Displaying publications 21 - 40 of 48 in total

Abstract:
Sort:
  1. Thong MK, Tan JA, Tan KL, Yap SF
    J Trop Pediatr, 2005 Dec;51(6):328-33.
    PMID: 15967770 DOI: 10.1093/tropej/fmi052
    beta-thalassaemia major, an autosomal recessive hemoglobinopathy, is one of the most common single gene disorders in multi-racial Malaysia. The control of beta-thalassaemia major requires a multi-disciplinary approach that includes population screening, genetic counselling, prenatal diagnosis and the option of termination of affected pregnancies. To achieve this objective, the molecular characterisation of the spectrum of beta-globin gene mutations in each of the affected ethnic groups is required. We studied 88 consecutive unrelated individuals and their respective families with beta-thalassaemia (74 beta-thalassaemia major, 12 HbE-beta-thalassaemia, 2 with HbE homozygotes) and four individuals with beta-thalassaemia trait that contributed a total 180 alleles for study. Using a 2-step molecular diagnostic strategy consisting of amplification refractory mutation system (ARMS) to identify the 8 most common mutations followed by other DNA-based diagnostic techniques, a total of 177 (98.3 per cent) of the 180 beta-thalassaemia alleles were characterised. One out of 91 (1 per cent) of the Chinese alleles, one out of 46 (2.2 per cent) Malay alleles and one out of two Indian alleles remained unknown. A 100 per cent success rate was achieved in studying the Kadazandusun community in this study. A strategy to identify beta-globin gene mutations in Malaysians with beta-thalassaemia is proposed based on this outcome.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  2. Tan JA, Kho SL, Ngim CF, Chua KH, Goh AS, Yeoh SL, et al.
    Sci Rep, 2016 06 08;6:26994.
    PMID: 27271331 DOI: 10.1038/srep26994
    Haemoglobin (Hb) Adana (HBA2:c.179>A) interacts with deletional and nondeletional α-thalassaemia mutations to produce HbH disorders with varying clinical manifestations from asymptomatic to severe anaemia with significant hepatosplenomegaly. Hb Adana carriers are generally asymptomatic and haemoglobin subtyping is unable to detect this highly unstable α-haemoglobin variant. This study identified 13 patients with compound heterozygosity for Hb Adana with either the 3.7 kb gene deletion (-α(3.7)), Hb Constant Spring (HbCS) (HBA2:c.427T>C) or Hb Paksé (HBA2:429A>T). Multiplex Amplification Refractory Mutation System was used for the detection of five deletional and six nondeletional α-thalassaemia mutations. Duplex-PCR was used to confirm Hb Paksé and HbCS. Results showed 84.6% of the Hb Adana patients were Malays. Using DNA studies, compound heterozygosity for Hb Adana and HbCS (α(codon 59)α/α(CS)α) was confirmed in 11 patients. A novel point in this investigation was that DNA studies confirmed Hb Paksé for the first time in a Malaysian patient (α(codon 59)α/α(Paksé)α) after nine years of being misdiagnosis with Hb Adana and HbCS (α(codon 59)α/α(CS)α). Thus, the reliance on haematology studies and Hb subtyping to detect Hb variants is inadequate in countries where thalassaemia is prevalent and caused by a wide spectrum of mutations.
    Matched MeSH terms: alpha-Thalassemia/diagnosis*
  3. Chen JJ, Tan JA, Chua KH, Tan PC, George E
    BMJ Open, 2015 Jul 22;5(7):e007648.
    PMID: 26201722 DOI: 10.1136/bmjopen-2015-007648
    OBJECTIVES: Single nucleotide polymorphism (SNP) with a mutation can be used to identify the presence of the paternally-inherited wild-type or mutant allele as result of the inheritance of either allele in the fetus and allows the prediction of the fetal genotype. This study aims to identify paternal SNPs located at the flanking regions upstream or downstream from the β-globin gene mutations at CD41/42 (HBB:c.127_130delCTTT), IVS1-5 (HBB:c.92+5G>C) and IVS2-654 (HBB:c.316-197C>T) using free-circulating fetal DNA.

    SETTING: Haematology Lab, Department of Biomedical Science, University of Malaya.

    PARTICIPANTS: Eight couples characterised as β-thalassaemia carriers where both partners posed the same β-globin gene mutations at CD41/42, IVS1-5 and IVS2-654, were recruited in this study.

    OUTCOME MEASURES: Genotyping was performed by allele specific-PCR and the locations of SNPs were identified after sequencing alignment.

    RESULTS: Genotype analysis revealed that at least one paternal SNP was present for each of the couples. Amplification on free-circulating DNA revealed that the paternal mutant allele of SNP was present in three fcDNA. Thus, the fetuses may be β-thalassaemia carriers or β-thalassaemia major. Paternal wild-type alleles of SNP were present in the remaining five fcDNA samples, thus indicating that the fetal genotypes would not be homozygous mutants.

    CONCLUSIONS: This preliminary research demonstrates that paternal allele of SNP can be used as a non-invasive prenatal diagnosis approach for at-risk couples to determine the β-thalassaemia status of the fetus.

    Matched MeSH terms: beta-Thalassemia/diagnosis*
  4. George E, George R, Ariffin WA, Mokhtar AB, Azman ZA, Sivagengei K
    Med J Malaysia, 1993 Sep;48(3):325-9.
    PMID: 8183146
    The study concerned the identification of the beta-thalassaemia mutations that were present in 24 patients with beta-thalassaemia major who were transfusion dependent. The application of a modified polymerase chain reaction, the amplification refractory system (ARMS) was found to be an effective and rapid method for the identification of the beta-thalassaemia mutations. Six different mutations were detected. Seventy five percent of the patients were Chinese-Malaysians and showed the commonly occurring anomalies: 1. frameshift codon 41 and 42 (-TCTT); 2. the C to T substitution at position 654 of intron 2 (IVS-2); 3. the mutation at position -28(A to G); and the nonsense mutation A to T at codon 17. In the Malays, the common mutations seen were: 1. the G to C mutation at position 5 of IVS-1; 2. the G to T mutation at position 1 of intron 1 (IVS-1); and the A to T at codon 17. The delineation of the specific mutations present will enable effective prenatal diagnosis for beta-thalassaemia to be instituted.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  5. Tan JA, Tay SH, Kham KY, Wong HB
    Jpn. J. Hum. Genet., 1993 Sep;38(3):315-8.
    PMID: 7903173 DOI: 10.1007/BF01874141
    The distribution of restriction fragment length polymorphism (RFLP) at the BamH1 site of the beta-globin gene was investigated in the Chinese, Indian, and Malay race in Singapore. The sample comprised of 183 normal individuals and 35 beta-thalassemia carriers in which 13 were couples with at least one beta-major child. The results from this study indicate that BamH1 polymorphism will be informative in 22% of pregnancies at risk for beta-thalassemia major in Chinese, 19% in Malays and 7% in Indians. In prenatal diagnosis using BamH1 polymorphism for one beta-major affected family, the fetus was diagnosed to be normal or beta-carrier. The validity of BamH1 polymorphism in the exclusion of beta-thalassemia major was subsequently confirmed at birth by globin chain biosynthesis.
    Matched MeSH terms: beta-Thalassemia/diagnosis*
  6. Wong HB
    Med J Malaysia, 1985 Sep;40(3):153-64.
    PMID: 3916209
    The different methods of prenatal diagnosis are discussed with special reference to ultrasound scan, amniocentesis for cell culture with processing for chromosome study, biochemical analysis and DNA recombination analysis. Chorionic villi aspiration and fetoscopy are new methods which will enhance considerably the methods for prenatal diagnosis. With regard to chromosome study of amniotic cells, experience with 623 cases is reviewed. 2.7% demonstrated chromosome anomalies and of these Downs anomaly was the commonest. A large proportion of cases requesting for amniocentesis are Caucasians who represent only 2% of the population in Singapore, but 25% of the 440 requests were from Caucasions. The various problems associated with the different methods for prenatal deafness are discussed.
    Matched MeSH terms: Thalassemia/diagnosis
  7. Nasri NW, Jamal AR, Abdullah NC, Razi ZR, Mokhtar NM
    Arch Med Res, 2009 Jan;40(1):1-9.
    PMID: 19064120 DOI: 10.1016/j.arcmed.2008.10.008
    Preimplantation genetic diagnosis (PGD) of monogenic autosomal hereditary disorders following assisted conception usually involves the removal of one or two blastomeres from preimplantation embryos. However, the amount of DNA from a single blastomere is insufficient to amplify the region of interest. Hence, the whole genome amplification (WGA) method is performed prior to amplifying the genes of interest before analysis of DNA material through polymerase chain reaction (PCR).
    Matched MeSH terms: beta-Thalassemia/diagnosis*
  8. Nandakumal G, Ismail F, Mohamad NF, Lott PW, Chew KS, Ab Rahman S, et al.
    J Pediatr Hematol Oncol, 2021 04 01;43(3):101-103.
    PMID: 33560075 DOI: 10.1097/MPH.0000000000002077
    Hemolacria is a rare condition that causes a person to produce tears that are partially composed of blood. It can be a presenting feature of certain ocular and systemic conditions. Here, the authors describe an interesting case of a 12-year-old boy with an underlying beta-thalassemia trait, who presented with a 2-day history of bilateral blood-stained tears, and an episode of epistaxis. Ocular examination was normal, and syringing showed no nasolacrimal duct blockage. Systemic examination was unremarkable. Laboratory investigations confirmed type 2 von Willebrand disease. Management of hemolacria remains a clinical challenge given the rare occurrence of the disease. In this case report, the authors discuss the differential diagnosis and management approach to hemolacria.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  9. Shwe S, Boo NY, Ong HK, Chee SC, Maslina M, Ling MMM, et al.
    Malays J Pathol, 2020 Aug;42(2):253-257.
    PMID: 32860378
    INTRODUCTION: Haemoglobin Constant Spring (Hb CoSp) and Haemoglobin Adana (Hb Adana), are two non-deletion type of α-thalassemia reported in Malaysia. Owing to their structural instability, they cause hemolysis and hyperbilirubinemia. This observational study was part of a large study investigating multiple factors associated with severe neonatal jaundice. In this part we aimed to determine the prevalence of Hb CoSp and Hb Adana and their association with clinically significant neonatal hyperbilirubinemia (SigNH, total serum bilirubin (TSB>290µmol/L)) among jaundiced Malaysian term neonates.

    MATERIALS AND METHODS: The inclusion criteria were normal term-gestation neonates admitted consecutively for phototherapy. PCR-restriction fragment length polymorphism method was applied on DNA extracted from dry blood spot specimens of each neonate to detect for Hb CoSp and Hb Adana gene. Positive samples were verified by gene sequencing.

    RESULTS: Of the 1121 neonates recruited (719 SigNH and 402 no-SigNH), heterozygous Hb CoSp gene was detected in only two (0.27%) neonates. Both were SigNH neonates (0.3% or 2/719). No neonate had Hb Adana variant.

    CONCLUSION: Hb CoSp was not common but could be a risk factor associated with SigNH. No Hb Adana was detected.

    Matched MeSH terms: alpha-Thalassemia/diagnosis*
  10. Baig MA, Swamy KB, Baksh AD, Bahashwan A, Moshrif Y, Al Sawat A, et al.
    Indian J Pathol Microbiol, 2021 8 4;64(3):518-523.
    PMID: 34341263 DOI: 10.4103/IJPM.IJPM_709_20
    Background: : HPLC is one of the most important tools for accurate diagnosis of hemoglobinopathies and thalassemias. The advantage of the HPLC system is the excellent resolution, reproducibility &quantification of several normal and abnormal hemoglobin.

    Results: BIO RAD Variant II analyzer was used. Sickle cell syndromes including double heterozygous states accounted for 56.13% of total cases. HbSS, HbS/β0-th, HbS/β+-th β-thal trait comprises 29%, 6.5%, 5.1%& 10% of total cases respectively with mean MCV (fl) = 84, 68,71,64 respectively. The Mean HbA2 for β-thal trait, HbE trait &HbE-β thal showed 5.1 ± 1.1, 19 ± 9 & 24 ± 8 respectively. HbF is increased in 8.6% case (excluding SC syndromes & β-thal disorders), of these 5.5% were infants & 12 cases of Aplastic Anemias. Peak P2 >7% (2.4% cases) was seen in uncontrolled diabetes mellitus which on quantification showed HbA1C = 8 ± 2.1 mmol/L.

    Discussion: : HPLC in correlation with CBC parameters & family studies can aid in the diagnosis of majority of Hemoglobinopathies and thalassemic syndrome. The CBC & HPLC parameters of the present study are in good correlation with the research conducted by Tejinder Sing, RiouJ & Alla Joutovsky. Present study showed HPLC comprehensively characterizing HbS, A, A2, F, S, C, D from each other & was also applicable for the quantification of HbA1c for the monitoring of Diabetes Mellitus.

    Conclusion: : The merits of HPLC are small quantity of sample required, economical, less TAT, accurate categorization of HbS, HbA2 & F. But one has to be aware of the limitations and problems associated with this method due to variant hemoglobin within the same retention windows. The present findings show HPLC as an excellent & powerful diagnostic tool for the direct identification of hemoglobin variants with a high degree of precision in the quantification of normal and abnormal hemoglobin fractions.

    Matched MeSH terms: Thalassemia/diagnosis*
  11. Mohamed N, Jackson N
    Blood Rev, 1998 Sep;12(3):163-70.
    PMID: 9745886
    In many of the parts of the world where thalassaemia is common, the blood supply is inadequate or unsafe, and desferrioxamine is too expensive for routine use. We classify some patients as having 'severe thalassaemia intermedia', i.e. those with moderately severe thalassaemia who can survive without regular transfusions, but who are at risk of many complications which are reviewed here. These include bone deformity and fractures, extramedullary haemopoietic tumours, leg ulcers, autoimmune haemolysis and, especially after splenectomy, thromboembolism and infection. An increase in the quality and safety of the blood supply, and a cheaper and/or oral iron chelator, would enable more of these patients to be treated as thalassaemia major and have improved survival and quality of life.
    Matched MeSH terms: Thalassemia/diagnosis*
  12. George E, Mokhtar AB, Azman ZA, Hasnida K, Saripah S, Hwang CM
    Singapore Med J, 1996 Oct;37(5):501-4.
    PMID: 9046203
    Haemoglobin Bart's hydrops fetalis is the result of complete absence of functional alpha-globin genes where the fetus is homozygous for the alpha 0-thal gene. Prenatal diagnosis can be made by analysis of fetal DNA from chorionic villus, amniotic cells and fetal blood. Earlier studies for analysing genomic DNA needed digestion with restriction enzymes and hybridisation to radiolabelled probes which took 2 weeks. We have used the polymerase chain reaction (PCR) and non-radioactive primers to identify specific target sequences with results available within 1-3 days for the diagnosis of haemoglobin Bart's syndrome. With fetal blood samples, complete absence of alpha-chain synthesis is confirmed by globin chain electrophoresis on cellulose acetate pH 6.0.
    Matched MeSH terms: alpha-Thalassemia/diagnosis
  13. Jayaranee S, Sthaneshwar P
    Singapore Med J, 2006 Feb;47(2):138-42.
    PMID: 16435056
    The objective of this study was to assess the clinical significance of soluble transferrin receptor (sTfR) in hypochromic microcytic anaemia.
    Matched MeSH terms: Thalassemia/diagnosis
  14. Alauddin H, Jaapar NA, Azma RZ, Ithnin A, Razak NF, Loh CK, et al.
    Hemoglobin, 2014;38(4):277-81.
    PMID: 24829075 DOI: 10.3109/03630269.2014.916720
    Hb Adana [HBA2: c179G>A (or HBA1); p.Gly60Asp] is a rare hemoglobin (Hb) variant due to a mutation at codon 59 of the α2- or α1-globin gene resulting in a glycine to aspartic acid substitution. Two siblings with a unique coinheritance of Hb Adana and Hb Constant Spring (Hb CS, α142, Term→Gln, TAA>CAA; HBA2: c.427 T>C) (α(codon 59)α/α(CS)α), were compared phenotypically with another two siblings carrying the Hb Adana mutation and a 3.7 kb deletion (α(codon 59)α/-α(3.7)). Although they all had α-thalassemia intermedia (α-TI), the former were clinically more severe than the latter. The first pair of siblings presented at a much younger age than the second pair and showed lower Hb levels and significant extramedullay hemopoiesis. Another case of a hydropic fetus as a result of Hb H/Hb Adana is also described. Their clinical phenotypes and hematological parameters are all presented for comparison.
    Matched MeSH terms: alpha-Thalassemia/diagnosis
  15. Chan YF, Tan KL, Wong YC, Wee YC, Yap SF, Tan JAMA
    PMID: 12041567
    Molecular characterization and prenatal diagnosis for beta-thalassemia can be carried out using the Amplification Refractory Mutation System (ARMS). The ARMS is a rapid and direct molecular technique in which beta-thalassemia mutations are visualized immediately after DNA amplification by gel electrophoresis. In the University of Malaya Medical Center, molecular characterization and prenatal diagnosis for beta-thalassemia is carried out using ARMS for about 96% of the Chinese and 84.6% of the Malay patients. The remaining 4% and 15.4% of the uncharacterized mutations in the Chinese and Malay patients respectively are detected using DNA sequencing. DNA sequencing is an accurate technique but it is more time-consuming and expensive compared with the ARMS. The ARMS for the rare Chinese beta-mutations at position -29 (A-->G) and the ATG-->AGG base substitution at the initiator codon for translation in the beta-gene was developed. In the Malays, ARMS was optimized for the beta-mutations at codon 8/9 (+G), Cap (+1) (A-->C) and the AATAAA-->AATAGA base substitution in the polyadenylation region of the beta-gene. The ARMS protocols were developed by optimization of the parameters for DNA amplification to ensure sensitivity, specificity and reproducibility. ARMS primers (sequences and concentration), magnesium chloride concentration, Taq DNA polymerase and PCR cycling parameters were optimized for the specific amplification of each rare beta-thalassemia mutation. The newly-developed ARMS for the 5 rare beta-thalassemia mutations in the Chinese and Malays in Malaysia will allow for more rapid and cost-effective molecular characterization and prenatal diagnosis for beta-thalassemia in Malaysia.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  16. Rosline H, Roshan TM, Ahmed SA, Ilunihayati I
    PMID: 17877232
    Thalassemia is a common public health problem among Malays. Hemoglobin C (Hb C) is a hemoglobin beta variant resulting from a single base mutation at the 6th position of the beta-globin gene leading to the substitution of glycine for glutamic acid. Hb C is commonly detected in West Africans and in African American but has not been reported in Malaysia. It can be falsely diagnosed as HbE trait in the Malaysian Thalassemia Screening Program which utilizes cellulose acetate hemoglobin electrophoresis. This is the first reported case of Hb AC heterozygote status in a Malay family, with unusual splenomegaly in one of the family members.
    Matched MeSH terms: Thalassemia/diagnosis
  17. Azma RZ, Ainoon O, Hafiza A, Azlin I, Noor Farisah AR, Nor Hidayati S, et al.
    Malays J Pathol, 2014 Apr;36(1):27-32.
    PMID: 24763232 MyJurnal
    Alpha (Α) thalassaemia is the most common inherited disorder in Malaysia. The clinical severity is dependant on the number of Α genes involved. Full blood count (FBC) and haemoglobin (Hb) analysis using either gel electrophoresis, high performance liquid chromatography (HPLC) or capillary zone electrophoresis (CE) are unable to detect definitively alpha thalassaemia carriers. Definitive diagnosis of Α-thalassaemias requires molecular analysis and methods of detecting both common deletional and non-deletional molecular abnormailities are easily performed in any laboratory involved in molecular diagnostics. We carried out a retrospective analysis of 1623 cases referred to our laboratory in Universiti Kebangsaan Malaysia Medical Centre (UKMMC) for the diagnosis of Α-thalassaemia during the period October 2001 to December 2012. We examined the frequency of different types of alpha gene abnormalities and their haematologic features. Molecular diagnosis was made using a combination of multiplex polymerase reaction (PCR) and real time PCR to detect deletional and non-deletional alpha genes relevant to southeast Asian population. Genetic analysis confirmed the diagnosis of Α-thalassaemias in 736 cases. Majority of the cases were Chinese (53.1%) followed by Malays (44.2%), and Indians (2.7%). The most common gene abnormality was ΑΑ/--(SEA) (64.0%) followed by ΑΑ/-Α(3.7) (19.8%), -Α(3.7) /--(SEA) (6.9%), ΑΑ/ΑΑCS (3.0%), --(SEA)/--(SEA) (1.2%), -Α(3.7)/-Α(3.7) (1.1%), ΑΑ/-Α(4.2) (0.7%), -Α(4.2)/--(SEA (0.7%), -Α(3.7)/-Α(4.2) (0.5%), ΑΑ(CS)/-- SEA) (0.4%), ΑΑ(CS)/ΑΑ(Cd59) (0.4%), ΑΑ(CS)/ΑΑ(CS) (0.4%), -Α(3.7)/ΑΑ(Cd59) (0.3%), ΑΑ/ΑΑ(Cd59) (0.1%), ΑΑ(Cd59)/ ΑΑ(IVS I-1) (0.1%), -Α(3.7)/ΑΑ(CS) (0.1%) and --(SEA) /ΑΑ(Cd59) (0.1%). This data indicates that the molecular abnormalities of Α-thalassaemia in the Malaysian population is heterogenous. Although Α-gene deletion is the most common cause, non-deletional Α-gene abnormalities are not uncommon and at least 3 different mutations exist. Establishment of rapid and easy molecular techniques is important for definitive diagnosis of alpha thalassaemia, an important prerequisite for genetic counselling to prevent its deleterious complications.
    Matched MeSH terms: alpha-Thalassemia/diagnosis
  18. Tan KL, Tan JA, Wong YC, Wee YC, Thong MK, Yap SF
    Genet. Test., 2001;5(1):17-22.
    PMID: 11336396 DOI: 10.1089/109065701750168626
    Beta-thalassemia major patients have chronic anemia and are dependent on blood transfusions to sustain life. Molecular characterization and prenatal diagnosis of beta3-thalassemia is essential in Malaysia because about 4.5% of the population are heterozygous carriers for beta-thalassemia. The high percentage of compound heterozygosity (47.62%) found in beta-thalassemia major patients in the Thalassaemia Registry, University of Malaya Medical Centre (UMMC), Malaysia, also supports a need for rapid, economical, and sensitive protocols for the detection of beta-thalassemia mutations. Molecular characterization of beta-thalassemia mutations in Malaysia is currently carried out using ARMS, which detects a single beta-thalassemia mutation per PCR reaction. We developed and evaluated Combine amplification refractory mutation system (C-ARMS) techniques for efficient molecular detection of two to three beta-thalassemia mutations in a single PCR reaction. Three C-ARMS protocols were evaluated and established for molecular characterization of common beta-thalassemia mutations in the Malay and Chinese ethnic groups in Malaysia. Two C-ARMS protocols (cd 41-42/IVSII #654 and -29/cd 71-72) detected the beta-thalassemia mutations in 74.98% of the Chinese patients studied. The CARMS for cd 41-42/IVSII #654 detected beta-thalassemia mutations in 72% of the Chinese families. C-ARMS for cd 41-42/IVSI #5/cd 17 allowed detection of beta-thalassemia mutations in 36.53% of beta-thalassemia in the Malay patients. C-ARMS for cd 41-42/IVSI #5/cd 17 detected beta-thalassemia in 45.54% of the Chinese patients. We conclude that C-ARMS with the ability to detect two to three mutations in a single reaction provides more rapid and cost-effective protocols for beta-thalassemia prenatal diagnosis and molecular analysis programs in Malaysia.
    Matched MeSH terms: beta-Thalassemia/diagnosis*
  19. Laosombat V, Fucharoen SP, Panich V, Fucharoen G, Wongchanchailert M, Sriroongrueng W, et al.
    Am J Hematol, 1992 Nov;41(3):194-8.
    PMID: 1415194
    A total of 103 beta thalassemia genes from 78 children (45 with Hb E/beta thalassemia, 8 with beta thalassemia heterozygotes, and 25 with homozygous beta thalassemia) were analyzed using dot-blot hybridization of the polymerase chain reaction-amplified DNA and direct DNA sequencing. Nine mutations were characterized in 98/103 (95%) of beta thalassemia alleles, of which six (a 4 bp deletion in codons 41-42, a G-C transition at position 5 of IVS-1, A-G transition at codon 19, an A-T transition at codon 17, an A-G transition at position -28 upstream of the beta globin gene, a G-T transition at position 1 of IVS-1), accounted for 92%. The spectrum of beta thalassemia mutations in Chinese Thai is similar to that reported among the Chinese from other parts of the world. The distribution of beta thalassemia mutations in Muslim Thai is similar to that reported among Malaysians. The most common beta thalassemia mutation in Thai and Chinese Thai patients is the frameshift mutation at codons 41-42, in comparison with the Muslim Thai in whom the G-C transition at position 5 of the IVS-1 mutation predominates. The heterogeneity of molecular defects causing beta thalassemia should aid in the planning of a prenatal diagnosis program for beta thalassemia in the South of Thailand.
    Matched MeSH terms: beta-Thalassemia/diagnosis
  20. George E, Teh LK, Tan J, Lai MI, Wong L
    Pathology, 2013 01;45(1):62-5.
    PMID: 23222244 DOI: 10.1097/PAT.0b013e32835af7c1
    AIMS: Classical carriers of β-thalassaemia are identified by a raised HbA2 level. Earlier studies indicated that the Filipino β-deletion has high raised HbA2 levels. The introduction of automated high performance liquid chromatography (HPLC) for thalassaemia screening is an important advance in technology for haematology laboratories. The BioRad Variant II Hb analyser is a common instrument used to quantify HbA2 levels in thalassaemia screening. This study aimed to determine HbA2 levels in carriers of Filipino β-mutation using the BioRad Variant II Hb analyser.

    METHODS: The Filipino β-deletion was identified using gap-polymerase chain reaction (PCR) in the parents of transfusion dependent β-thalassaemia patients who were homozygous for the Filipino β-deletion in the indigenous population of Sabah, Malaysia. Hb subtypes were quantified on the BioRad Variant II Hb analyser. Concurrent α-thalassaemia was identified by multiplex gap-PCR for deletions and amplification refractory mutation system (ARMS)-PCR for non-deletional mutations.

    RESULTS: The mean HbA2 level for Filipino β-thalassaemia trait was 5.9 ± 0.47 and with coinheritance of α-thalassaemia was 6.3 ± 0.44 (-α heterozygous) and 6.7 ± 0.36 (-α homozygous). The HbA2 levels were all >4% in keeping with the findings of classical β-thalassaemia trait and significantly higher than levels seen in non-deletional forms of β-thalassaemia.

    CONCLUSION: The HbA2 level measured on the BioRad Variant II Hb analyser was lower than the level in the first description of the Filipino β-thalassaemia. β-thalassaemia trait with coinheritance of α-thalassaemia (-α) is associated with significantly higher HbA2 level.

    Matched MeSH terms: beta-Thalassemia/diagnosis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links