6.8) presented the highest flexural properties, except AB. The flexural strength of AB was significantly better when exposed to acidic environments. FB had better flexural properties than IRMs after exposure to a range of environmental pH values.
    Matched MeSH terms: Surface Properties
  3. Rozaini MNH, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, et al.
    Talanta, 2019 Jul 01;199:522-531.
    PMID: 30952293 DOI: 10.1016/j.talanta.2019.02.096
    Molecularly imprinted silica gel (MISG) was incorporated through dispersion in agarose polymer matrix to form a mixed matrix membrane (MMM) and was applied for the determination of three sulfonamide antibiotic compounds (i.e. sulfamethoxazole (SMX), sulfamonomethoxine (SMM), and sulfadiazine (SDZ)) from environmental water samples. Several important microextraction conditions, such as type of desorption solvent, extraction time, amount of sorbent, sample volume, pH, and effect of desorption time, were comprehensively optimized. A preconcentration factors of ≥ 20 was achieved by the extraction of 12.5 mL of water samples using the developed method. This microextraction-HPLC method demonstrated good linearity (1-500 μg L-1) with a coefficient of determination (R2) of 0.9959-0.9999, low limits of detection (0.06-0.17 μg L-1) and limits of quantification (0.20-0.56 μg L-1), good analyte recoveries (80-96%), and acceptable relative standard deviations (< 10%) under the optimized conditions. The method is systematically compared to those reported in the literature.
    Matched MeSH terms: Surface Properties
  4. Hussein MZ, Nasir NM, Yahaya AH
    J Nanosci Nanotechnol, 2008 Nov;8(11):5921-8.
    PMID: 19198327
    Metanilate-layered double hydroxide nanohybrid compound was synthesized for controlled release purposes through co-precipitation method of the metal cations and organic anion. The effect of various divalent metal cations (M2+), namely Zn2+, Mg2+ and Ca2+ on the formation of metanilate-LDH nanohybrids, in which metanilate anion was intercalated into three different layered double hydroxide (LDH) systems; Zn-Al, Mg-Al and Ca-Al were investigated. The syntheses were carried out with M2+ to Al3+ initial molar ratio, R of 4. The pH of the mother liquor was maintained at pH 7.5 and 10 during the synthesis, and the resulting mixture was aged at around 70 degrees C for about 18 h. The intercalation of metanilate anion into the host was found to be strongly influenced by the M2+ that formed the inorganic metal hydroxide layers. Under our experimental condition, the formation of the nanohybrid materials was found to be more feasible for the Zn-Al than for the other two systems, in which the former showed well-ordered layered organic-inorganic nanohybrid structure with good crystallinity. Intercalation is confirmed by the expansion of the interlayer spacing to about 15-17 A when metanilate was introduced into the interlamellae of Zn-Al LDHs. In addition, CHNS and FTIR analyses also support that metanilate anion has been successfully intercalated into the interlamellae of the inorganic LDH. Apart from M2+, this study also shows that the initial pH of the mother liquor plays an important role in determining the physicochemical properties of the resulting nanohybrids, especially the mole fraction of the Zn2+ substituted by the Al3+ ion in the LDH inorganic sheets which in turn controlled the loading percentage of the organic anion, surface properties and the true density. Preliminary study shows that LDH can be used to host beneficial guests, active agent with controlled release capability of the guests. Generally the overall process is governed by pseudo second order kinetic but for the first 180 min, the release process can be slightly better described by parabolic diffusion than the other models.
    Matched MeSH terms: Surface Properties
  5. Gopinath SCB, Xuan S
    Biotechnol Appl Biochem, 2021 Jun;68(3):554-559.
    PMID: 32460382 DOI: 10.1002/bab.1961
    One of the current issues with thyroid tumor is early diagnosis as it makes the higher possibility of curing. This research was focused to detect and quantify the level of specific target sequence complementation of miR-222 with capture DNA sequence on interdigitated electrode (IDE) sensor. The aluminum electrode with the gap and finger sizes of 10 µm was fabricated on silicon wafer, further the surface was amine-functionalized for accommodating carboxylated-DNA probe. With DNA-target RNA complementation, the detection limit was attained to be 1 fM as estimated by a linear regression analysis [y = 1.5325x - 2.1171 R² = 0.9065] and the sensitivity was at the similar level. Current responses were higher by increasing the target RNA sequence concentrations. Control experiments with mismatched/noncomplementary sequences were failed to complement the capture DNA sequence immobilized on IDE, indicating the specific target validation. This research helps diagnosing and identifying the progression with thyroid tumor and miRNA being a potential "marker" in atypia diagnosis.
    Matched MeSH terms: Surface Properties
  6. Chen D, Xia X, Wong TW, Bai H, Behl M, Zhao Q, et al.
    Macromol Rapid Commun, 2017 Apr;38(7).
    PMID: 28196300 DOI: 10.1002/marc.201600746
    Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non-omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent-modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f ) and recovery ratio (R r ) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
    Matched MeSH terms: Surface Properties
  7. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
    Matched MeSH terms: Surface Properties
  8. Majid AM, Wong TW
    Int J Pharm, 2013 May 1;448(1):150-8.
    PMID: 23506957 DOI: 10.1016/j.ijpharm.2013.03.008
    The conventional powder flow testers require sample volumes larger than 40g and are met with experimental hiccups due to powder cohesion. This study designed a gas-pressurized dispersive powder flow tester where a high velocity air is used to disaggregate powder (9g) and eliminate its cohesion. The pressurized gas entrained solid particles leaving an orifice where the distance, surface area, width and weight of particle dispersion thereafter are determined as flow index. The flow indices of seven lactose grades with varying size, size distribution, shape, morphology, bulk and tapped densities characteristics were examined. They were compared against Hausner ratio and Carr's index parameters of the same powder mass. Both distance and surface area attributes of particle dispersion had significant negative correlations with Hausner ratio and Carr's index values of lactose. The distance, surface area and ease of particle dispersion varied proportionately with circular equivalent, surface weighted mean and volume weighted mean diameters of lactose, and inversely related to their specific surface area and elongation characteristics. Unlike insensitive Hausner ratio and Carr's index, an increase in elongation property of lactose particles was detectable through reduced powder weight loss from gas-pressurized dispersion as a result of susceptible particle blockage at orifice. The gas-pressurized dispersive tester is a useful alternative flowability measurement device for low volume and cohesive powder.
    Matched MeSH terms: Surface Properties
  9. Yung LC, Fei CC, Mandeep J, Binti Abdullah H, Wee LK
    PLoS One, 2014;9(5):e97484.
    PMID: 24830317 DOI: 10.1371/journal.pone.0097484
    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.
    Matched MeSH terms: Surface Properties
  10. Tuan Noor Maznee TI, Hazimah AH, Wan Zin WY
    J Oleo Sci, 2012;61(5):297-302.
    PMID: 22531058
    Optimization of the enzymatic synthesis of palm fatty hydrazide by the response surface methodology (RSM) was conducted using the Design-Expert 6 software. The palm fatty hydrazide was synthesized from refined, bleached and deodorized palm olein (RBDPOo) and neutralized hydrazine monohydrate in the presence of Rhizomucor miehei lipase, Lipozyme RMIM, an immobilized lipase in n-hexane. The reaction conditions such as the percentage of enzyme, reaction temperature, stirring speed and reaction time were selected as independent variables or studied factors, while the amount of crude palm fatty hydrazide obtained was selected as a dependent variable or response. The study was conducted using a central composite design (CCD) at five coded levels and the experimental data were analyzed using a quadratic model. The analysis of variance (ANOVA) indicates that the model was significant at 95% confidence level with Prob>F of 0.0033, where the regression coefficient value, R² was 0.8415 and lack-of-fit of 0.0984. A percentage of enzyme of 6%, a reaction temperature of 40°C, a stirring speed of 350 rpm and a reaction time of 18 h were found to be the optimum conditions for the conversion of RBDPOo into palm fatty hydrazide.
    Matched MeSH terms: Surface Properties
  11. Guo S, Li Y, Li R, Zhang P, Wang Y, Gopinath SCB, et al.
    Biotechnol Appl Biochem, 2020 May;67(3):383-388.
    PMID: 31876964 DOI: 10.1002/bab.1877
    Abdominal aortic aneurysm (AAA) is a serious, life-threatening vascular disease that presents as an enlarged area of the aorta, which is the main artery that carries blood away from the heart. AAA may occur at any location in the aorta, but it is mainly found in the abdominal region. A ruptured AAA causes serious health issues, including death. Traditional imaging techniques, such as computed tomography angiogram, magnetic resonance imaging, and ultrasound sonography, have been used to identify AAAs. Circulating biomarkers have recently become attractive for diagnosing AAAs due to their cost-effectiveness compared to imaging. Insulin-like growth factor 1 (IGF-1), a secreted hormone vital for human atherosclerotic plaque stability, has been found to be an efficient biomarker for AAA identification. In this report, immunosensing was performed by using an InterDigitated electrode (IDE) sensor to detect circulating levels of IGF-1. The detection limit of IGF-1 was found to be 100 fM with this sensor. Moreover, related protein controls (IGF-2 and IGFBP3) were not detected with the same antibody, indicating selective IGF-1 detection. Thus, immunosensing by using an IDE sensor may help to effectively diagnose AAAs and represents a basic platform for further development.
    Matched MeSH terms: Surface Properties
  12. Mydin RBSMN, Mahboob A, Sreekantan S, Saharudin KA, Qazem EQ, Hazan R, et al.
    Biotechnol Appl Biochem, 2023 Jun;70(3):1072-1084.
    PMID: 36567620 DOI: 10.1002/bab.2421
    In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.
    Matched MeSH terms: Surface Properties
  13. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
    Matched MeSH terms: Surface Properties
  14. Onoja E, Chandren S, Razak FIA, Wahab RA
    J Biotechnol, 2018 Oct 10;283:81-96.
    PMID: 30063951 DOI: 10.1016/j.jbiotec.2018.07.036
    The study reports the preparation of a composite consisting of magnetite coated with nanosilica extracted from oil palm leaves (OPL) ash as nanosupports for immobilization of Candida rugosa lipase (CRL) and its application for the synthesis of butyl butyrate. Results of immobilization parameters showed that ∼ 80% of CRL (84.5 mg) initially offered was immobilized onto the surface of the nanosupports to yield a maximum protein loading and specific activity of 67.5 ± 0.72 mg/g and 320.8 ± 0.42 U/g of support, respectively. Surface topography, morphology as well as information on surface composition obtained by Raman spectroscopy, atomic force microscopy, field emission scanning electron microscopy and transmission electron microscopy showed that CRL was successfully immobilized onto the nanosupports, affirming its biocompatibility. Under optimal conditions (3.5 mg/mL protein loading, at 45 ℃, 3 h and molar ratio 2:1 (1-butanol:n-butyric acid) the CRL/Gl-A-SiO2-MNPs gave a maximum yield of 94 ± 0.24% butyl butyrate as compared to 84 ± 0.32% in the lyophilized CRL. CRL/Gl-A-SiO2-MNPs showed an extended operational stability, retaining 50% of its initial activity after 17 consecutive esterification cycles. The results indicated that OPL derived nanosilica coated on magnetite can potentially be employed as carrier for lipase immobilization in replacement of the non-renewable conventionalsilica sources.
    Matched MeSH terms: Surface Properties
  15. Yam WK, Wahab HA
    J Chem Inf Model, 2009 Jun;49(6):1558-67.
    PMID: 19469526 DOI: 10.1021/ci8003495
    Erythromycin A and roxithromycin are clinically important macrolide antibiotics that selectively act on the bacterial 50S large ribosomal subunit to inhibit bacteria's protein elongation process by blocking the exit tunnel for the nascent peptide away from ribosome. The detailed molecular mechanism of macrolide binding is yet to be elucidated as it is currently known to the most general idea only. In this study, molecular dynamics (MD) simulation was employed to study their interaction at the molecular level, and the binding free energies for both systems were calculated using the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The calculated binding free energies for both systems were slightly overestimated compared to the experimental values, but individual energy terms enabled better understanding in the binding for both systems. Decomposition of results into residue basis was able to show the contribution of each residue at the binding pocket toward the binding affinity of macrolides and hence identified several key interacting residues that were in agreement with previous experimental and computational data. Results also indicated the contributions from van der Waals are more important and significant than electrostatic contribution in the binding of macrolides to the binding pocket. The findings from this study are expected to contribute to the understanding of a detailed mechanism of action in a quantitative matter and thus assisting in the development of a safer macrolide antibiotic.
    Matched MeSH terms: Surface Properties
  16. Sin LT, Bee ST, Tee TT, Kadhum AA, Ma C, Rahmat AR, et al.
    Carbohydr Polym, 2013 Nov 6;98(2):1281-7.
    PMID: 24053804 DOI: 10.1016/j.carbpol.2013.07.069
    In this study, the interactions of α-tocopherol (α-TOH) in PVOH-starch blends were investigated. α-TOH is an interacting agent possesses a unique molecule of polar chroman "head" and non-polar phytyl "tail" which can improve surface interaction of PVOH and starch. It showed favorable results when blending PVOH-starch with α-TOH, where the highest tensile strengths were achieved at 60 wt.% PVOH-starch blend for 1 phr α-TOH and 50 wt.% for 3 phr α-TOH, respectively. This due to the formation of miscible PVOH-starch as resulted by the compatibilizing effect of α-TOH. Moreover, the enthalpy of melting (ΔHm) of 60 wt.% PVOH-starch and 50 wt.% PVOH-starch added with 1 and 3 phr α-TOH respectively were higher than ΔHm of the neat PVOH-starch blends. The thermogravimetry analysis also showed that α-TOH can be used as thermal stabilizer to reduce weight losses at elevated temperature. The surface morphologies of the compatible blends formed large portion of continuous phase where the starch granules interacted well with α-TOH by acting as compatilizer to reduce surface energy of starch for embedment into PVOH matrix.
    Matched MeSH terms: Surface Properties
  17. Chai WL, Moharamzadeh K, Brook IM, Van Noort R
    Biotech Histochem, 2011 Aug;86(4):242-54.
    PMID: 20392135 DOI: 10.3109/10520291003707916
    The success of dental implant treatment depends on the healing of both hard and soft tissues. While osseointegration provides initial success, the biological seal of the peri-implant soft tissue is crucial for maintaining the long term success of implants. Most studies of the biological seal of peri-implant tissues are based on animal or monolayer cell culture models. To understand the mechanisms of soft tissue attachment and the factors affecting the integrity of the soft tissue around the implants, it is essential to obtain good quality histological sections for microscopic examination. The nature of the specimens, however, which consist of both metal implant and soft peri-implant tissues, poses difficulties in preparing the specimens for histomorphometric analysis of the implant-soft tissue interface. We review various methods that have been used for the implant-tissue interface investigation with particular focus on the soft tissue. The different methods are classified and the advantages and limitations of the different techniques are highlighted.
    Matched MeSH terms: Surface Properties
  18. Kannaiyan K, Rakshit P, Bhat MPS, Sadasiva SKK, Babu SC, Ummer H
    J Contemp Dent Pract, 2023 Nov 01;24(11):891-894.
    PMID: 38238278 DOI: 10.5005/jp-journals-10024-3563
    AIM: The current study aimed to determine the impact of three different disinfectants on the surface roughness and color stability of heat-cure acrylic denture material.

    MATERIALS AND METHODS: Using a stainless-steel mold, disc-shaped wax patterns with dimensions of 10 mm in diameter and 2 mm thick (in accordance with ADA Specification No. 12) were created and prepared for a total of 75 acrylic samples. Dimensions of all 75 acrylic samples were checked with a digital Vernier caliper. About 25 samples of denture base material were immersed in three different chemical disinfectants: Group I: immersed in chlorhexidine gluconate solution, group II: immersed in sodium hypochlorite solution, and group III: immersed in glutaraldehyde solution. All samples were scrubbed daily for 1 minute with the appropriate disinfectant and submerged for 10 minutes in the same disinfectant. Between disinfection cycles, samples were kept in distilled water at 37°C. Color stability was measured using a reflection spectrophotometer. Surface roughness values were measured by a profilometer at baseline following 15 days and 30 days.

    RESULTS: After 15 days, the color stability was better in chlorhexidine gluconate solution group (4.88 ± 0.24) than sodium hypochlorite solution (4.74 ± 0.18) and glutaraldehyde solution group (4.46 ± 0.16). The mean surface roughness was less in glutaraldehyde solution group (2.10 ± 0.19), followed by chlorhexidine gluconate solution group (2.48 ± 0.09) and sodium hypochlorite solution group (2.64 ± 0.03). After 30 days, the color stability was significantly better in chlorhexidine gluconate solution group (4.40 ± 0.02), followed by sodium hypochlorite solution (4.06 ± 0.16) and glutaraldehyde solution group (3.87 ± 0.17). The mean surface roughness was significantly lesser in glutaraldehyde solution group (2.41 ± 0.14), followed by chlorhexidine gluconate solution group (2.94 ± 0.08) and sodium hypochlorite solution group (3.02 ± 0.13).

    CONCLUSION: In conclusion, the color stability was significantly better in chlorhexidine gluconate solution group than sodium hypochlorite solution and glutaraldehyde solution group. But the surface roughness was significantly lesser in the glutaraldehyde solution group, followed by the chlorhexidine gluconate and sodium hypochlorite solution group.

    CLINICAL SIGNIFICANCE: The maintenance of the prosthesis requires the use of a denture disinfectant; therefore, it is crucial to select one that is effective but would not have a negative impact on the denture base resin's inherent characteristics over time. How to cite this article: Kannaiyan K, Rakshit P, Bhat MPS, et al. Effect of Different Disinfecting Agents on Surface Roughness and Color Stability of Heat-cure Acrylic Denture Material: An In Vitro Study. J Contemp Dent Pract 2023;24(11):891-894.

    Matched MeSH terms: Surface Properties
  19. Rahman NJA, Ramli A, Jumbri K, Uemura Y
    Sci Rep, 2019 11 07;9(1):16223.
    PMID: 31700157 DOI: 10.1038/s41598-019-52771-9
    Bifunctional heterogeneous catalysts have a great potential to overcome the shortcomings of homogeneous and enzymatic catalysts and simplify the biodiesel production processes using low-grade, high-free-fatty-acid feedstock. In this study, we developed ZrO2-based bifunctional heterogeneous catalysts for simultaneous esterification and transesterification of microalgae to biodiesel. To avoid the disadvantage of the low surface area of ZrO2, the catalysts were prepared via a surfactant-assisted sol-gel method, followed by hydrothermal treatments. The response surface methodology central composite design was employed to investigate various factors, like the surfactant/Zr molar ratio, pH, aging time, and temperature on the ZrO2 surface area. The data were statistically analyzed to predict the optimal combination of factors, and further experiments were conducted for verification. Bi2O3 was supported on ZrO2 via the incipient wetness impregnation method. The catalysts were characterized by a variety of techniques, which disclosed that the surfactant-assisted ZrO2 nanoparticles possess higher surface area, better acid-base properties, and well-formed pore structures than bare ZrO2. The highest yield of fatty acid methyl esters (73.21%) was achieved using Bi2O3/ZrO2(CTAB), and the catalytic activity of the developed catalysts was linearly correlated with the total densities of the acidic and basic sites. The mechanism of the simultaneous reactions was also discussed.
    Matched MeSH terms: Surface Properties
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links