Displaying publications 21 - 40 of 72 in total

Abstract:
Sort:
  1. Nhari RM, Ismail A, Che Man YB
    J Food Sci, 2012 Jan;77(1):R42-6.
    PMID: 22260124 DOI: 10.1111/j.1750-3841.2011.02514.x
    Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established.
    Matched MeSH terms: Sus scrofa
  2. Fooks A
    IDrugs, 1999 Nov;2(11):1136-8.
    PMID: 16113984
    The main theme of this conference was understanding the complex biology of viruses in order to design appropriate vaccines for human use. The use of both plant and animal viruses as vectors for delivery vehicles was widely discussed. These engineered viruses could be delivered in oral formulations or, in the case of plant viruses, grown in the plant host and used as edible vaccines. New technologies for producing highly attenuated vaccines through the use of 'molecular clone technologies' were shown to be highly efficacious in animal models. While new vaccine candidates are being generated against many established viral diseases, there remains a threat from HIV, virulent strains of influenza and newly emerging viruses for which no vaccines are currently available. Emerging viruses, such as the Hendra-like virus called Nipah, which emerged in pig herds in Malaysia and Singapore in 1998, has posed a severe economic threat to the region. The subsequent spread of Nipah virus to humans and the threat of epidemic spread was evidence that virologists should not become complacent.
    Matched MeSH terms: Sus scrofa
  3. Uni S, Fukuda M, Agatsuma T, Bain O, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2015 Dec;64(6):493-502.
    PMID: 26165205 DOI: 10.1016/j.parint.2015.07.001
    Human zoonotic onchocercosis is caused by Onchocerca dewittei japonica, parasitic in wild boars (Sus scrofa leucomystax) in Japan. Previously, microfilariae longer than those of Onchocerca dewittei japonica were observed in skin snips from wild boars during the study of O. dewittei japonica. Moreover, the third-stage larvae (L3) of these longer microfilariae were obtained from the blackfly Simulium bidentatum after experimental injections. Based on morphometric and molecular studies, similar L3 were found in blackflies during fieldwork in Oita, Japan. However, except for O. dewittei japonica, adult worms of Onchocerca have not been found in wild boars. In this study, we discovered adult females of a novel Onchocerca species in the skin of a wild boar in Oita, and named it Onchocerca takaokai n. sp. Females of this new species had longer microfilariae and differed from O. dewittei japonica in terms of their morphological characteristics and parasitic location. The molecular characteristics of the cytochrome c oxidase subunit 1 and 12S rRNA genes of the new species were identical to those of the longer microfilariae and L3 previously detected, but they differed from those of O. dewittei japonica at the species level. However, both species indicated a close affinity among their congeners and Onchocerca ramachandrini, parasitic in the warthog in Africa, was basal in the Suidae cluster of the 12S rRNA tree.
    Matched MeSH terms: Sus scrofa
  4. Aina GQ, Erwanto Y, Hossain M, Johan MR, Ali ME, Rohman A
    J Adv Vet Anim Res, 2019 Sep;6(3):300-307.
    PMID: 31583226 DOI: 10.5455/javar.2019.f348
    Objective: The objective of this study was to employ real-time or quantitative polymerase chain reaction (q-PCR) using novel species specific primer (SSP) targeting on mitochondrial cytochrome-b of wild boar species (CYTBWB2-wb) gene for the identification of non-halal meat of wild boar meat (WBM) in meatball products.

    Materials and Methods: The novel SSP of CYTBWB2-wb was designed by our group using PRIMERQUEST and NCBI software. DNA was extracted using propanol-chloroform-isoamyl alcohol method. The designed SSP was further subjected for validation protocols using DNA isolated from fresh meat and from meatball, which include specificity test, determination of efficiency, limit of detection and repeatability, and application of developed method for analysis of commercially meatball samples.

    Results: The results showed that CYTBWB2-wb was specific to wild boar species against other animal species with optimized annealing temperature of 59°C. The efficiency of q-PCR obtained was 91.9% which is acceptable according to the Codex Allimentarius Commission (2010). DNA, with as low as 5 pg/μl, could be detected using q-PCR with primer of CYTBWB2-wb. The developed method was also used for DNA analysis extracted from meatball samples commercially available.

    Conclusion: q-PCR using CYTBWB2-wb primers targeting on mitochondrial cytochrome-b gene (forward: CGG TTC CCT CTT AGG CAT TT; Reverse: GGA TGA ACA GGC AGA TGA AGA) can be fruitfully used for the analysis of WBM in commercial meatball samples.

    Matched MeSH terms: Sus scrofa
  5. Zainalabidin FA, Noorazmi MS, Bakri WN, Sathaya G, Ismail MI
    Trop Life Sci Res, 2017 Jan;28(1):161-166.
    PMID: 28228924 MyJurnal DOI: 10.21315/tlsr2017.28.1.12
    Sarcosporidiosis is a disease caused by intracellular protozoan parasites, namely, Sarcocystis spp. In pigs, three species of Sarcocystis spp. have been recognised, including Sarcocystis meischeriana, Sarcocystis porcifelis and Sarcocystis suihominis. The aim of this study is to determine the prevalence of muscular sarcosporidiosis in pigs using the pepsin digestion technique. A total of 150 fresh heart, oesophagus and thigh muscle samples from 50 Yorkshire and Landrace pigs were collected from two local abattoirs in Perak from May to August 2014. All the fresh muscle samples were thoroughly examined for macrocyst-forming Sarcocystis spp. and processed using the peptic digestion technique to detect bradyzoites. The results from the muscle samples showed that 58% (29 out of 50) of the pigs were positive for Sarcocystis spp. These findings highlight the importance of implementing stringent measures for screening pigs in abattoirs for Sarcocystis spp. infection because this infection in pigs is a public health concern.
    Matched MeSH terms: Sus scrofa
  6. Heo CC, Tomberlin JK, Aitkenhead-Peterson JA
    J Forensic Sci, 2021 May;66(3):947-959.
    PMID: 33290606 DOI: 10.1111/1556-4029.14645
    Under normal circumstances, insects such as blow flies will oviposit and larvae will colonize a carcass as soon as possible. However, insect colonization on a carcass may be delayed due to the effects of wrapping, shallow burial, addition of lime derivatives to mitigate scavenging and odor, or extreme weather. The impacts of delayed insect colonization on carcass decomposition and its subsequent effect on soil chemistry profiles have not been examined to date. The objectives of this study were to determine soil chemistry dynamics associated with porcine carcasses experiencing delayed insect colonization for 7-day or 14-day. Soil chemistry profiles such as ammonium-N (NH4 -N), orthophosphate-P (PO4 -P), and dissolved organic carbon (DOC) were significantly different among treatments: insect inclusion (immediate access of blow fly colonization on porcine carcasses), 7-day insect exclusion and 14-day insect exclusion (blow fly access was delayed up to 7-day and 14-day). Furthermore, significant differences of soil chemical profiles were detected between days of decomposition and soil regions. Soil moisture, NH4 -N, PO4 -P, and DOC were significantly higher when insects were excluded from the porcine carcass suggesting loss of tissue from larval feeding reduced the mass of nutrients entering the soil. This study provides useful information for forensic science in cases where insect colonization is delayed for a period of time postmortem and soil chemistry in the cadaver decomposition island is considered for estimating postmortem interval.
    Matched MeSH terms: Sus scrofa
  7. Tan, C.T., Chua, K.B., Wong, K.T.
    ASM Science Journal, 2009;3(1):91-96.
    MyJurnal
    The Nipah virus was first discovered in 1999, following a severe outbreak of viral encephalitis among pig farm workers in Malaysia. The virus was thought to have spread from Pteropus bats to pigs, then from infected pigs to humans by close contact. Mortality of the disease was high at about 40%. The main necropsy finding was disseminated microinfarction associated with vasculitis and direct neuronal involvement. Relapsed encephalitis was seen in approximately 10% of those who survived the initial illness. Since its first recorded emergence in peninsular Malaysia, 10 outbreaks of Nipah virus encephalitis have been reported in Bangladesh and West Bengal in India. The outbreaks occurred from January to May, with Pteropus giganteus as the reservoir of the virus. In Bangladesh, evidence indicated that the virus transmitted directly from bats to human, with human to human transmission as an important mode of spread. The mortality of the illness was higher in Bangladesh which stood at around 70%. This was likely to be due to genetic variation of the virus.
    Matched MeSH terms: Sus scrofa
  8. Deng YF, Liu YY, Zhang YT, Wang Y, Liang JB, Tufarelli V, et al.
    J Sci Food Agric, 2017 Jun;97(8):2382-2391.
    PMID: 27664398 DOI: 10.1002/jsfa.8050
    BACKGROUND: The efficacy and role of inulin in the mitigation of enteric sulfur-containing odor gases hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) in pigs were examined in this study. Twelve Duroc × Landrace × Yorkshire male finisher pigs (60.7 ± 1.9 kg), housed individually in open-circuit respiration chambers, were randomly assigned to two dietary groups, namely basal diet (control) and basal diet supplemented with 1% (w/w) inulin. At the end of the 45 day experiment, pigs were slaughtered and volatile fatty acid (VFA) concentration, sulfate radical (SO42- ) concentration, population of sulfate-reducing bacteria (SRB) and expression of methionine gamma-lyase (MGL) gene were determined in contents from the caecum, colon (two segments) and rectum. Metabonomic analysis was used to compare differences in biochemical composition, and the Illumina MiSeq procedure to investigate differences in bacterial components, in the different parts of the large intestine between inulin-supplemented and inulin-free (control) groups.

    RESULTS: Inulin decreased (P < 0.05) the average daily enteric H2 S and CH3 SH production by 12.4 and 12.1% respectively. The concentrations of acetate, propionate and butyrate in the large intestinal content were significantly increased (P < 0.05) with inulin treatment, whereas valerate concentration and MGL mRNA expression decreased (P < 0.05). The growth of Lactobacillus, Butyrivibrio, Pseudobutyrivibrio, Bifidobacterium and Clostridium butyricum was stimulated, while that of Desulfovibrio, the dominant SRB, was inhibited, and there was an accumulation of SO42- in the large intestinal content of the inulin-supplemented pigs, suggesting that inulin mitigates H2 S generation from the SO42- reduction pathway by reducing the growth of SRB.

    CONCLUSION: The results showed that inulin mitigates CH3 SH generation via three methionine degradation metabolic pathways and H2 S generation from two cysteine degradation metabolic pathways, thus resulting in increased synthesis of these two sulfur-containing amino acids in the pig large intestine. © 2016 Society of Chemical Industry.

    Matched MeSH terms: Sus scrofa/growth & development*; Sus scrofa/metabolism; Sus scrofa/microbiology
  9. Rajahram GS, Hameed AA, Menon J, William T, Tambyah PA, Yeo TW
    BMC Infect Dis, 2017 03 04;17(1):188.
    PMID: 28257622 DOI: 10.1186/s12879-017-2294-z
    BACKGROUND: Streptococcus Suis (S.suis) is increasingly being recognised as a potentially preventable emerging zoonotic infection in humans with a global distribution. It is a major cause of meningitis especially among those in contact with pigs and has also been associated with a toxic shock syndrome.

    CASE PRESENTATIONS: We report the first two human cases from Sabah, Borneo, Malaysia which expands the global reach of this important pathogen. Here, we illustrate their epidemiological risk factors, clinical presentation and resulting sequelae of both patients.

    CONCLUSION: The continued public health threat of zoonotic infections such as S.suis, highlights the need for accurate epidemiological surveillance, regulation of pig farming, slaughtering and continued advocacy of best practices for pork preparation and consumption.

    Matched MeSH terms: Sus scrofa
  10. Devendra, C.
    ASM Science Journal, 2010;4(2):173-184.
    MyJurnal
    In agricultural systems, animals play a very important multifunctional role for developing communities
    throughout the world. This is reflected in the generation of value-added products like meat, milk and eggs for food security; socio-economic benefits like increased income, security and survival, and an infinite variety of services such as the supply of draught power and dung for soil fertility. However, and despite this importance, the situation is awesome since the projected total meat and milk consumption levels in 2020 are far in excess of anticipated supply, and projections of both meat and milk will have to be doubled by 2050 to meet human requirements. Strategies for productivity growth from animals are therefore urgent, and are discussed in the context of the scenario of waning agriculture, extreme poverty and hunger, food crisis, the current contributions from the components of the animal industries, prevailing constraints, opportunities and strategies for improved production. Current trends suggest that the non-ruminant pig and poultry industries will continue to contribute the major share of meat and all of egg production to meet projected human needs. With ruminants by comparison, overall meat production continues to come mainly from the slaughter of numbers. Strategic opportunities exist for maximising productivity in improved production systems. These include targeting rainfed areas, development of small farms, integrated crop-animal systems, intensive application of productivity-enhancing technologies, promoting intensive use of crop residues and expanding the R&D frontiers with interdisciplinarity and farming
    systems perspectives. The issues, together with increased investments and institutional commitment, provide for expanded animal production systems and productivity which can forcefully impact on improved human welfare in Asia in the immediate tomorrow.
    Matched MeSH terms: Sus scrofa
  11. Sahilah Abu Mutalib, Wan Sakeenah Wan Nazari, Safiyyah Shahimi, Norhayati Yaakob, Norrakiah Abdullah Sani, Aminah Abdullah, et al.
    Sains Malaysiana, 2012;41:199-204.
    A method of PCR-restriction fragment length polymorphism (RFLP) has been utilized to differentiate the mitochondrial genes of pork and wild boar meat (Sus scrofa). The amplification PCR products of 359 bp and 531 bp were successfully amplified from the cyt b gene of these two meats. The amplification product of pork and wild boar using mt-12S rRNA gene successfully produced a single band with molecular size of 456 bp. Three restriction endonucleases (AluI, HindIII and BsaJI) were used to restrict the amplification products of the mitochondrial genes. The restriction enzymes of AluI and BsaJI were identified as potential restriction endonucleases to differentiate those meats. HindIII enzyme was unable to restrict the PCR product of both meats. The genetic differences within the cyt b gene among the two meats were successfully confirmed by PCR-RFLP analysis.
    Matched MeSH terms: Sus scrofa
  12. Uni S, Fukuda M, Otsuka Y, Hiramatsu N, Yokobayashi K, Takahashi H, et al.
    Parasit Vectors, 2015;8:59.
    PMID: 25623081 DOI: 10.1186/s13071-015-0655-2
    Zoonotic infections with Onchocerca species are uncommon, and to date only 25 clinical cases have been reported worldwide. In Japan, five previous zoonotic infections were concentrated in Oita, Kyushu (the southern island), with one previous case in Hiroshima in the western part of Honshu (the main island). The causative agent in Japan was identified as Onchocerca dewittei japonica Uni, Bain & Takaoka, 2001 from Japanese wild boars (Sus scrofa leucomystax Temminck, 1842). Here we report two infections caused by a female and male O. dewittei japonica, respectively, among residents of Hiroshima and Shimane Prefectures in the western part of Honshu.
    Matched MeSH terms: Sus scrofa/parasitology
  13. Ali ME, Hashim U, Kashif M, Mustafa S, Che Man YB, Abd Hamid SB
    Genet. Mol. Res., 2012;11(2):1762-72.
    PMID: 22843053 DOI: 10.4238/2012.June.29.9
    The pig (Sus scrofa) mitochondrial genome was targeted to design short (15-30 nucleotides) DNA markers that would be suitable for biosensor-based hybridization detection of target DNA. Short DNA markers are reported to survive harsh conditions in which longer ones are degraded into smaller fragments. The whole swine mitochondrial-genome was in silico digested with AluI restriction enzyme. Among 66 AluI fragments, five were selected as potential markers because of their convenient lengths, high degree of interspecies polymorphism and intraspecies conservatism. These were confirmed by NCBI blast analysis and ClustalW alignment analysis with 11 different meat-providing animal and fish species. Finally, we integrated a tetramethyl rhodamine-labeled 18-nucleotide AluI fragment into a 3-nm diameter citrate-tannate coated gold nanoparticle to develop a swine-specific hybrid nanobioprobe for the determination of pork adulteration in 2.5-h autoclaved pork-beef binary mixtures. This hybrid probe detected as low as 1% pork in deliberately contaminated autoclaved pork-beef binary mixtures and no cross-species detection was recorded, demonstrating the feasibility of this type of probe for biosensor-based detection of pork adulteration of halal and kosher foods.
    Matched MeSH terms: Sus scrofa/genetics*
  14. Uni S, Fukuda M, Ogawa K, Lim YA, Agatsuma T, Bunchom N, et al.
    Parasitol Int, 2017 Oct;66(5):593-595.
    PMID: 28648713 DOI: 10.1016/j.parint.2017.06.006
    An 11-year-old boy living in Otsu City, Shiga Prefecture, Kansai Region, Western Honshu, Japan had zoonotic onchocercosis. The patient developed a painful swelling on the little finger of his left hand. The worm detected in the excised mass had external transverse ridges but did not have inner striae in the cuticle. On the basis of the parasite's histopathological characteristics, the causative agent was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species of the filarial parasite was confirmed by sequencing the cox1 gene of the parasite. The Japanese wild boar Sus scrofa leucomystax is a definitive host for O. dewittei japonica, which is then transmitted by blackflies as the vector to humans. The current case described occurred in the Kansai Region, Western Honshu, where such infections were previously not reported.
    Matched MeSH terms: Sus scrofa/parasitology
  15. Tan LL, Ahmed SA, Ng SK, Citartan M, Raabe CA, Rozhdestvensky TS, et al.
    Food Chem, 2020 Mar 30;309:125654.
    PMID: 31678669 DOI: 10.1016/j.foodchem.2019.125654
    A specialized DNA extraction method and a SYBR Green quantitative polymerase chain reaction (SyG-qPCR) assay were combined to generate a ready-to-use kit for rapid detection of porcine admixtures in processed meat products. Our qPCR assay utilized repetitive LINE-1 elements specific to the genome of Sus scrofa domesticus (pig) as a target and incorporated internal controls. We improved the genomic DNA extraction method, and reduced extraction times to the minimum. The method was validated for specificity, sensitivity (0.001% w/w) and robustness, and values were compared with those of a commercially available kit. We also tested our method using 121 processed food products and consistently detected amplification only in samples containing pork. Due to its efficiency and cost-effectiveness, our method represents a valuable new method for detecting food adulteration with pork that is superior to existing quality control approaches.
    Matched MeSH terms: Sus scrofa/genetics
  16. Fukuda M, Uni S, Igari T, Utsumi Y, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2019 Oct;72:101943.
    PMID: 31220633 DOI: 10.1016/j.parint.2019.101943
    A 73-year-old man living in Kawamata-machi, Fukushima Prefecture, Northeastern Honshu, Japan, visited a hospital with complaints of a subcutaneous swelling that had developed on the back of his left hand. The nodule was surgically removed from the vagina fibrosa tendinis of his left forefinger. Based on the histopathological characteristics, the causative agent of this nodule was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species identification was confirmed by cox1 gene sequencing of the worm tissues from paraffin-embedded sections of the nodule. Although 11 cases of zoonotic onchocercosis have previously been recorded in Kyushu and Western Honshu, Japan, the present findings represent the first human case of infection with O. dewittei japonica in Northeastern Honshu, Japan.
    Matched MeSH terms: Sus scrofa/parasitology
  17. Weingartl HM, Berhane Y, Caswell JL, Loosmore S, Audonnet JC, Roth JA, et al.
    J Virol, 2006 Aug;80(16):7929-38.
    PMID: 16873250
    Nipah virus (NiV), of the family Paramyxoviridae, was isolated in 1999 in Malaysia from a human fatality in an outbreak of severe human encephalitis, when human infections were linked to transmission of the virus from pigs. Consequently, a swine vaccine able to abolish virus shedding is of veterinary and human health interest. Canarypox virus-based vaccine vectors carrying the gene for NiV glycoprotein (ALVAC-G) or the fusion protein (ALVAC-F) were used to intramuscularly immunize four pigs per group, either with 10(8) PFU each or in combination. Pigs were boosted 14 days postvaccination and challenged with 2.5 x 10(5) PFU of NiV two weeks later. The combined ALVAC-F/G vaccine induced the highest levels of neutralization antibodies (2,560); despite the low neutralizing antibody levels in the F vaccinees (160), all vaccinated animals appeared to be protected against challenge. Virus was not isolated from the tissues of any of the vaccinated pigs postchallenge, and a real-time reverse transcription (RT)-PCR assay detected only small amounts of viral RNA in several samples. In challenge control pigs, virus was isolated from a number of tissues (10(4.4) PFU/g) or detected by real-time RT-PCR. Vaccination of the ALVAC-F/G vaccinees appeared to stimulate both type 1 and type 2 cytokine responses. Histopathological findings indicated that there was no enhancement of lesions in the vaccinees. No virus shedding was detected in vaccinated animals, in contrast to challenge control pigs, from which virus was isolated from the throat and nose (10(2.9) PFU/ml). Based on the data presented, the combined ALVAC-F/G vaccine appears to be a very promising vaccine candidate for swine.
    Matched MeSH terms: Sus scrofa/immunology; Sus scrofa/virology
  18. Intapan PM, Chotmongkol V, Tantrawatpan C, Sanpool O, Morakote N, Maleewong W
    Am J Trop Med Hyg, 2011 Jun;84(6):994-7.
    PMID: 21633039 DOI: 10.4269/ajtmh.2011.10-0675
    Previously, we reported the presence of imported trichinellosis in a Thai worker returning from Malaysia, who presented with progressive generalized muscle hypertrophy and weakness after eating wild boar meat. This work analyzed a partial small subunit of a mitochondrial ribosomal RNA gene of Trichinella larvae isolated from the patient. The results showed complete identity with a mitochondrial RNA gene of Trichinella papuae (GenBank accession no. EF517130). This is the first report of imported trichinellosis in Thailand caused by T. papuae. It is possible that T. papuae is widely distributed in the wildlife of Southeast Asia.
    Matched MeSH terms: Sus scrofa/parasitology
  19. Sherrini BA, Chong TT
    Med J Malaysia, 2014 Aug;69 Suppl A:103-11.
    PMID: 25417957
    Between September 1998 to May 1999, Malaysia and Singapore were hit by an outbreak of fatal encephalitis caused by a novel virus from the paramyxovirus family. This virus was subsequently named as Nipah virus, after the Sungei Nipah village in Negeri Sembilan, where the virus was first isolated. The means of transmission was thought to be from bats-topigs and subsequently pigs-to-human. Since 2001, almost yearly outbreak of Nipah encephalitis has been reported from Bangladesh and West Bengal, India. These outbreaks were characterized by direct bats-to-human, and human-to-human spread of infection. Nipah virus shares many similar characteristics to Hendra virus, first isolated in an outbreak of respiratory illness involving horses in Australia in 1994. Because of their homology, a new genus called Henipavirus (Hendra + Nipah) was introduced. Henipavirus infection is a human disease manifesting most often as acute encephalitis (which may be relapsing or late-onset) or pneumonia, with a high mortality rate. Pteropus bats act as reservoir for the virus, which subsequently lead to human spread. Transmission may be from consumption of food contaminated by bats secretion, contact with infected animals, or human-to-human spread. With wide geographical distribution of Pteropus bats, Henipavirus infection has become an important emerging human infection with worldwide implication.
    Matched MeSH terms: Sus scrofa
  20. Kolomytsev AA, Kurinnov VV, Mikolaĭchuk SV, Zakutskiĭ NI
    Vopr. Virusol., 2008 Mar-Apr;53(2):10-3.
    PMID: 18450103
    Nipah encephalitis is a particular dangerous disease that affects animals and man. Fatal cases of the disease have been identified in the persons looking after pigs in the villages of Malaysia. The causative agent is presumably referred to as morbilliviruses of the Paramixoviridae family. Two hundred persons died among the ill patients with the signs of encephalitis. The principal hosts of the virus were fox-bats (Megaschiroptera) inhabiting in the surrounding forests. The present paper descries the epidemiological features of the disease, its clinical manifestations, abnormal anatomic changes, diagnosis, and implemented controlling measures.
    Matched MeSH terms: Sus scrofa
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links